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Abstract. We give upper bounds on the essential dimension of (quasi-)simple

algebraic groups over an algebraically closed field that hold in all characteris-
tics. The results depend on showing that certain representations are generically

free. In particular, aside from the cases of spin and half-spin groups, we prove
that the essential dimension of a simple algebraic group G of rank at least two

is at most dimG− 2(rankG)− 1. It is known that the essential dimension of

spin and half-spin groups grows exponentially in the rank. In most cases, our
bounds are as good or better than those known in characteristic zero and the

proofs are shorter. We also compute the generic stabilizer of an adjoint group

on its Lie algebra.
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1. Introduction

The essential dimension of an algebraic group G is the minimal transcendence
degree of the field of definition of a versal G-torsor. (Although inaccurate, one can
think of it as the number of parameters needed to specify a G-torsor.) This invariant
captures deep information about algebraic structures with automorphism group G,
and it is difficult to calculate. For example, the fact that ed(PGL2) = ed(PGL3) = 2
corresponds to the classical fact that division algebras of dimension 22 or 32 over
their center are cyclic, and it is an open problem whether the essential dimension
of PGLp is 2 for primes p ≥ 5 [ABGV11, Problem 6.2], although it is known that
ed(PGLn) is not O(n) [Mer10]. Therefore, the bulk of known results on essential
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dimension provide upper or lower bounds, see for example [CS06], [GR09], [BM12],
[LMMR13], etc. (See [Mer15], [Mer13], or [Rei10] for a survey of the current state of
the art.) In this paper, we provide upper bounds on ed(G) for every simple algebraic
group G over an algebraically closed field k, regardless of the characteristic of k.
Our bounds are in some cases as good as (Theorem 1.4) or better (Theorems 1.1
and 1.3) than the bounds known in characteristic zero, and have shorter proofs.
One summary consequence of our results is the following.

Theorem 1.1. Let G be a simple algebraic group over an algebraically closed field.
Then

ed(G) ≤ dimG− 2(rankG)− 1

or G ∼= PGL2, or G ∼= Spinn or HSpinn for some n.

For the excluded cases, ed(PGL2) = 2 (Example 6.3). For spin and half-spin
groups, essential dimension grows exponentially in n [BRV10] whereas the dimen-
sion,

(
n
2

)
, is quadratic in n. Specifically, ed(Spinn) > dim Spinn for all n ≥ 19 and

ed(HSpinn) > dim HSpinn for n divisible by 4 and ≥ 20.

Adjoint groups. Under the additional hypotheses that G is adjoint and char k =
0, it is well known that an adjoint semisimple group G acts generically freely on
Lie(G)⊕ Lie(G)1 and consequently ed(G) ≤ dimG, as was pointed out in [BRV10,
Remark 3-11]. In this setting, the stronger bound in Theorem 1.1 was proved in
[Lem04]. Dropping the hypothesis on char k but still assuming G is adjoint, the
bound ed(G) ≤ dimG− 2(rankG) was recently proved in [BGS, Cor. 10].

Theorem 1.1 for adjoint groups includes the following bounds, where we write
T adj
n for an adjoint group of type Tn:

ed(Eadj
6 ) ≤ 65, ed(Eadj

7 ) ≤ 118, ed(E8) ≤ 231,(1.2)

and ed(Dadj
n ) ≤ 2n2 − 3n− 1 for n ≥ 4.

(The adjoint group Dadj
n is sometimes denoted PSO2n.) These bounds agree with

those in [Lem04] for characteristic 0. (The number 112 given there for Eadj
7 was a

typo.)
We remark that the essential dimension of SO2n+1 (adjoint of type Bn) is 2n if

char k 6= 2 [Rei00] and is n + 1 if char k = 2 [BC15]. For SO2n (of type Dn), the
essential dimension is 2n− 1 if char k 6= 2 and is n or n+ 1 if char k = 2.

Groups of type C. We give the following upper bound for adjoint groups of type
Cn, which improves on the bound 2n2 − 3n − 1 given in [Lem04] in characteristic
zero.

Theorem 1.3. Over an algebraically closed field k and for n ≥ 4:

ed(GL2n /µ2) ≤ ed(PSp2n) ≤

{
2n2 − 3n− 4 if char k 6 |n or n = 4

2n2 − 3n− 6 if char k | n and n > 4.

The interesting case of Theorem 1.3 is when n is even; in the special case where
n is odd, the natural map PGL2×SOn ↪→ PSp2n gives a surjection H1(k,PGL2)×
H1(k,SOn)→ H1(k,PSp2n), and ed(PSp2n) = n+1 for n odd, cf. [Mac08, p. 302].

1By, e.g., [Ric88, Lemma 3.3(b)]. For analogous statements in prime characteristic, see §9.
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It is known that ed(GL8 /µ2) = 8 if char k 6= 2 [BM12, Cor. 1.4] and is ≤ 10 if
char k = 2 [Bae11, Cor. 1.4], somewhat better than the bound ≤ 16 provided by
Theorem 1.3.

Groups of type A. The essential p-dimension of GLn /µm and of SLn /µm have
been studied in [BM12], [Bae11], and [CM13]. Here and in (6.7) we give upper
bounds for the essential dimension (without the p).

Theorem 1.4. Over an algebraically closed field and for m dividing n ≥ 4, we
have:

ed(PGLn) ≤ n2 − 3n+ 1 and ed(SLn /µm) ≤ n2 − 3n+ n/m+ 1.

If m = 1, then ed(SLn) = 0. If m = n, then SLn /µm = PGLn. Our bound
for PGLn agrees with the one given by [Lem04] in char k = 0; we remove this
hypothesis. A better bound on ed(PGLn) is known for n odd [LRRS03]. See
[Mer13, §10] or [Rei10, §7.6] for discussions of the many more results on upper
bounds for PGLn. If m = 2, then (applying Lemma 6.4) the bound in Theorem 1.3
is better by about a factor of 2.

