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The � -filtration and the Rost invariant
By Skip Garibaldi at Atlanta and Kirill Zainoulline at Ottawa

Abstract. Grothendieck studied two filtrations – the � and topological filtrations – on
the ring K0.X/ for a projective variety X , together with the associated graded rings. He gave
a necessary and sufficient condition for the graded ring ˚i�

i=� iC1 to have non-zero torsion
elements whenX is the variety of Borel subgroups of a simply connected semisimple algebraic
groupG over an algebraically closed field. We sharpen his observation by calculating explicitly
the torsion in �2=�3, and we do this under weaker hypotheses on G. We apply this result to
describing the torsion in the group CH3.X/ of codimension-3 cycles on X , and providing an
extension of the Rost invariant.

Introduction

The core result in this paper extends and sharpens some observations of Grothendieck
from SGA6 [5, §XIV.4.5] concerning the ring K0.X/ of coherent sheaves on a projective vari-
ety X . He studied the � -filtration �0 ◆ �1 ◆ � � � and the topological filtration ⌧0 ◆ ⌧1 ◆ � � �
on K0.X/ and compared the corresponding graded rings ˚i�0�

i=iC1 and ˚i�0⌧
i=iC1 with

the Chow ring CH.X/. There are natural homomorphisms between these rings, which by
Riemann–Roch become isomorphisms after tensoring with Q, see [11, §15.3]. Therefore,
to compare them one should examine their torsion subgroups. In case X is the variety of
Borel subgroups of a semisimple linear algebraic group G over an algebraically closed field k,
Grothendieck observed in [5, p. 678] that ˚⌧ i=iC1 and CH.X/ are torsion-free and so isomor-
phic, but ˚� i=iC1 is torsion-free if and only if the simply connected cover of G is isomorphic
to a product of copies of SLn and Sp2n for various n. In particular, ˚� i=iC1 has non-zero
torsion for G D SOn with n � 4 or for any exceptional group.

We make Grothendieck’s result more precise by explicitly calculating the torsion in some
cases. (We also ease the hypotheses on G and k. We allow k to be arbitrary, but assume that G
is split, i.e., that G contains a maximal k-torus that is split over k. This is automatic in case k
is algebraically closed, so is indeed a weakening of Grothendieck’s hypotheses.) Specifically,
one knows that

�0=1 ä CH0.X/ ä Z and �1=2 ä CH1.X/ ä PicX;
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226 Garibaldi and Zainoulline, The � -filtration and the Rost invariant

so these components are torsion-free. We treat the next case in Theorem 3.1 (i), whose proof
occupies all of Section 2 and most of Section 3:

Theorem. LetG be a split simple linear algebraic group over a field k. Then the torsion
subgroup of �2=3 for the variety of Borel subgroups of G is Z=N.G/Z, for N.G/ the Dynkin
index of G.1)

In particular, ifG has type E8, then �2=3 has torsion subgroup Z=60Z. The table in Sec-
tion 1.4 shows that N.G/ D 1 iff Gi has type A or C , so using Lemma 3.8 we can strengthen
Grothendieck’s result by observing that if ˚� i=iC1 has torsion, then it can already be seen in
�2=3:

Corollary. Let G be a semisimple linear algebraic group over an algebraically closed
field k. Then

˚i�0�
i=iC1 is torsion-free if and only if �2=3 is torsion-free,

if and only if the simply connected cover of G is isomorphic to a product of copies of SLn and
Sp2n for various n.

Recall that the Rost invariant is a map rG WH 1.k;G/ ! H 3.k;Q=Z.2// that is functorial
in k and defined for every simple simply connected algebraic group G. For such G, it is,
roughly speaking, the first nonzero invariant [20, §31] and it generates the group of invariants
with codomain H 3.⇤;Q=Z.2//, see [13]. It plays an important role in the study of quadratic
forms (where it is known as the Arason invariant) and it was crucial in Bayer and Parimala’s
proof of the Hasse Principle Conjecture II for classical groups in [4] and the proof of all known
cases of the conjecture for exceptional groups.

The proof of our core result gives a class ✓ that generates the torsion in �2=3 in case G
is split simple. In Section 4 we argue that ✓ is also defined for adjoint G, and that for such
G’s, the image of ✓ under the map �2=3 ! CH2.X/ can be viewed as an extension of the
Rost invariant to adjoint groups – for this to make sense, some details need to be checked,
see Proposition 4.4. Because our generalization looks rather different, we give an illustration
(Proposition 4.6) to show how it can be used.

As CH0.X/ and CH1.X/ are known, and the torsion in CH2.X/ is known by the theory
of the Rost invariant (see Proposition 3.2), we next consider the torsion in CH3.X/. We drop
our hypothesis that G is split, and instead require merely that G is strongly inner.2) Little is
known about CH3.X/ in general, not even if it is finitely generated. We use our core result to
bound the torsion in CH3.X/ (see Proposition 5.2). As an example, we have: if G is versal (in
the language of [13, pp. 11, 12], roughly meaning “generic”), then the torsion part of CH3.X/

can consist only of subgroups Z=2sZ for s  4, Z=3Z or Z=5Z. In particular, Proposition 5.4
gives:

Example. If G is a versal group of type E8, then the group of odd-order elements in
CH3.X/ is isomorphic to .Z=15Z/˚8.

1) The Dynkin index of G is defined in Section 1.4.
2) See Section 1.4 for a precise definition. Standard examples are any split group; any group isogenous to

SO.q/ for q a quadratic form with even dimension, trivial discriminant, and split Clifford algebra; and any group
of type G2, F4, or E8.
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Garibaldi and Zainoulline, The � -filtration and the Rost invariant 227

The techniques developed in the paper as well as some of the obtained results have been
successfully applied to study more general examples of groups and torsors (not necessary
strongly inner). For instance, the case of HSpin-torsors was investigated in [34]. The case
of PGOC

8 -torsors was studied in [28] together with applications to the motivic classification of
algebras with orthogonal involutions. The paper [18] used the obtained results to describe Tits
indices of inner groups of type E6. In [2] and [3] it was used to study the torsion in CHi for
i � 4 of twisted Spin-flags.

1. Preliminaries

We now provide several facts and observations concerning Chow groups, characteristic
maps, invariants, Dynkin indices and filtrations on K0 for varieties of Borel subgroups of split
simple linear algebraic groups.