Exceptional groups. Concerning exceptional groups, a series of papers [Lem04],
[Mac14], [Mac13], [LM15] have led to the following upper bounds for exceptional
groups:

ed(F4) ≤ 7, ed(Esc
6 ) ≤ 8, and ed(Esc

7 ) ≤ 11 if char k 6= 2, 3.

(Here F4, Esc
6 and Esc

7 denote simple and simply connected groups of types F4, E6,
and E7; the displayed upper bounds are meant to be compared with the dimensions
of 52, 78, and 133 respectively. These upper bounds are close to the known lower
bounds of 5, 4, and 8 for char k 6= 2, 3.) The proofs of these upper bounds for F4

and Esc
7 are technical and detailed calculations. The following weaker bounds have

the advantage of simple proofs and holding for fields of characteristic 2 and 3.

Theorem 1.5. Over an algebraically closed field, we have:

ed(F4) ≤ 19, ed(Esc
6 ) ≤ 20, and ed(Esc

7 ) ≤ 49.

The proofs of most of the theorems above rely on computations of the (scheme-
theoretic) stabilizer of a generic element in a representation of NG(T ) for T a
maximal torus in G. The proof of Theorem 1.3 uses the computation of a generic
stabilizer in the action of Sp on L(λ2). Using the same technique, we prove calculate
the generic stabilizer of an adjoint group G acting on its Lie algebra. In particular,
this stabilizer is connected unless char k = 2. In the final section, we give upper
bounds on essential dimension for small spin and half-spin groups, completing the
list of upper bounds on ed(G) for G simple and connected over an algebraically
closed field.

2. Generically free actions

Let G be an affine group scheme of finite type over a field k, which we assume is
algebraically closed. (If G is additionally smooth, then we say that G is an algebraic
group.) We put G◦ for the identity component of G. If G acts on a variety X, the
stabilizer Gx of an element x ∈ X(k) is a sub-group-scheme of G with points

Gx(R) = {g ∈ G(R) | gx = x}
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for every k-algebra R. Statements “for generic x” means that there is a dense open
subset U of X such that the property holds for all x ∈ U .

Suppose G acts on a variety X in the sense that there is a map of k-schemes
G×X → X satisfying the axioms of a group action. We say that G acts generically
freely on X if there is a nonempty open subset U of X such that for every u ∈ U
the stabilizer Gu is the trivial group scheme 1. It is equivalent to require that
Gu(k) = 1 and Lie(Gu) = 0. Indeed, if Lie(Gu) = 0, then Gu is finite étale and
(since k is algebraically closed) it follows that Gu = 1.

Example 2.1. For T a diagonalizable group scheme (e.g., a split torus) acting
linearly on a vector space V , the stabilizer Tv of a generic vector v ∈ V is ∩ω∈Ω kerω
where Ω ⊂ T ∗ is the set of weights of V , i.e., Tv is the kernel of the action. (By
the duality between diagonalizable group schemes and finitely generated abelian
groups, this is a statement on the level of group schemes.) In particular, T acts
generically freely on V if and only if Ω spans T ∗.

Similarly, the stabilizer T[v] of a generic element [v] ∈ P(V ) is ∩ω,ω′ ker(ω − ω′),
so T acts generically freely on P(V ) iff the set of differences ω − ω′ span T ∗.

For other groups G, we have the following well known lemma, see for example
[GG15, Lemma 2.2].

Lemma 2.2. Suppose G is connected and X is irreducible. If there is a field K ⊇ k
and an element x0 ∈ X(K) such that Gx0

is finite étale, then there is an n ≥ 1 and
a nonempty open U ⊆ X such that, for every algebraically closed field E ⊇ k and
every u ∈ U(E), Gu is finite étale and |Gu(E)| = n. �

Note that finding some x0 with Gx0 = 1 does not imply that G acts generically
freely on X; it is common that such an x0 will exist in cases where Gx is finite étale
but 6= 1 for generic x. This was pointed out already in [AP71]; see [GLLT16] for
more discussion and examples.

Nonetheless, Lemma 2.2 may be used to prove that an action is generically
free as follows. Suppose G, X and the action of G on X can be defined over a
countable algebraically closed field F and that X is unirational, i.e., there is an F -
defined dominant rational map φ : Ad 99K X for some d. Adjoin d indeterminates
a1, . . . , ad to F and calculate Gx0

for x0 = φ(a1, . . . , ad). As F is countable, for
K an uncountable algebraically closed field containing F , the elements of Ad(K)
with algebraically independent coordinates are the complement of countably many
closed subsets so are dense. Therefore, modifying φ by an F -automorphism of Ad,
the calculation of Gx0 implicitly also calculates Gx for x in a dense subset. In
particular, if Gx0 = 1, then the lemma gives that G acts generically freely on X.

Groups whose identity component is a torus. Suppose that G is an algebraic
group whose identity component is a torus T . As k is assumed algebraically closed,
the component group G/T is a finite constant group. We are interested in repre-
sentations V of G such that G acts generically freely on V or P(V ). Evidently it is
necessary that T acts faithfully on V or P(V ), respectively.

Lemma 2.3. Let G be an algebraic group with identity component a torus T .
Suppose that G acts linearly on a vector space V such that:

(1) every weight of V has multiplicity 1, and
(2) for Ω the set of weights of V , G/T acts faithfully on the kernel of the map

ψ : ⊕ω∈ΩZ 7→ T ∗ given by (nω) 7→
∑
ω nωω.
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If T acts faithfully on V (resp., P(V )), then G acts generically freely on V (resp.,
P(V )).

We give a concrete proof. Alternatively one could adapt the proof of [MR09,
Lemma 3.3].

Proof. As G is the extension of a finite constant group by a torus, it and the
representation V are defined over the algebraic closure of the prime field in k.
Put K for the algebraic closure of the field obtained by adjoining independent
indeterminates cχ to k for each weight χ of V . Fix elements vχ ∈ V generating the
χ weight space for each χ and put v :=

∑
χ cχvχ ∈ V ⊗K.

We have a homomorphism δ : G[v] → Gm given by g 7→ gv/v. Thinking now

of the function π : V → A1 defined by π(
∑
αχvχ) =

∏
αχ, we see that π(gv) =

π(δ(g)v) = δ(g)dimV π(v). On the other hand, for δ′ denoting the composition

δ : G → GL(V )
det−−→ Gm, as the image of G in GL(V ) consists of monomial

matrices, we find that π(gv) = ±δ′(g)π(v). That is, δ(g)dimV = ±δ′(g), so the
image of δ in Gm is the group scheme µa of a-th roots of unity for some a.

For sake of contradiction, suppose there exists a g ∈ (G[v])(K) mapping to a
non-identity element w in (G/T )(K). Pick n ∈ G(k) with the same image w, so
g = nt for some t ∈ T (K). Now nvχ = mχvwχ for some mχ ∈ k×, and we have an
equation

δ(g)v = ntv =
∑
χ

cχχ(t)mχvwχ,

hence χ(t) = δ(g)cwχ/(cχmχ) for all χ.
By hypothesis, there exist χ1, . . . , χr ∈ Ω and nonzero z1, . . . , zr ∈ Z such that∑
ziχi = 0 in T ∗, yet the tuple (zχ) ∈ ⊕χ∈ΩZ is not fixed by w where zχ = zi if

χ = χi and zχ = 0 otherwise. As
∑
ziχi = 0, we have

(2.4) 1 =
∏
i

(
δ(g)cwχi

cχimχi

)zi
,

an equation in K, where δ(g) and the mχi belong to k×. But the indeterminates
appearing in the numerator correspond to the tuple (zw·χ) whereas those in the
denominator correspond to (zχ), so the equality (2.4) is impossible.

That is, the image of G[v] in the constant group G/T is trivial, and G[v] is
contained in T . Thus Gv or G[v] is trivial by Example 2.1. Since we have proved
that an element with algebraically independent coordinates has trivial stabilizer, G
acts generically freely by the discussion following Lemma 2.2. �

Example 2.5. Suppose there is an element −1 ∈ (G/T )(k) that acts by −1 on T ∗.
Then we may partition Ω \ {0} as P

∐
−P for some set P . If |P | > dimT , then

−1 acts nontrivially on kerψ. Indeed, there are nπ ∈ Z for π ∈ P , not all zero, so
that

∑
nππ = 0 in T ∗, which provides an element of kerψ that is moved by −1.

The group AGL1. The following result will be used for groups of type C.
Let k be an algebraically closed field of characteristic p ≥ 0. Let X be the variety

of monic polynomials of degree n over k. Of course, X is isomorphic to affine space
kn and can also be identified with kn/Sn (where the coordinates are just the roots
of the polynomial). Let X0 be the subvariety of X such that the coefficient of xn−1

is 0 (i.e., the sum of the roots of f is 0). Let G = AGL1, the group with k-points
{( c b0 1 ) | c ∈ k×, b ∈ k}, so G is a semidirect product Gm nGa and is isomorphic to
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a Borel subgroup of PGL2. An element g ∈ G acts on k by y 7→ cy + b and we can
extend this to an action on X (by acting on each root of f). Note that G preserves
X0 if and only if p divides n. In any case Gm does act on X0.

Lemma 2.6. If p does not divide n > 2, then Gm acts generically freely on X0. If
p divides n and n > 4, then G acts generically freely on X0.

Proof. We just give the proof of the group of k-points. The proof for the Lie algebra
is identical.

Note that if c = (0, c) ∈ k× and f has distinct roots, then c fixes f implies that
cn(n−1) = 1 since c preserves the discriminant of f . In particular, there are only
finitely many possibilities for c.

Note that the dimension of the fixed point space of multiplication by c on X has
dimension at most n/2 and so the fixed point space on X0 is a proper subvariety
(because n > 2) and has codimension at least 2 if n > 4.

If p does not divide n, then we see that there are only finitely many elements of
k× which have a fixed space which intersects the open subvariety of X0 consisting
of elements with nonzero discriminant. Thus, the finite union of these fixed spaces
is contained in a proper subvariety of X0 whence for a generic point the stabilizer
is trivial.

Now suppose that p divides n. Then translation by b has a fixed space of dimen-
sion n/p ≤ n/2 on X and so similarly the fixed space on X0 has codimension at
least 2 for n > 4.

There is precisely one conjugacy class of nontrivial unipotent elements in G and
this class has dimension 1. Thus the union of all fixed spaces of nontrivial unipotent
elements of G is contained in a hypersurface for n > 4. Any semisimple element
of G is conjugate to an element of k× (i.e., to an element of the form (0, c)) and
so there are only finitely many such conjugacy classes which have fixed points on
the locus of polynomials with nonzero discriminant. Again, since each class is 1-
dimensional and each fixed space has codimension greater than 1, we see that the
union of all fixed spaces is contained in a hypersurface of X0 for n > 4. �

If n = 4 and p = 2, then any f ∈ X0 is fixed by a translation and so the action
is not generically free.

3. Essential dimension

The essential dimension of an affine group scheme G over a field k can be defined
as follows. For each extension K of k, write H1(K,G) for the cohomology set
relative to the fppf (= faithfully flat and finitely presented) site. For each x ∈
H1(K,G), we define ed(x) to be the minimum transcendence degree of K0 over
k for k ⊇ K0 ⊇ K such that x is in the image of H1(K0, G) → H1(K,G). The
essential dimension of G, denoted ed(G), is defined to be max ed(x) as x varies
over all extensions K of k and all x ∈ H1(K,G).

If V is a representation of G on which G acts generically freely, then ed(G) ≤
dimV −dimG, see, e.g., [Mer13, Prop. 3.13]. We can decrease this bound somewhat
by employing the following.