1.1. Two filtrations on K0. All facts provided here can be found in [5], [19, §2], [11,
§15] and [12, Chapters 3, 5]. Let X be a smooth projective variety over a field k. Consider the
� -filtration on K0.X/. It is given by the subgroups

� i .X/ D
˝
cK0

n1
.b1/ � � � cK0

nm
.bm/ j n1 C � � � C nm � i and b1; : : : ; bm 2 K0.X/

˛
;

where cK0
n denote the n-th Chern class with values in K0. For example, for the class of a line

bundle we have cK0

1 .ŒLç/ D 1�ŒL⇤ç. Let � i=iC1.X/ D � i .X/=� iC1.X/ denote the respective
quotient. Consider the topological filtration on K0.X/ given by the subgroups

⌧ i .X/ D hŒOV ç j V ,! X and codim V � ii;

where ŒOV ç is the class of the structure sheaf of a closed subvariety V . Let

⌧ i=iC1.X/ D ⌧ i .X/=⌧ iC1.X/

denote the corresponding quotient.
There is an obvious surjection prW CHi .X/ ⇣ ⌧ i=iC1.X/ from the Chow group of codi-

mension i cycles given by V 7! ŒOV ç. By the Riemann–Roch Theorem the i -th Chern class
induces the map in the opposite direction,

ci W ⌧ i=iC1.X/ ! CHi .X/;

and the composite ci ı pr is the multiplication by .�1/i�1.i � 1/ä which is an isomorphism for
i  2, see [11, Example 15.3.6]. For example, by the very definition we have

ci

⇣ iY

j D1

c
K0

1 .ŒLj ç/
⌘

D .�1/i�1.i � 1/ä
iY

j D1

cCH
1 .Lj /;

where Lj is a line bundle. Observe also that ci becomes an isomorphism after tensoring with
Q.

There is an inclusion � i .X/ ✓ ⌧ i .X/ for all i . Moreover, � i .X/ D ⌧ i .X/ for i  2.
Observe that �1=2.X/ D ⌧1=2.X/ D CH1.X/ is the Picard group and by [19, Corollary 2.15]
there is an exact sequence

(1) 0 ! ⌧3.X/=�3.X/ ! Tors �2=3.X/
c2�! Tors CH2.X/ ! 0;
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228 Garibaldi and Zainoulline, The � -filtration and the Rost invariant

where we have written c2 for the composition �2=3.X/ ! ⌧2=3.X/
c2�! CH2.X/ and Tors for

the torsion subgroup.

1.2. Characteristic maps and invariants. Let Gs be a split simply connected simple
linear algebraic group of rank n over a field k. We fix a split maximal torus T and a Borel
subgroup B such that T ⇢ B ⇢ Gs . Let Bs denote the variety of Borel subgroups of Gs and
let T ⇤ denote the group of characters of T . We fix a basis of T ⇤ given by the fundamental
weights !1; : : : ; !n.

Let S.T ⇤/ be the symmetric algebra of T ⇤. Its elements are polynomials in the fun-
damental weights !i with coefficients in Z. Let ZŒT ⇤ç be the integral group ring of T ⇤. Its
elements are integral linear combinations

P
i aie

�i , �i 2 T ⇤. Consider the characteristic maps
for CH and K0 (see [7, §§8, 9] and [8, §§1.5, 1.6]),

cW S.T ⇤/ ! CH.Bs/ and c0W ZŒT ⇤ç ! K0.Bs/

given by
cW!i 7! cCH

1 .L.!i // and c0W e� 7! ŒL.�/ç;

where L.�/ is the line bundle over Bs associated to the character �.
There are obvious augmentation maps S.T ⇤/ ! Z and augW ZŒT ⇤ç ! Z given by

!i 7! 0 and e� 7! 1 respectively. The Weyl group acts naturally on T ⇤, hence also on S.T ⇤/
and ZŒT ⇤ç. Consider the subrings of invariants S.T ⇤/W and ZŒT ⇤çW . We denote ker c D I

and ker c0 D I 0. Therefore we have embeddings

cW S.T ⇤/=I ,! CH.Bs/ and c0W ZŒT ⇤ç=I 0 '�! K0.Bs/;

where the second map is surjective since Gs is simply connected [25].
Observe that the kernel I 0 is the ideal generated by the elements of ZŒT ⇤çW from the

kernel of the augmentation map. By [7, §2, Corollary 2] the kernel I of c consists of elements
g such that

(2) m � g D
X

i

gi � fi ;

for m 2 Z, fi the basic polynomial invariants, and gi 2 S.T ⇤/.
There is a W -invariant quadratic form q on T ⇤ ˝ Q that is uniquely determined up to

a scalar multiple [6, §§VI.1.1–2]. We normalize q so that it takes the value 1 on every short
coroot; as q is indivisible, it can be taken as the generator of I of degree 2. To say it differently,
each element of I of degree 2 is a multiple of q by an integer.

The form q should be familiar. Its polar bilinear form bq amounts to the restriction of
the “reduced Killing form” to the Cartan subalgebra of the Lie algebra of Gs as described in
[16, §5]. In the case where the roots are all one length, an explicit formula for bq is well known:
its Gram matrix is the Cartan matrix of the root system.

If Gs is not of type An (n � 2), then there is no basic invariant of degree 3 [17, p. 59], so
by (2) and the indivisibility of q, every g 2 I of degree 3 can be written as g D .

P
ai!i /q for

some ai 2 Z.

1.3. The �-filtration on the variety of Borel subgroups. Consider the � -filtration on
the variety Bs of Borel subgroups of Gs . Let �m denote the subgroup of ZŒT ⇤ç generated by
products of at leastm elements of the form .1�e�!i /, where !i is a fundamental weight. Then

Brought to you by | University of California - Los Angeles - UCLA Library
Authenticated

Download Date | 11/20/14 9:02 PM



Garibaldi and Zainoulline, The � -filtration and the Rost invariant 229

the isomorphism c0 induces an isomorphism

�m=mC1.Bs/ ' �m=.�mC1 C I 0/ for each i :

For example �1=2.X/ ' �1=.�2 C I 0/ is a free abelian group with a basis given by the classes
of the elements

.1 � e�!i / 2 �1; i D 1; : : : ; n:

Indeed, cK0

1 .ŒL.!i /ç/ D 1� ŒL.�!i /ç, the map c1W �1=2.Bs/ ! CH1.Bs/ is an isomorphism
and the elements c1.L.!i // for i D 1; : : : ; n form a basis of the Picard group CH1.Bs/.

Since K0.Bs/ is generated by classes of line bundles [25], so is � i .Bs/. Therefore, we
have

� i .Bs/ D
˝
c

K0

1 .ŒL1ç/ � � � cK0

1 .ŒLmç/ j m � i and Lj is a line bundle over Bs

˛
:

Let � D P
i ai!i be a presentation of a character � in terms of the fundamental weights. Then

L.�/ D ˝iL.!i /
˝ai . Since for any two line bundles L1 and L2 we have

c
K0

1 .ŒL1 ˝ L2ç/ D c
K0

1 .ŒL1ç/C c
K0

1 .ŒL2ç/ � cK0

1 .ŒL1ç/c
K0

1 .ŒL2ç/;

applying this formula recursively we can express any element of � i=iC1.Bs/ as a linear com-
bination of the products of the first Chern classes of the bundles L.!i /, i D 1; : : : ; n. For
instance, any element of �2=3.Bs/ can be written as a class of

nX

iD1

nX

j D1

aij .1 � e�!i /.1 � e�!j / 2 �2 mod �3 C I 0; where aij 2 Z:

1.4. The Dynkin index. Let N denote the map ZŒT ⇤çW ! Z defined by fixing a long
root ˛ and setting

N
⇣X

i

aie
�i

⌘
WD 1

2

X

i

ai h�i ; ˛
_i2

as in [13, p. 133]. This does not depend on the choice of ˛ and takes values in Z (and not
merely in 1

2Z), cf. Lemma 2.5 below. The number N.�/ is called the Dynkin index of �. Note
that for m 2 Z, we have N.m/ D N.me0/ D 0, so N.�/ only depends on the image of � in
the kernel of the augmentation map.