Lemma 3.1. Suppose V is a representation of an algebraic group G. If there is a
G-equivariant dominant rational map V 99K X for a G-variety X on which G acts
generically freely, then ed(G) ≤ dimX − dimG.
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Proof. Certainly, G must act generically freely on V . In the language of [DR15] or
[Mer13, p. 424], then, V is a versal and generically free G-variety and the natural
map V 99K X is a G-compression. Therefore, referring to [Mer13, Prop. 3.11], we
find that ed(G) ≤ dimX − dimG. �

The following lemma was pointed out in [BRV07].

Lemma 3.2. Let V be a faithful representation of a (connected) reductive group
G. Then ed(G) ≤ dimV .

Proof. Fix a maximal torus T in G. By [CGR08] there is a finite sub-k-group-
scheme S of NG(T ) so that the natural map of fppf cohomology sets H1(K,S) →
H1(K,G) is surjective for every extension K of k, so ed(G) ≤ ed(S).

For generic v in V , the stabilizer Sv of v in S has Lie(Sv) ⊆ Lie(S)v ⊆ Lie(T )v =
0, so Sv is smooth. As the finite group S(k) acts faithfully on V , S(k) acts generi-
cally freely, so ed(S) ≤ dimV . �

The conclusion of Lemma 3.2 is not sufficient to deduce Theorem 1.1 because
the minimal faithful representations of SLn /µm are too big for 3 ≤ m < n, being
at least cubic in n whereas the dimension of the group is n2 − 1.

4. The short root representation

Let G be an adjoint simple algebraic group and put V for the Weyl module with
highest weight the highest short root. Fixing a maximal torus T in G, the weights
of this representation are 0 (with some multiplicity) and the short roots Ω (each
with multiplicity 1), and we put V for V modulo the zero weight space. It is a
module for NG(T ).

Proposition 4.1. Suppose k is algebraically closed. If G is of type An (n ≥ 2),
Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, or F4, then NG(T ) acts generically freely on
P(V ) and

ed(NG(T )) ≤ |Ω| − dimT − 1.

The inequality in the proposition is reminiscent of the one in [Lem04, Th. 1.3].

Example 4.2. The group PGLn is adjoint of type An−1 and we identify it with
the quotient of GLn by the invertible scalar matrices. We may choose T ⊂ PGLn
to be the image of the diagonal matrices and NG(T ) is the image of the monomial
matrices. The representation V is the space of matrices with zeros on the diagonal,
on which NG(T ) acts by conjugation.

With this notation, for type A1, the stabilizer in NG(T ) of a generic element
v :=

(
0 x
y 0

)
of V is Z/2, with nontrivial element the image of v itself. So type A1 is

a genuine exclusion from the proposition.

Proof of Proposition 4.1. It suffices to prove that NG(T ) acts generically freely, for
then the inequality follows by Lemma 3.1. We apply Lemma 2.3.

For every short root α, there is a short root β such that 〈β, α〉 = ±1. (If α is
simple, take β to be simple and adjacent to α in the Dynkin diagram. Otherwise, α
is in the Weyl orbit of a simple root.) Thus, the kernel of T → PGL(V ) is contained
in the kernel of β − sα(β) = ±α. As the lattice generated by the short roots α is
the root lattice T ∗, it follows that T acts generically freely on P(V ).

So it suffices to verify 2.3(2). Fix w 6= 1 in the Weyl group; we find short roots
χ1, . . . , χr such that

∑
χi = 0 and the set {χi} is not w-invariant.
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If w = −1, then take χ1, χ2 to be non-orthogonal short simple roots. They gen-
erate an A2 subsystem and we set χ3 := −χ1 − χ2. (Alternatively, apply Example
2.5.) This proves the claim for type F4: the kernel of the G/T -action on kerψ is a
normal subgroup of the Weyl group not containing −1, and therefore it is trivial.

If G has type A, D, or E, then all roots are short. As w 6= ±1, there is a short
simple root χ1 such that w(χ1) 6= ±χ1. (Indeed, otherwise there would be simple
roots α, α′ such that w(α) = α, w(α′) = −α′, yet α and α′ are adjacent in the
Dynkin diagram.) Take χ2 = −χ1.

For type Cn (n ≥ 3), as in [Bou02] we may view the root lattice Z[Φ] as contained
in a copy of Zn with basis ε1, . . . , εn. If the kernel of the G/T -action on kerψ does
not contain −1, it contains the group H isomorphic to (Z/2)n−1 consisting of those
elements that send εi 7→ −εi for an even number of indexes i and fix the others.
Taking χ1 = ε1−ε2, χ2 = ε2−ε3, and χ3 = −χ1−χ2 gives a set {χi} not stabilized
by H. �

5. Groups of type C: Proof of Theorem 1.3

Let G be the adjoint group of type Cn for n > 3 over an algebraically closed field
k of characteristic p. Let W := L(ω2) be the irreducible module for G with highest
weight ω2 where ω2 is the the second fundamental dominant weight (as numbered in
[Bou02]). We view W as the unique irreducible nontrivial G-composition factor of
Y := ∧2(V ) where V is the natural module for Sp2n. We recall that Y = W ⊕k if p
does not divide n. If p divides n, then Y is uniserial of length 3 with 1-dimensional
socle and radical. Any element in Y has characteristic polynomial f2 where f has
degree n, and the radical Y0 of Y is the set of elements with the roots of f summing
to 0. (Note that aside from characteristic 2, Y0 are the elements of trace 0 in Y .)

In particular, dimW = 2n2−n−1 if p does not divide n and dimW = 2n2−n−2
if p does divide n.

As in [GG07], we view Y as the set of skew adjoint operators on V with respect
to the alternating form defining Sp2n with G acting as conjugation on Y .

Proposition 5.1. If n > 3 and (n, p) 6= (4, 2), then G acts generically freely on
W ⊕W and on P(W )× P(W ).

Proof. Any element y ∈ Y is conjugate to an element of the form diag(A,A>)
acting on a direct sum of totally singular subspaces. A generic element of Y is thus
an element where A is semisimple regular. Writing V = V1 ⊥ . . . ⊥ Vn where the
Vi are 2-dimensional nonsingular spaces on which y acts as a scalar, we see that a
generic point of Y has stabilizer (as a group scheme) Sp×n2 = SL×n2 in Sp2n (and by
[GG07], this precisely the intersection of two generic conjugates of Sp2n in SL2n).
The same argument shows that this is true for a generic point of Y0.

In particular if p does not divide n, the same is true for W = Y0. It follows
by Lemma 2.6 that for generic w ∈ W , gw = cw for g ∈ G and c ∈ kx implies
that c = 1. Thus, the stabilizer of a generic point in P(W ) still has stabilizer
Sp×n2 = SL×n2 .

If p does divide n, then W = Y0/k where we identify k with the scalar matrices
in Y . We claim that (for n > 4) the generic stabilizer is still Sp×n2 = SL×n2 on
P(W ). Again, this follows by Lemma 2.6 since if gw = cw + b with b, c ∈ k and
g ∈ G, then for w generic, b = 0 and c = 1.

It is straightforward to see that the same is true for W , because for a generic
point anything stabilizing y modulo scalars must stabilize y (see Lemma 2.6). Thus,
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in all cases, the generic stabilizer of a point in P(W ) × P(W ) is the same as for
Y ⊕ Y .

Consider GL2n acting on Y ⊕ Y ⊕ Y . The stabilizer of a generic point of Y is
clearly a conjugate of Sp2n. It follows from [GG07] that the stabilizer of a generic
element of Y ⊕ Y ⊕ Y is central. (The result is only stated for the algebraic group
but precisely the same proof holds for the group scheme.) Thus, the same holds for
Sp2n acting on Y ⊕ Y and so also on P(W )× P(W ). The result follows. �

We can now improve and extend Lemire’s bound for ed(PSp2n) from [Lem04,
Cor. 1.4] both numerically and to fields of all characteristics.

Proof of Theorem 1.3. For the first inequality, the group GL2n /µ2 has an open
orbit on ∧2(k2n), and the stabilizer of a generic element is PSp2n. Consequently,
the induced map H1(K,PSp2n)→ H1(K,GL2n /µ2) is surjective for every field K,
see [Gar09, Th. 9.3] or [Ser02, §III.2.1]. (Alternatively, the domain classifies pairs
(A, σ) where A is a central simple algebra of degree 2n and exponent 2 and σ is a
symplectic involution [KMRT98, 29.22], and the codomain classifies central simple
algebras of degree 2n and exponent 2. The map is the forgetful one (A, σ) 7→ A.)
Thus ed(GL2n /µ2) ≤ ed(PSp2n).

For the second inequality, assume that n ≥ 4 and if n = 4, then p 6= 2. As PSpn
acts generically freely on P(W )× P(W ), ed(G) ≤ 2(dimP(W ))− dimG by Lemma
3.1. Theorem 1.3 follows, because dimP(W ) = 2n2−n− δ where δ = 3 if p divides
n and 2 otherwise.

If n = 4 and p = 2, G still acts generically freely on Y0 ⊕ Y0. Indeed, arguing as
above we see that G acts generically freely on P(Y0)× P(Y0) and the result follows
in this case. �

6. Groups of type A: proof of Theorem 1.4

For the proofs of Theorems 1.1, 1.4, and 1.5, we use the fact that ed(NG(T )) ≥
ed(G), because for every field K ⊇ k, the natural map H1(K,NG(T ))→ H1(K,G)
is surjective (which in turn holds because, for K separably closed, all maximal
K-tori in G are G(K)-conjugate).

Let T be a maximal torus in G := PGLn for some n ≥ 4. The representation V
of NG(T ) from §4 may be identified with the space of n-by-n matrices with zeros on
the diagonal. It decomposes as V = ⊕ni=1Wi, where Wi is the subspace of matrices
whose nonzero entries all lie in the i-th row; NG(T ) permutes the Wi’s.

Lemma 6.1. If n ≥ 4, then NG(T ) acts generically freely on X := P(W1) ×
P(W2)× · · · × P(Wn).

Proof. Each element of the maximal torus T is the image of a diagonal matrix
t := diag(t1, . . . , tn) under the surjection GLn → PGLn. The kernel of the action
of T on P(Wi) are the elements such that tit

−1
j are equal for all j 6= i. Thus the

kernel of the action on X is the subgroup of elements with ti = tj for all i, j, so
T acts faithfully on X. For generic x ∈ X, the identity component of NG(T )x is
contained in Tx, so Lie(NG(T )x) ⊆ Lie(T )x = 0, i.e., NG(T )x is finite étale.

To show that the (concrete) group S of k-points of NG(T )x is trivial, it suffices
to check 1 6= s ∈ S that

(6.2) dim sT + dimXs < dimX
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(compare, for example, [GG15, 10.2, 10.5]). As s 6= 1, it permutes the Wi’s non-
trivially. If s moves more than two of the Wi’s, then

dimX − dimXs ≥ 2 dimP(Wi) = 2(n− 2).

But of course dim sT ≤ n− 1, verifying (6.2) for n ≥ 4.
If s interchanges only two of the Wi’s, i.e., it is a transposition, then dimX −

dimXs = n− 2, but dim sT = 1 < n− 2, and again (6.2) has been verified. �

Example 6.3. ed(PGL2) = 2, regardless of char k, so type A1 is a genuine ex-
ception to Theorems 1.1 and 1.4 (as dim PGL2−2(rank PGL2) − 1 = 0). Indeed,
H1(k,G) classifies quaternion algebras over k, i.e., the subgroup Z/2×µ2 of PGL2

gives a surjection in flat cohomology H1(k,Z/2) × H1(k, µ2) → H1(k,PGL2), so
ed(PGL2) ≤ 2. On the other hand, the connecting homomorphism H1(K,PGL2)→
H2(K,µ2), which sends a quaternion algebra to its class in the 2-torsion of the
Brauer group of K, is nonzero for some extension K, and therefore also ed(PGL2) ≥
2.