In case Gs has two root lengths, it is natural to wonder what one would find if one used
a short root, say, ı in the definition of N instead of the long root ˛. We claim that

(3)
1

2

X
ai h�i ; ı

_i2 D q.ı_/
h1
2

X
ai h�i ; ˛

_i2
i
;

where q is the form introduced in Section 1.2. In other words, one obtains something that
differs by a factor of q.ı_/. (We will use this observation later.) To prove it, define quadratic
forms n˛ and nı on T ⇤ via n˛.�/ D P

w2W hw�; ˛_i2 and similarly for ı_. For example,
nı.˛/ D q.ı_/2n˛.ı/. But n˛ is a W -invariant quadratic form on T ⇤, hence it is a scalar
multiple of q. As q.˛/ D q.ı_/q.ı/, we have n˛.˛/ D q.ı_/n˛.ı/. But nı is also a scalar
multiple of q, so we conclude that nı D q.ı_/n˛, proving the claim.
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230 Garibaldi and Zainoulline, The � -filtration and the Rost invariant

The Dynkin index N.Gs/ is defined to be the gcd of N.�/ as � varies over the characters
of finite-dimensional representations of Gs . The number N.Gs/ is calculated in [13, 21, 22]:

type of Gs A or C Bn (n � 3), Dn (n � 4), G2 F4 or E6 E7 E8

N.Gs/ 1 2 6 12 60

If G is a simple and strongly inner group, then, for the purposes of this paper, we define
the Dynkin index N.G/ of G to be the Dynkin index N.Gs/ of the split simply connected
group of the same Killing–Cartan type.3)

2. Dynkin indices and the map �

The purpose of this section is to prove Corollary 2.6, which will play an important role
in the proof of Theorem 3.1.

Let Gs denote a split simply connected simple linear algebraic group of rank n over a
field k. We fix a pinning for Gs and in particular a split maximal torus T and fundamental
weights !1; : : : ; !n. As Gs is simply connected, T⇤ (D Hom.Gm; T /) and T ⇤ are canonically
identified with the coroot and weight lattices respectively.

Definition 2.1. Put ZŒT ⇤ç WD ZŒe!1 ; : : : ; e!n ç for the integral group ring, and
S.T ⇤/ WD ZŒ!1; : : : ; !nç for the symmetric algebra of T ⇤. We define a ring homomorphism

�mW ZŒT ⇤ç=�mC1 ! S.T ⇤/=.SmC1.T ⇤//; m � 2;

via

�m

�
e

Pn
iD1 ai !i

�
D

nY

iD1

.1 � !i /
�ai :

In particular, �m.e
!i / D 1C !i C � � � C !m

i and �m.e
�!i / D 1 � !i .4)

The homomorphism �m is an isomorphism. To see this, define a homomorphism
S.T ⇤/ ! ZŒT ⇤ç=�mC1 via  m.!i / D 1 � e�!i for all i ; it induces a homomorphism
S.T ⇤/=.SmC1.T ⇤// ! ZŒT ⇤ç=�mC1 that we also denote by  m. As the compositions �m m

and  m�m are both the identity on generators, the claim is proved.

Proposition 2.2. If Gs is simple, then for � 2 ZŒT ⇤çW , we have

�2.�/ D aug.�/CN.�/ � q 2
�
S.T ⇤/=.S3.T ⇤//

�W
;

where q is the invariant form introduced in Section 1.2.

3) Recall that there is a unique split simply connected group Gs of the same Killing–Cartan type as G.
Following [32], the group G is said to be strongly inner if the simply connected cover of G is isomorphic to Gs

twisted by a cocycle ⇠ 2 H1.k;Gs/.
4) Note that ZŒT ⇤ç can be viewed as Laurent polynomials in the variables !1; : : : ; !n, and from this per-

spective it is clear that the formula for � gives a well-defined ring homomorphism on ZŒT ⇤ç and �m.�
mC1/ is zero

in S.T ⇤/=.SmC1.T ⇤//.
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The proof would be much easier if we already knew that �2 takes W -invariant elements
to W -invariant elements, but this only comes as a consequence of the proof of the proposition.
We give some preliminary material before the proof.

Example 2.3 (SL2). In case Gs D SL2, write ! for the unique fundamental weight.
For n > 0, we have

�2.e
n! C e�n!/ D .1C ! C !2/n C .1 � !/n D 2C n2!2;

which verifies Proposition 2.2 for this group.

Example 2.4 (SL2 ⇥ SL2). In caseGs D SL2 ⇥ SL2 there are two fundamental weights
!1; !2 and the Weyl group W is the Klein four-group; it acts by flipping the signs of !1 and
!2. The definition of �2 above makes sense here even though Gs is not simple. We find

�2.We
a1!1Ca2!2/ D 4C 2

⇥
a2

1!
2
1 C a2

2!
2
2

⇤
:

Let us give one final observation about Weyl group actions. We writeW � for theW -orbit
of � 2 T ⇤.

Lemma 2.5. For every root ˛ and weight � 2 T ⇤, the map W � ! Z defined by
⇡ 7! h⇡; ˛_i hits x and �x the same number of times, for every x 2 Z. If ˛; ˇ are orthogonal
roots, then for every weight � 2 T ⇤, the mapW � ! Z⇥Z defined by ⇡ 7! .h⇡; ˛_i; h⇡; ˇ_i/
hits .x; y/, .�x; y/, .x;�y/, and .�x;�y/ the same number of times, for every x; y 2 Z.

Proof. We prove the second claim. The reflections s˛; sˇ generate a copy V of the Klein
four-group inW . Fix a decomposition ofW into V -cosets: W D S

Vwi . For each v 2 V , we
have �

hvwi�; ˛
_i; hvwi�; ˇ

_i
�

D
�
hwi�; v˛

_i; hwi�; vˇ
_i

�
2 Z ⇥ Z:

If we write .x; y/ for the value obtained at v D 1, then the other three elements of V give
.�x; y/, .x;�y/, and .�x;�y/. Therefore, the map f WW 7! Z ⇥ Z defined by

f .w/ D
�
hw�; ˛_i; hw�; ˇ_i

�

produces these four elements the same number of times, for each x; y 2 Z. The claim follows,
because it concerns the map obtained by dividing f by the order of the stabilizer of � inW .

Proof of Proposition 2.2. We may assume that � D P
e�j where �1; : : : ;�r is the

Weyl orbit of some � 2 T ⇤. Put �j D Pn
iD1 aij!i , so �.�/ D Pr

j D1

Qn
iD1.1 � !i /

�aij .
Obviously, the degree 0 component of �.�/ is r D aug.�/.