Entirely parallel comments apply to PGL3, in which case the surjectivityH1(k,Z/3)×
H1(k, µ3)→ H1(k,PGL3) is due to Wedderburn [KMRT98, 19.2]. Thus ed(PGL3) =
2 and PGL3 is a genuine exception to Theorem 1.4.

The proof of Theorem 1.4 requires a couple more lemmas.

Lemma 6.4. Suppose 1→ A→ B → C → 1 is an exact sequence of group schemes
over k. If H1(K,C) = 0 for every K ⊇ k, then ed(B) ≤ ed(A) ≤ ed(B) + dimC.

Proof. For every K, the sequence

(6.5) C(K)→ H1(K,A)→ H1(K,B)→ 1

is exact. From here the argument is standard. The surjectivity of the middle
arrow gives the first inequality. For the second, take α ∈ H1(K,A). There is
a field K0 lying between k and K such that trdegkK0 ≤ ed(B) and an element
α0 ∈ H1(K0, A) whose image in H1(K,B) agrees with that of α. Thus, there is a
c ∈ C(K) such that c · resK/K0

(α0) = α. There is a field K1 lying between k and K
such that trdegkK1 ≤ dimC such that c belongs to C(K1) ⊆ C(K). In summary,

ed(α) ≤ trdegk(K1K0) ≤ trdegkK1 + trdegkK0 ≤ ed(B) + dimC.

As this holds for every K and every α ∈ H1(K,A), the conclusion follows. �

Lemma 6.4 applies, for example, when B is an extension of a group A by a
quasi-trivial torus C, such as when A = SLn /µm and B = GLn /µm. In that case,
one can tease out whether ed(SLn /µm) = ed(GLn /µm) or ed(GLn /µm) + 1 by
arguing as in [CM13].

Lemma 6.6. Suppose m divides n ≥ 2. Then

ed(GLn /µm) ≤ ed(PGLn) + n/m− 1.

We omit the proof, which is the same as that for [BM12, Lemma 7.1] apart from
cosmetic details.

Proof of Theorem 1.4. In view of Lemmas 6.1 and 3.1, we find that

ed(PGLn) ≤ ed(NG(T )) ≤ dimX − dimNG(T ) = n2 − 3n+ 1.
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Therefore Lemma 6.6 gives

(6.7) ed(GLn /µm) ≤ n2 − 3n+ n/m

and Lemma 6.4 gives the required bound on ed(SLn /µm). �

Lemma 6.8. Suppose m divides n, and write n = n′q where n′ and m have the
same prime factors and gcd(n′, q) = 1. Then H1(K,GLn /µm) = H1(K,GLn′ /µm)
for every extension K of k and ed(GLn /µm) = ed(GLn′ /µm).

Proof. The set H1(K,GLn /µm) is in bijection with the isomorphism classes of
central simple K-algebras A of degree n and exponent dividing m. As n′ and q are
coprime, every such algebra can be written uniquely as A′⊗B where A′ has degree
n′ and B has degree q [GS06, 4.5.16]. However, B is split as its exponent must divide
gcd(q, expA), i.e., A ∼= Mq(A

′). That is, H1(K,GLn /µm) = H1(K,GLn′ /µm). As
this holds for every extension K of k, the claim on essential dimension follows. �

Remark 6.9. One can eliminate m from the bound appearing in Theorem 1.4 to
obtain

ed(SLn /µm) ≤ n2 − 3n+ 1 + n/4 for m dividing n ≥ 4.

To check this, assume m < 4. If m = 1, ed(SLn) = 0. If m = 2, then Theorem 1.3
gives a stronger bound.

If m = 3, then write n = n′q for n′ = 3a for some a ≥ 1 as in Lemma 6.8. If
a = 1, then n ≥ 6 and ed(GLn /µ3) = ed(PGL3) = 2 by Lemma 6.8, which is less
than n2 − 3n + n/4. If a > 1, then ed(GLn /µ3) ≤ ed(PGLn′) + n′/3 − 1; as n′ is
odd and ≥ 9, [LRRS03] gives ed(PGLn′) ≤ 1

2 (n′ − 1)(n′ − 2), whence the claim.

Remark 6.10. Here is another way to obtain an upper bound on ed(SLn /µm); it
is amusing because it requires char k = p to be nonzero. Fix an integer e ≥ 1 and
ε = ±1, and set m := gcd(pe + ε, n). We will show that

(6.11) ed(SLn /µm) ≤ n2 − n+ 1.

To see this, consider the GLn-module V := W ⊗W [e] or W ∗⊗W [e], where W is the
natural module kn, [e] denotes the e-th Frobenius twist, and where we take the first
option if ε = +1 and the second option if ε = −1. A scalar matrix x ∈ GLn acts
on V as xp

e+ε, and therefore the action of SLn on V gives a faithful representation
of G := SLn /µm. We consider the action of NG(T ) on V for T a maximal torus
in G, and apply Lemma 2.3 to see that NG(T ) acts generically freely on V and so
obtain (6.11).

7. Minuscule representations of Esc
6 and Esc

7 : proof of Theorem 1.5

Recall that Esc
6 and Esc

7 have minuscule representations, i.e., representations
where all weights are nonzero and occur with multiplicity 1 and make up a single
orbit Ω under the Weyl group. For E6 there are two inequivalent choices, both of
dimension 27, and for E7 there is a unique one of dimension 56.

Proposition 7.1. Let T be a maximal torus in a simply connected group G of type
Esc

6 or Esc
7 over an algebraically closed field k. Then NG(T ) acts generically freely

on V for every minuscule representation V of G.
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Proof. We apply Lemma 2.3. The map G→ GL(V ) is injective, so T acts faithfully
on V . It suffices to verify 2.3(2).

One can list explicitly the weights Ω of V and find X = {χ1, . . . , χ6} ⊂ Ω with∑
χi = 0 and χi 6= ±χj for i 6= j. It suffices, therefore, to check for every minimal

normal subgroup H of the Weyl group not containing −1, that HX 6= X. For this,
it is enough to observe that H has no fixed lines on the vector space C[Φ] generated
by the roots Φ (because Z[Ω] = Z[Φ], so H fixes no element of Ω) and that H has
no orbits of size 2, 3, . . . , 6 (because its maximal subgroups have index greater than
6).

For E6, H has order 25920 with largest maximal subgroups of index 27. For
E7, H is isomorphic to Sp6(F2) with largest maximal subgroups of index 28. The
description of these Weyl groups from [Bou02, Ch. IV, §4, Exercises 2 and 3] make
it obvious that H does not preserve any line in C[Φ]. �

Proof of Theorem 1.5. The group F4 has 24 short roots, so by Proposition 4.1, we
have

ed(F4) ≤ ed(NG(T )) ≤ 24− 4− 1 = 19.

For Esc
7 , we apply instead Proposition 7.1 to obtain the desired upper bound.

The group Esc
6 has a subgroup F4 × µ3 such that the map in cohomology

H1(K,F4 × µ3)→ H1(K,Esc
6 ) is surjective for every extension K ⊇ k, see [Gar09,

9.12], hence ed(Esc
6 ) ≤ ed(F4) + 1. �

8. Proof of Theorem 1.1

Proof of Theorem 1.1. Suppose first that G has type An−1, i.e., G ∼= SLn /µm.
Assume m > 1 for otherwise ed(G) = 0. It is claimed that ed(G) ≤ n2 − 2n. As
ed(PGL3) = 2, we may assume n ≥ 4. Combining Theorem 1.4 with the fact that
1 + n/m ≤ n gives the claim.

Now suppose that G is adjoint. If G is one of the types covered by Proposition
4.1, then we are done by combining that proposition with the inequality ed(G) ≤
ed(NG(T )). Type B was already addressed in the introduction. For type G2, the
essential dimension is 3 because H1(K,G2) is in bijection with the set of 3-Pfister
quadratic forms over K for every field K containing k [KMRT98, 26.19].

Now suppose that G is neither type A nor adjoint. If G has type B, then G is
a spin group, so there is nothing to prove. If G has type C, then G = Sp2n and
ed(G) = 0. If G has type D, then the only remaining case to consider is G = SO2n

for n ≥ 4 and then ed(G) ≤ 2n− 1 < 2n2 − 3n− 1 = dimG− 2(rankG)− 1. The
two remaining cases are the simply connected groups of type E6 and E7 for which
we refer to Theorem 1.5. �

9. Generic stabilizer for the adjoint action

As a complement to the above results, we now calculate the stabilizer in a simple
algebraic group G of a generic element in Lie(Ad(G)). (Note that, in case G =
SL2, we are discussing the action on Lie(PGL2), not on Lie(SL2), and the two Lie
algebras are distinct if char k = 2.) We include this calculation here because the
methods are similar to the previous results. The results are complementary, in the
sense that previously we considered NG(T ) acting on representations with no zero
weights, and in this section we consider NG(T ) acting on Lie(Ad(T )), for which
zero is the only weight. The main result, Proposition 9.2, is used in [GG16].
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After a preliminary result, we will calculate the stabilizer of a generic element
of the adjoint representation. Let Φ be an irreducible root system and put W for
its Weyl group and Q for its root lattice. For each prime p, tensoring Q with the
finite field Fp gives a homomorphism

ρp : 〈W,−1〉 → GLrankQ(Fp).

Lemma 9.1. The kernel of ρp is (Z/2)n if Φ has type Bn for some n ≥ 2 and
p = 2. Otherwise, ker ρp = 〈−1〉 if p = 2 and ker ρp = 1 for p 6= 2.

Proof. If p 6= 2, ker ρp = 1 by an old theorem of Minkowski (see [Min87] and also
[Ser07, Lemma 1.1]). So we may assume that p = 2. it also follows by a similar
argument that ker ρ2 is a 2-group [Ser07, Lemma 1.1’]. Clearly −1 ∈ ker ρ2. Thus,
the result follows immediately for G of type An for n 6= 3, G2, or En, since the only
normal 2-subgroups in these cases are the subgroup of order 2 containing −1. It is
straightforward to check the result for the groups A3 = D3 and C3. Note that the
root lattice of Dn−1 is a direct summand of Dn, n > 3 and any normal 2-subgroup
of the Weyl group of Dn of order greater than 2 intersects the Weyl group of of
Dn−1 in a subgroup of order greater than 2. Thus, the result for D3 implies the
result for all Dn. Similarly, the result for C3 implies the result for Cn, n > 3.

Finally, suppose Φ has type Bn for some n ≥ 2 and p = 2. Viewing Zn as having
basis εi for 1 ≤ i ≤ n, we can embed Φ in Zn by setting the simple roots to be
αi = εi − εi+1 for 1 ≤ i < n and αn = εn as in [Bou02]. The Weyl group W is
isomorphic to (Z/2)n o Sn, where (Z/2)n consists of all possible sign flips of the εi
and Sn acts by permuting the εi. The subgroup (Z/2)n obviously acts trivially on
Q ⊗ F2 (since there is a basis of eigenvectors for Q for this subgroup of exponent
2). In fact, (Z/2)n is precisely the kernel of the action of W on Q⊗ F2, as is easy
to check for n < 5 and is clear for n ≥ 5. �

Proposition 9.2. Let G be a simple algebraic group. The action of G on Lie(Ad(G))
has stabilizer in general position S, with identity component S◦ a maximal torus in
G. Moreover, S = S◦ unless char k = 2 and:

(1) G has type Bn for n ≥ 2; in this case S/S◦ ∼= (Z/2)n.
(2) G has type A1, Cn for n ≥ 3, Dn for n ≥ 4 even, E7, E8, F4, or G2; in

this case S/S◦ ∼= Z/2 and the nontrivial element acts on S◦ by inversion.