The degree 1 component of �.�/ is
P

j

P
i aij!i D P

i .
P

j aij /!i . Here the claim is
that

P
j aij D 0 for each i . The aij ’s are the images ofW � in Z under the map �j 7! h�j ; ˛

_
i i

where ˛i denotes the simple root corresponding to the fundamental weight !i , hence the claim
follows from Lemma 2.5.

The crux is to check the claim on the degree 2 component q1 of �.�/; it is an integer-
valued quadratic form on the coroot lattice T⇤ and we check that it equals q2 WD N.�/q. We
write out for ` D 1; 2:

(4) q`

⇣X
di˛

_
i

⌘
D

X

i

d2
i q`.˛

_
i /C

X

i<j

didj bq`
.˛_

i ; ˛
_
j /;
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232 Garibaldi and Zainoulline, The � -filtration and the Rost invariant

where bq`
is the polar bilinear form of q`. We will check that the value of this expression is the

same for ` D 1; 2.
First suppose that ı_ WD P

di˛
_
i is a coroot and every di is 0 or 1. Then it defines a

homomorphism ⌘W SL2 ! Gs so that, roughly speaking, the simple coroot ˛_ of SL2 (viewed
as a map Gm ! T1 WD ⌘�1.T /) satisfies ⌘.˛_/ D ı_. We check that the diagram

(5) ZŒT ⇤ç

⌘⇤
✏✏

�2 // S.T ⇤/=.S3.T ⇤//

⌘⇤
✏✏

ZŒT ⇤
1 ç

�2 // S.T ⇤
1 /=.S

3.T ⇤
1 //

commutes. Since !j .ı
_/ D dj , we have ⌘⇤.!j / D dj! for ! the fundamental weight of SL2

dual to ˛_. We find

⌘⇤�2

�
e

P
cj !j

�
D

Y

j

.1 � dj!/
�cj D .1 � !/�

P
cj dj ;

because the dj ’s are all 0 or 1. As this is �2.e
.
P

dj cj /!/ D �2⌘
⇤.e

P
cj !j /, we have confirmed

the commutativity of (5).
Put �2 for the composition of �2 with the projection onto the degree 2 component S2, so

q1 D �2.�/. Then q1.ı
_/ D .⌘⇤�2.�//.˛_/ obviously, which is .�2⌘⇤.�//.ı_/ by commu-

tativity of (5). We have ⌘⇤.�/ D P
j e

P
i aij ! and by Lemma 2.5, the multiset of the j integersP

i aijdi is symmetric under multiplication by �1, hence by Example 2.3 we find

q1.ı
_/ D 1

2

⇣X

j

⇣X

i

aijdi

⌘2⌘
D 1

2

X

j

h�j ; ı
_i2:

By (3) this equals q.ı_/N.�/ D q2.ı
_/.

Returning to equation (4), this shows that the term q`.˛
_
i / does not depend on `. Sim-

ilarly, if ˛_
i and ˛_

j are not orthogonal coroots, then ˛_
i and ˛_

j are adjacent in the Dynkin
diagram and ˛_

i C ˛_
j is a coroot [6, VI.1.6, Corollary 3b]. The preceding two paragraphs

show that the value of

bq`
.˛_

i ; ˛
_
j / D q`.˛

_
i C ˛_

j / � q`.˛
_
i / � q`.˛

_
j /

does not depend on `.
It remains to consider bq`

.˛_
i ; ˛

_
j / where ˛_

i and ˛_
j are orthogonal (relative to the po-

lar form of q; it follows that they are orthogonal relative to bq2 . We use ˛_
i and ˛_

j to de-
fine a homomorphism ⌧ W SL2 ⇥ SL2 ! Gs and – as we did for SL2 above – we fix a torus
T2 D T1 ⇥ T1 ⇢ SL2 ⇥ SL2 such that ⌧.T2/ D im.˛_

i ⇥ ˛_
j / ⇢ T . Arguing using a com-

mutative diagram analogous to (5), it suffices to check that the simple roots of SL2 ⇥ SL2 are
orthogonal relative to ⌧q1 D �2⌧.�/, which follows from Example 2.4 and Lemma 2.5.

In view of Section 1.4, Proposition 2.2 gives:

Corollary 2.6. �2.I
0/ D Z �N.Gs/ � q.
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3. Torsion in the �-filtration

Let B denote the variety of Borel subgroups of a strongly inner simple linear alge-
braic group G over k. Observe that the variety B is always defined over k by [9, Corol-
lary XXVI.3.6]; it is a twisted form of the variety of Borel subgroups Bs of Gs , i.e., B and Bs

become isomorphic over the algebraic closure of k.
In the present section we determine and bound respectively the torsion parts of the second

and the third quotients of the � -filtration on the variety B. The main result is the following.

Theorem 3.1. Let B be the variety of Borel subgroups of a strongly inner simple linear
algebraic group G over a field k. Then:

(i) Tors �2=3.B/ is a cyclic group of order the Dynkin index N.G/ and generated by c0.✓/
for ✓ as in Definition 3.4.

(ii) The subgroup ⌧3.B/=�3.B/ of Tors �2=3.B/ is generated by o.r.G// c0.✓/.

(iii) 2Tors �3=4.B/ is a quotient of .Z=N.G//˚.rank G/.

The element r.G/ in (ii) is defined as follows. Put Gs for the simply connected split
group of the same Killing–Cartan type as G. By definition, the simply connected cover of G
is isomorphic to Gs twisted by a class ⇠ 2 H 1.k;Gs/. The image rGs

.⇠/ 2 H 3.k;Q=Z.2//
of ⇠ under the Rost invariant depends only on the isomorphism class of G [14, Lemma 2.1],
and so we denote it simply by r.G/.5) We put o.r.G// for its order in the abelian group
H 3.k;Q=Z.2//; it divides N.G/ by [13, pp. 133, 135].

Philippe Gille pointed out to us at the beginning of this project that pasting together two
results in the literature gives a description of Tors CH2.X/ for some X .

Proposition 3.2. Let X be a projective homogeneous variety under G. If G is split by
k.X/, then Tors CH2.X/ is a cyclic group whose order is the same as the order of r.G/ in
H 3.k;Q=Z.2//; in particular its order divides N.G/.

Proof. We view ⇠ as a principal homogeneous Gs-variety. The kernel of the scalar
extension map H 3.k;Q=Z.2// ! H 3.k.⇠/;Q=Z.2// is the cyclic group generated by
r.G/ by [13, p. 129]. For every extension L=k, ⇠ has a point over L if and only if G is
split, if and only if X has a point over L. Therefore, this kernel is the same as the kernel of
H 3.k;Q=Z.2// ! H 3.k.X/;Q=Z.2//. A theorem of Peyre–Merkurjev [27] shows that this
kernel is isomorphic to Tors CH2.X/.

Remark 3.3. Obviously, one can take X D B in the proposition. Furthermore, the
same proof shows that the proposition still holds if one replaces “G is strongly inner” and “G
is split by k.X/” with “G has trivial Tits algebras” and “G becomes quasi-split over k.X/”.

Also, the statement in Theorem 3.1 (i) makes use of the following definition.