Proof. Suppose first that G = Ad(G) and fix a maximal torus T of G. As G is
adjoint, the Lie algebra Lie(T ) is a Cartan subalgebra of Lie(G), and the natural
map G × Lie(T ) → Lie(G) is dominant [DG70, XIII.5.1, XIV.3.18]. Therefore, it
suffices to verify that the stabilizer S in G of a generic vector t in Lie(T ) is as
claimed. The subgroup of G transporting t in Lie(T ) is the normalizer NG(T )
[DG70, XIII.6.1(d)(viii)], hence S is the centralizer of t in NG(T ) and it follows
that S◦ = T and S/S◦ is isomorphic to the group of elements w of the Weyl group
fixing t, compare [Ste75, Lemma 3.7]. As G is adjoint, the element t is determined
by its action on Lie(G), i.e., by the values of the roots on t; in particular w(t) = t if
and only if w acts trivially on Q⊗k. Lemma 9.1 completes the proof for G adjoint.

In case G is not adjoint, the representation factors through the central isogeny
G→ Ad(G), and Gt is the inverse image of the generic stabilizer in Ad(G). �

To summarize the proof, the identity component of CG(t) is T by [DG70], so
CG(t) is contained in NG(T ) and is determined by its image in the Weyl group
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NG(T )/T ; this statement is included in [Ste75]. What is added here is the cal-
culation of the component group CG(t)/T , and in particular that it need not be
connected.

One can also compute the generic stabilizer for the action of G on the projective
space P(Lie(G)) of Lie(G) by the same argument. If p = 2, since PGLn(F2) =
GLn(F2) we see that the generic stabilizers for P(Lie(G)) and Lie(G) are the same.
If p is odd, an easy argument shows that a generic stabilizer is a maximal torus if
−1 is not in the Weyl group and is just a maximal torus extended by −1 if −1 is
in the Weyl group. (Clearly −1 does act by −1 on Lie(T ), T a maximal torus.) In
any case, the connected component of the stabilizer of a generic line in Lie(G) is
contained in the normalizer of a maximal torus, as we know from [DG70].

Action of G on Lie(G)⊕ Lie(G). In case k = C, it is well known that an adjoint
simple group G acts generically freely on Lie(G) ⊕ Lie(G). However we have also
the following:

Example 9.3. Maintaining the notation of Example 4.2, the Lie algebra pgl2 of
PGL2 may be identified with the Lie algebra gl2 of 2-by-2 matrices, modulo the
scalar matrices. Write T for the (image of the) diagonal matrices in PGL2. A
generic element v ∈ pgl2 is the image of some ( x y

z w ). The normalizer of [v] ∈ P(pgl2)
in NG(T ) is Z/2, with nontrivial element the image g of

(
0 y
−z 0

)
, which satisfies

gv = −v. If char k = 2, the same calculation shows that the normalizer of v ∈ pgl2
is Z/2.

The subgroup of PGL2 mapping a generic element of Lie(T ) into Lie(T ) isNG(T ),
as was already used in the proof of Proposition 9.2. Therefore, the stabilizer in G
of a generic element of P(pgl2)⊕P(pgl2) equals the stabilizer in NG(T ) of a generic
element of P(pgl2), i.e., Z/2.

Moreover, if char k = 2, the stabilizer in PGL2 of a generic element in pgl2⊕pgl2
is Z/2.

We note that this is the only such example.

Proposition 9.4. Let G be an adjoint simple group. Then G acts generically freely
on P(Lie(G))× P(Lie(G)) unless G has type A1. If G has type A1 and char k 6= 2,
then G acts generically freely on Lie(G)⊕ Lie(G).

Proof. Pick a maximal torus T in G. The stabilizer in G of a generic element of
P(Lie(G)) × P(Lie(G)) is contained in the intersection of two generic conjugates
of NG(T ). If G is not of type A1, then this intersection is 1 as in the proof of
[BGS, Cor. 10]. If G is of type A1 and char k 6= 2, then we apply the preceding
example. �

Note that if p 6= 2 and we consider the action of G on Lie(G), then a generic
stabilizer is a maximal torus and it is elementary to see that two generic conjugates
of a maximal torus intersect trivially.

10. Groups of type B and D

We have not yet discussed upper bounds for the simply connected groups Spinn
for n ≥ 7 of type B` for ` ≥ 3 or D` for ` ≥ 4. Also, for Spinn with n divisible
by 4 and at least 12, there is a quotient Spinn /µ2 that is distinct from SOn; it is
denoted HSpinn and is known as a half-spin group.
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The group G = Spinn with n > 14 or HSpinn with n > 16 act generically
freely on a (half) spin representation or the sum of a half spin representation and
the vector representation Spinn → SOn by [AP71] and [Pop88] if char k = 0 and
[GG16] for all characteristics. This gives an upper bound on ed(G), which is an
equality if char k 6= 2, see [BRV10] and [GG16].

We now give bounds for HSpin12 and HSpin16.

Lemma 10.1. For T a maximal torus in G := HSpinn for n divisible by 4 and
n ≥ 12, the group NG(T ) acts generically freely on the half-spin representation of
G.

Proof. Apply Lemma 2.3. The representation V is minuscule and T acts faithfully
because G does so. The element −1 of the Weyl group acts nontrivially on kerψ
by Example 2.5 because 1

2 dimV = 2n/2−2 > n/2 = dimT . As −1 is contained in
every nontrivial normal subgroup of the Weyl group, the proof is complete. �

Corollary 10.2. Over every algebraically closed field,

ed(HSpin12) ≤ 26 and ed(HSpin16) ≤ 120.

The remaining groups are Spinn with 7 ≤ n ≤ 14. In case char k 6= 2, the
precise essential dimension is known by Rost, see [Ros99a], [Ros99b], and [Gar09].
The same methods, combined with the calculations of the generic stabilizers from
[GG16], will provide upper bounds for ed(Spinn) in case char k = 2. But these
methods require detailed arguments, so for our purposes we note simply that Spinn
acts faithfully on the spin representation for n odd and on the direct sum of the
vector representation and a half-spin representation for n even; Lemma 3.2 then
provides an upper bound on ed(Spinn). This completes the task of giving an upper
bound on ed(G) for every simple algebraic group G over an algebraically closed
field k.
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