5) Recall that H3.k;Q=Z.2// is the direct sum over primes p of the groups H3.k;Qp=Zp.2//, defined as
Galois cohomology for p ¤ char k and using K-theory for p D char k, see [13, pp. 151, 152].
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Definition 3.4. Write the form q from Section 1.2 (relative to the split group Gs) as
q D P

ij cij!i!j 2 S.T ⇤/. We call the element

✓ WD
X

ij

cij .1 � e�!i /.1 � e�!j / 2 ZŒT ⇤ç

the special cycle. Its image in ZŒT ⇤ç=�mC1 is  m.q/ for all m � 2. Applying c0 gives an
element of �2.Bs/.

By the result of Panin [25, Theorem 2.2.(2)] sinceG is strongly inner, the restriction map

(6) resWK0.B/ ! K0.B ⇥ kalg/ ' K0.Bs ⇥ kalg/ ' K0.Bs/

is an isomorphism, where kalg denotes an algebraic closure of k. Since the � -filtration is defined
in terms of Chern classes and the latter commute with restrictions, it induces an isomorphism
between the � -quotients, i.e.,

resW � i=iC1.B/
'�! � i=iC1.Bs/:

The inverse image of c0.✓/ under this isomorphism belongs to �2=3.B/ and we abuse notation
by also denoting it by c0.✓/.

Proof of Theorem 3.1. Via the previous paragraph, we may assume that G D Gs . Let
T , T ⇤, etc. be as in Section 1.2.

There is a commutative diagram

(7) �m=mC1.Bs/
cm // CHm.Bs/

�m=�mC1

c0
OOOO

.�1/m�1.m�1/ä��m // S�m.T ⇤/=S>m.T ⇤/:

c

OO

First take m D 2 and suppose that x 2 �2=3 maps to a torsion element in �2=3.Bs/. As
CH2.Bs/ has zero torsion, the commutativity of (7) shows that �2.x/ is in the kernel I of c.
Writing x D P

i;j aij .1 � e!i /.1 � e!j / mod �3, we have �2.x/ D P
aij!i!j of degree 2

in I , hence �2.x/ D aq for some a 2 Z. Then modulo �3, we have x ⌘  2�2.x/ ⌘ a✓ , so
Tors �2=3.Bs/ is a cyclic group generated by the class of the special cycle ✓ modulo �3 C I 0.

By Corollary 2.6 there exists � 2 I 0 such that �2.�/ D N.Gs/ � q. Applying  2 we
obtain that

0 ⌘ � ⌘ N.Gs/ � ✓ mod �3 C I 0;

hence, the order of ✓ modulo �3 C I 0 divides the Dynkin index N.Gs/. This shows that
Tors �2=3.B/ is a cyclic group of order dividing N.G/ with generator c0.✓/.

Let ⇠ 0 2 H 1.k0; Gs/ be a versal Gs-torsor for some extension k0 of k, and write B0 for
the Borel variety (over k0) of the group Gs twisted by ⇠ 0. The element r.⇠ 0/ has order N.Gs/

in H 3.k0;Q=Z.2// by [13, pp. 31, 133]. But Tors �2=3.B0/ is cyclic of order dividing N.Gs/,
hence Proposition 3.2 and the exactness of sequence (1) give that Tors �2=3.B0/ also has order
N.Gs/. Now take K to be an algebraically closed field containing k0. The restriction maps for
k ! K and k0 ! K give isomorphisms

Tors �2=3.Bk/ ' Tors �2=3..Bs/K/ ' Tors �2=3.B0
k0/;
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which is itself Z=N.G/, completing the proof of (i). Claim (ii) follows from the exactness of
sequence (1).

Now take m D 3 and suppose that x 2 �3=4 maps to a torsion element in �3=4.Bs/. As
CH3.Bs/ has zero torsion, diagram (7) shows that 2�3.x/ is in the kernel I of c. As in the
m D 2 case, 2�3.x/ has degree 3.

Suppose Gs is not of type An for n � 2. Then by Section 1.2, 2�3.x/ D q � f , where
f D Pn

iD1 ai!i . Applying  3 we obtain that 2x D ✓ � f 0, where f 0 D Pn
iD1 ai .1 � e�!i /.

In other words, the torsion part of 2�3=4.Bs/ is generated by the elements c0.✓ � .1 � e�!i //

for i D 1; : : : ; n.
By Corollary 2.6 there exists � 2 I 0 such that �3.� � .1 � e�!i // ⌘ N.Gs/ � q � !i

mod .S4.T ⇤//. Applying  3 we obtain that

0 ⌘ � � .1 � e�!i / ⌘ N.Gs/ � ✓ � .1 � e�!i / mod �4 C I 0;

hence, the torsion part of 2�3=4.Bs/ is a product of n cyclic groups of orders dividing the
N.Gs/.

One can treat the case where m D 3 and Gs is of type An for n � 2 by a small extension
of our arguments, but in the interest of space we simply refer to [5, Exposé XIV, §4.5] where it
is shown that � i=iC1.Bs/ is torsion-free, completing the proof of (iii).

Recall that � i .B/ D ⌧ i .B/ for i D 0; 1; 2. Theorem 3.1 (ii) gives:

Corollary 3.5. �3.B/ D ⌧3.B/ if and only if o.r.G// D N.G/.

Remark 3.6. The right value of the order of the Rost invariant for versal torsors is an
important unpublished result by M. Rost and occurred first in [10, Appendix C].

Remark 3.7. Note that the order of r.G/ is comparatively easy to calculate, in the sense
that it suffices to determine the order of the restriction of r.G/ over finite extensionsL1; : : : ; Ls

such that gcdπN.G/;L1; : : : ; Lsº D 1; in that case, o.r.G// D lcmπo.r.G ⇥ Li //º.

The next lemma can be used to extend the results obtained in Theorem 3.1 to the case of
a semisimple group.

Lemma 3.8. Let G1; : : : ; Gm, m > 1, be simple and strongly inner groups and write
Bj for the Borel variety of Gj . The Borel variety for

Q
Gj is

Q
Bj , and we have

Tors �2=3
⇣Y

Bj

⌘
'

M
Tors �2=3.Bj /

and

Tors �3=4
⇣Y

Bj

⌘
'

mM

j D1

�
Tors �3=4.Bj /˚ Tors �2=3.Bj /

�
:

Proof. Apply the Künneth decomposition and the fact that � i=iC1.Bj / has no torsion
for i D 0 and 1.
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4. Applications to the Rost invariant

So far, we have studied the case whereG is strongly inner and we constructed the special
cycle c0.✓/ in K0.B/, cf. Example 4.2 below. We prove that under weaker hypotheses on G,
the class c0.✓/ is still defined over k, and we use this result to extend the Rost invariant.

In the present section Gs denotes an adjoint split simple linear algebraic group over a
field k. As it is adjoint, the character group T ⇤ of a split maximal torus of Gs is naturally
identified with the root lattice ƒr .

We fix a pinning for Gs , which includes a set of simple roots Å D π˛1; : : : ; ˛nº in ƒr .
Write !i for the fundamental weight corresponding to ˛i and si for the reflection of the weight
lattice ƒ in the hyperplane orthogonal to ˛.

4.1. The Steinberg basis. For each element w of the Weyl group W of T we define
the weight ⇢w WD P

πi2π1;:::;nºjw�1.˛i /<0ºw
�1.!i /. Let ZŒƒçW denote the subring of W -in-

variant elements. Then the integral group ring ZŒƒç is a free ZŒƒçW -module with the basis
πe⇢w j w 2 W º by [30, Theorem 2.2].

Example 4.1. (a) For a simple reflection sj we have

⇢sj
D

X

πi2π1;:::;nºjsj .˛i /<0º
sj .!i / D sj .!j / D !j � j̨ :

(b) More generally, let w WD si1si2 : : : sim be a product of m distinct simple reflections
such that the simple roots ˛ij ; ˛i`

are orthogonal for all j ¤ `. Then

⇢si1
si2

:::sim
D ⇢si1

C ⇢si2
C � � � C ⇢sim

because w�1.˛i / is negative if and only if i D ij for some j .
(c) For a product of two simple reflections sisj such that cij D ˛_

i . j̨ / < 0 we obtain

⇢si sj
D ⇢si

C cij j̨ :

Let Bs denote the variety of Borel subgroups of Gs . Consider the characteristic map
c0W ZŒƒç ⇣ K0.Bs/ for the simply connected cover of Gs . Since the kernel of the surjection
c0 is generated by elements x 2 ZŒƒçW in the kernel of the augmentation map, there is an
isomorphism

ZŒƒç˝ZŒƒçW Z ' ZŒƒç= ker.c0/ ' K0.Bs/:

The elements ®
gw WD c0.e⇢w / D ŒL.⇢w/ç j w 2 W

¯

form a free Z-basis of K0.Bs/ called the Steinberg basis.
Observe that the quotient group ƒ=ƒr coincides with the group of characters of the

center of the simply connected cover of Gs . Consider the surjective ring homomorphism in-
duced by the restriction ZŒƒç ! ZŒƒ=ƒr ç. Since W acts trivially on ƒ=ƒr , we obtain that
N⇢w D P

πi2π1;:::;nºjw�1.˛i /<0º N!i , where N⇢ means the restriction to ƒ=ƒr .

4.2. The Tits algebras and base change. Let G be a twisted form of Gs , i.e., G is
obtained by twisting Gs by a cocycle ⇠ 2 Z1.k;Aut.Gs//. More specifically, our choice of
pinning for Gs defines a section s of the quotient map ⇡ W Aut.Gs/ ! Aut.Å/. Twisting Gs by
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⇠ 0 WD s⇡.⇠/ gives a quasi-split group Gq and we pick ⇠ 00 2 Z1.k;Gq/ that maps via twisting
to ⇠; i.e., we pick ⇠ 00 so that G is isomorphic to ⇠00Gq .

Let B D ⇠Bs be the variety of Borel subgroups of G. Let Ä denote the absolute Galois
group of k; it acts on the weight lattice ƒ via the cocycle ⇠ 0.

Following [31] (see also [25, §§3.1, 11.7] and [23, §2]) we associate with each � 2 ƒ=ƒr

the field of definition k� of � and the central simple algebra A�;⇠ over k� called the Tits
algebra. Here k� is a fixed subfield for the stabilizer Ä� D π⌧ 2 Ä j ⌧.�/ D �º. There is a
group homomorphism

ˇW .ƒ=ƒr/
Ä� ! Br.k�/ with ˇ.�0/ D ŒA�0;⇠ ç:

4.3. An extension of the Rost invariant. By [27, Theorem 2.1] there is an isomor-
phism

Tors CH2.B/ ' ker
�
H 3.k;Q=Z.2// ! H 3.k.B/;Q=Z.2//

�
L

�2ƒ=ƒr
Nk�=k.k

⇤
� [ ˇ.�// ;

where the numerator is the kernel of the restriction map to the field of fractions k.B/ of B and
Nk�=k is the norm map. Let H 3

ˇ
.k;Q=Z.2// denote the cohomology quotient

H 3
ˇ .k;Q=Z.2// D H 3.k;Q=Z.2//=

M

�2ƒ=ƒr

Nk�=k.k
⇤
� [ ˇ.�//

so that Tors CH2.B/ ✓ H 3
ˇ
.k;Q=Z.2//.

Let l=k be a field extension. Since the Chern classes commute with restrictions, there
is the induced map resl=k W � i=iC1.B/ ! � i=iC1.Bl/, where Bl D B ⇥k l , with the image
generated by the products

˝
cK0

n1
.x1/ � � � cK0

nm
.xm/ j n1 C � � � C nm D i; x1; : : : ; xm 2 resl=k.K0.B//

˛

and there is a commutative diagram

(8) Tors �2=3.B/
c2 // //

resl=k

✏✏

Tors CH2.B/

resl=k

✏✏

� � // H 3
ˇ
.k;Q=Z.2//

resl=k

✏✏

Tors �2=3.Bl/
c2 // // Tors CH2.Bl/

� � // H 3
ˇ
.l;Q=Z.2//:

Using (8) one can provide a non-trivial element in H 3
ˇ
.k;Q=Z.2// as follows:

✏ Assume that we are given a non-trivial element over l , i.e., there is a ✓ 2 Tors �2=3.Bl/

such that c2.✓/ 2 H 3
ˇ
.l;Q=Z.2// is non-zero.

✏ Assume that we know that ✓ is defined over k, i.e., that ✓ D resl=k.✓
0/ for some

✓ 0 2 Tors �2=3.B/.

Then the image c2.✓
0/ provides a non-trivial element in H 3

ˇ
.k;Q=Z.2//.

Example 4.2. If G is strongly inner – i.e., if G is inner and ˇ is the trivial homomor-
phism – then for any field extension l=k the left vertical arrow in (8) is an isomorphism, hence,
identifying Tors �2=3.B/with the cyclic group generated by the special cycle ✓ . As in Proposi-
tion 3.2 and its proof Tors CH2.B/ coincides with the usual unramified cohomology generated
by the Rost invariant r.G/ of G and hc2.✓/i D hr.G/i in H 3.k;Q=Z.2//.
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Lemma 4.3. Assume that G is inner.

(a) If a weight ! is such that ˇ.!/ D 0, then ŒL.!/ç is in the image of

resWK0.B/ ! K0.Bs/:

In particular, it holds for the classes ŒL.˛i /ç of simple roots ˛i .

Under the notation of Example 4.1 (b) we have

(b)
P

j c
K0

1 .ŒL.!ij /ç/ � cK0

1 .ŒL.˛ij /ç/ ⌘ c
K0

1

�Q
j gsij

�
⌘ c

K0

1 .gw/ mod �3.Bs/;

(c) if ˇ.
P

j !ij / D 0, then
P

j c
K0

1 .ŒL.!ij /ç/ is in the image of

resW �1=2.B/ ! �1=2.Bs/:

Proof. (a) follows by [15, Corollary 3.1]. (b) follows by the formula for the first Chern
class (in K0) of the tensor product of line bundles. According to (a) each cK0

1 .ŒL.˛ij /ç/ is in
the image of the restriction map which implies (c).

The following proposition says that the Rost invariant can be extended in the prime index
case:

Proposition 4.4. Assume that G is inner and every Tits algebra of ⇠Gs has index 1
or p, where p is a prime. Then the special cycle ✓ is in the image of the restriction map
resW �2=3.B/ ! �2=3.Bs/: In other words, if l=k is an extension that kills imˇ, then the
image of c2 over l coincides with the subgroup generated by the respective Rost invariant, i.e.,
we have

im.c2/l D hr.Gl/i ✓ H 3.l;Q=Z.2//:

Proof. We may assume that N.G/ is not 1 (otherwise ✓ maps to zero in �2=3.Bs/ by
Theorem 3.1) andƒ=ƒr ¤ 0 (otherwise Example 4.2 applies), i.e., we may assume thatG has
type B , D, E7 (for p D 2) or E6 (for p D 3).

We first make a general observation. Observe that the image resl=k.K0.B// was deter-
mined by Panin in [25]. Since G is inner, Ä acts trivially on ƒ=ƒr , i.e., k� D k for all � and
by [25, Theorem 4.2] the image of the restriction map K0.B/ ! K0.Bs/ from (6) coincides
with the sublattice

hind.A N⇢w;⇠/ � gw j w 2 W i:
Modulo �3.Bs/, we have

c
K0

1 .ŒL.!i /ç/
2 ⌘

�
c

K0

1 .gsi
/C c

K0

1 .ŒL.˛i /ç/
�2

⌘ c
K0

1 .gsi
/2 C 2c

K0

1 .gsi
/c

K0

1 .ŒL.˛i /ç/C c
K0

1 .ŒL.˛i /ç/
2:

The Whitney Sum Formula gives that cK0

2 .2gsi
/ D c

K0

1 .gsi
/2 and cK0

1 .2gsi
/ ⌘ 2c

K0

1 .gsi
/

mod �2.Bs/. Our hypothesis on the Tits algebras (for p D 2) gives that 2gsi
is in the image

of K0.B/ ! K0.Bs/, and it follows that cK0

1 .ŒL.!i /ç/
2 is rational – i.e., is in the image of

�2=3.B/ ! �2=3.Bs/ – for all i .
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Type E7. Suppose that G has type E7. Then

q D
⇣ 7X

iD1

!2
i

⌘
� !1!3 � !3!4 � !4!2 � !4!5 � !5!6 � !6!7;

where we have numbered the roots following [6]. Each !2
i contributes a term of the form

c
K0

1 .ŒL.!i /ç/
2 to the image of c0.✓/ in �2=3.Bs/, and such a term is rational by the preceding

paragraph. The weights !1; !3; !4; !6 belong to the root lattice and so the term !1!3 con-
tributes a rational term c

K0

1 .ŒL.!1/ç/c
K0

1 .ŒL.!3/ç/ to c0.✓/, and similarly for the term !3!4.
Next we observe that !4!2 C !4!5 contributes

c
K0

1 .ŒL.!4/ç/
�
c

K0

1 .ŒL.!2/ç/C c
K0

1 .ŒL.!5/ç/
�

to c0.✓/. But !4 and !2C!5 both lie in the root lattice, so both terms in the product are rational
by Lemma 4.3. The same argument handles !5!6 C !6!7, and we are done with the E7 case.

Type D. Suppose that G has type Dn. Then

q D
nX

iD1

!2
i �

n�2X

iD1

!i!iC1 � !n�2!n:

The terms !2
i are treated as in the E7 case. For the terms in the second sum, we collect

around terms with even subscripts: for even i < n � 2, consider !i .!i�1 C !iC1/. As !i and
!i�1 C !iC1 belong to the root lattice, we see as in the E7 case that they contribute rational
terms to c0.✓/.

Suppose now that n is even. Then we have not accounted for !n�2.!n�3 C!n�1 C!n/

from q. As both terms in the product belong to the root lattice, we are finished as in the E7

case.
If n is odd, then we have not accounted for !n�2.!n�1 C !n/ in q. Here ƒ=ƒr is

isomorphic to Z=4 and !n�2; !n�1; !n map to 2;˙1;˙3 respectively. In particular, we have
ˇ.!n�2/ D 2ˇ.!n/, which is zero by our hypothesis on the Tits algebras, so ŒL.!n�2/ç is in
the image of resWK0.B/ ! K0.Bs/. Similarly, ˇ.!n�1 C!n/ D ˇ.!n�1/C ˇ.!n/ D 0, and
as in the E7 case, we see that c0.✓/ is rational.

Type B . For G of type Bn, ƒ=ƒr equals Z=2 and

q D
nX

iD1

ci i!
2
i �

n�1X

iD1

2!i!iC1;

where the ci i are 1 or 2. The mapƒ ! ƒ=ƒr sends !n to 1 and all other fundamental weights
to zero. Consequently, it suffices to consider the term 2!n�1!n in q. But

2c
K0

1 .ŒL.!n/ç/ ⌘ 2
�
c

K0

1 .gsn/C c
K0

1 .ŒL.˛n/ç/
�

mod �2.Bs/

⌘ c
K0

1 .2gsn/C 2c
K0

1 .ŒL.˛n/ç/;

and again we find that c0.✓/ is rational.
Type E6. If G has type E6, ƒ=ƒr equals Z=3. Then p D 3 and we have

q D
6X

iD1

!2
i � !1!3 � !3!4 � !2!4 � !4!5 � !5!6:
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Note that !2 and !4 belong to the root lattice, so we can discard the !2
2 , !2

4 , and !2!4 terms.
Similarly, !4 and !3 C !5 are both in the root lattice, eliminating the !4!3 C !4!5 term.
Hence, we are left with

!2
1 C !2

3 C !2
5 C !2

6 � !1!3 � !5!6:

But !1 C !6 and !3 C !5 are in the root lattice, hence the term

.!1 C !6/
2 C .!3 C !5/

2 D !2
1 C !2

3 C !2
5 C !2

6 C 2!1!6 C 2!3!5

corresponds to a rational cycle. Taking a difference with the previous line, we are reduced to
checking if 2!1!6 C 2!3!5 C !1!3 C !5!6 gives a rational cycle.

Now x WD !1 � !5 and y WD !3 � !6 are in the root lattice. Substituting !1 by !5 C x

and !3 by !6 C y and expanding, we reduce to checking that 6!5!6 C 3x!6 C 3y!5 C xy

corresponds to a rational cycle. But 3!6 and 3!5 correspond to rational cycles by Panin [25].
Therefore, to finish the proof we have to check that the cycle 6cK0

1 .L.!5//c
K0

1 .L.!6// corre-
sponding to 6!5!6 is rational.

Since !5 C !6 is in the root lattice, the cycle cK0

1 .ŒL.!5 C !6/ç/ is rational. Therefore,
by the formula for the first Chern class

6c
K0

1 .L.!5/˝ L.!6// D 6c
K0

1 .L.!5//C 6c
K0

1 .L.!6// � 6cK0

1 .L.!5//c
K0

1 .L.!6//:

But the left-hand side is rational as well as the terms 6cK0

1 .L.!5//, 6cK0

1 .L.!6//, hence, the
desired cycle is rational.

4.4. Essential dimension. We now apply Proposition 4.4 to strengthen a well-known
application of the Rost invariant to give a lower bound on the essential dimension ed.G/ for
some algebraic groups G. (We refer to Reichstein’s 2010 ICM lecture [29] for a definition and
survey of essential dimension. Roughly speaking, it gives the number of parameters required
to specify a G-torsor.)

The following result is well known.

Proposition 4.5. Let G be an absolutely almost simple algebraic group that is simply
connected. Then ed.G/ � 3 unless G is isomorphic to Sp2n for some n � 2 or SLn (in which
case ed.G/ D 0).

Proof. Because N.G/ ¤ 1, the Rost invariant is a nonconstant invariant with values in
H 3.⇤;Q=Z.2//.

This lower bound on essential dimension is weak, but the proof has the advantage of
being uniform – it doesn’t depend on the characteristic and depends rather little on the type of
G – so this proposition and its proof are standard in the theory. The results of this section allow
us to remove the hypothesis “simply connected”.

Proposition 4.6. Let G be an absolutely almost simple algebraic group which is not of
type A or C . Then ed.G/ � 3.
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Proof. As essential dimension only goes down with field extensions, we may assume
that k is algebraically closed and bound ed.Gs/ where Gs is a split simple group not of type A
or C . Put eGs for the simply connected cover of Gs . Fix a versal eGs-torsor Q⇠ 2 H 1.L;eGs/ for
some extension L=k. LetK be a field between k and L of minimal transcendence degree such
that there is a ⇠ 2 H 1.K;Gs/ whose image in H 1.L;Gs/ is the same as the image of Q⇠ .

For sake of contradiction, suppose that K has transcendence degree at most 2 over k.
By the hypothesis on the type of G, the Tits algebras of ⇠G have exponent a power of p D 2

or 3 and so are actually of index 1 or p over K by [1, p. 208]. By Proposition 4.4, there
is a class  2 �2.B/ whose image under restriction to L is c0.✓/. Now Tors CH2.BK/ is
zero by Proposition 3.2 because H 3.K;Q=Z.2// is zero, and it follows that c0.✓/ is zero in
Tors CH2.BL/. But c0.✓/ has order N.Gs/ ¤ 1, a contradiction.

This result can also be proved on a case-by-case basis using known techniques. However,
our proof shows how a typical application of the Rost invariant can be strengthened via our
Proposition 4.6, which itself is merely an application of our core result, Theorem 3.1.

5. Examples of torsion in CH2 and CH3

In the present section we apply the results of Section 3 to describe the torsion of CH2

and CH3 of projective homogeneous varieties and the associated generalized Rost motives. We
maintain the notation of Section 3.

Let X be a projective homogeneous G-variety such that G is split over k.X/. (“X is
generically split.”) Thanks to Proposition 3.2, we may view Tors CH2.X/ as known, so we
now investigate Tors CH3.X/. Let n denote the rank of G and let r denote the rank of the
Picard group of X over an algebraic closure of k. For an abelian group A and a prime p, write
Torsp A for the subgroup of A consisting of elements of order a power of p.

We remark that the results below only use the fact that Tors CH2.X/ is cyclic of order
dividing N.G/, which follows from our Theorem 3.1 (i) and sequence (1). They do not need
the finer result of Proposition 3.2, hence also do not need material from [13] and [27].

We will use the following well-known fact.

Lemma 5.1. The restriction of the m-th Chern class gives a surjection

Tors ⌧m=mC1.X/ ⇣ .m � 1/äTors CHm.X/

and for each prime p not dividing .m � 1/ä, cm is an isomorphism

Torsp ⌧m=mC1.X/
'�! Torsp CHm.X/:

Proof. By Riemann–Roch (see Section 1.1), the composition

CHm.X/
pr

99⇣ ⌧m=mC1.X/
cm��! CHm.X/

is multiplication by .�1/m�1.m � 1/ä, hence cm.⌧
m=mC1.X// is .m � 1/äCHm.X/. For

x 2 Tors CHm.X/, we have .m � 1/ä � x D cm.pr.x//, where pr.x/ is in Tors ⌧m=mC1.X/.
This proves the first claim, from which the second claim follows immediately.
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Proposition 5.2. The subgroup

4 � N.G/

o.r.G//
� Tors CH3.B/

is a quotient of .Z=N.G/Z/˚n. In particular, if o.r.G// D N.G/, then the torsion part of
CH3.B/ can consist only of subgroups Z=2sZ for s  4, Z=3Z, or Z=5Z.

Proof. Put q WD N.G/=o.r.G//. On the one hand, the subgroup 2Tors �3=4.B/ maps
into 2Tors ⌧3=4.B/, and the image contains 2q Tors ⌧3=4.B/ by Theorem 3.1 (ii). Part (iii) of
that theorem gives that 2q Tors ⌧3=4.B/ is a quotient of .Z=N.G//˚n.

On the other hand, 2q Tors ⌧3=4.B/ surjects onto 4q Tors CH3.B/ by Lemma 5.1; this
proves the first claim. The second claim follows immediately.

We can also control the torsion on CH3.X/ based on information about the torsion in
CH2.X/ and the motivic decomposition of X , as we now illustrate. Fix a prime p. In the
category of Chow motives with Z=pZ-coefficients, the motive of X is a direct sum of shifts
of an indecomposable motive R, see [26, Theorem 5.17], where R depends on G but not the
choice of X , see [26, Theorem 3.7]. We write Chm.R/ for the m-th Chow group of R with
Z=pZ coefficients.

Lemma 5.3. We have:

(i) .Torsp CH2.X//˝ Z=pZ ' Ch2.R/;

(ii) .Torsp CH3.X//˝ Z=pZ ' .Ch2.R//˚r ˚ Ch3.R/.

(iii) Tors CH3.B/ ' .Tors CH2.X//˚.n�r/ ˚ Tors CH3.X/.

We remark that some results of Merkurjev–Suslin [24] and Yagita [33, Theorem 10.5,
Corollary 10.8] include a calculation of Ch2.R/. Part (i) in the lemma (combined with Theo-
rem 3.1 (i)) also does this and furthermore produces a generator, namely the special cycle ✓ .

Proof of Lemma 5.3. The expression of the motive of X from [26] gives

.Torsp CHm.X//˝ Z=pZ ' Chm
.R/˚ .Chm�1

.R//˚r ˚ .Chm�2
.R//˚��� ˚ � � � ;

where Chm
.R/ denotes the kernel of the restriction Chm.R/ ! Chm.R ⇥k

Nk/ to the algebraic
closure Nk. By the formula for the generating function [26, Theorem 5.13 (3)] and Table 4.13
in ibid., we have Ch0

.R/ D Ch1
.R/ D 0 and Chi

.R/ D Chi .R/ for i D 2; 3. This implies
claims (i) and (ii).

Claim (iii) is proved similarly, but using the integral motivic decomposition from [26,
Theorem 3.7] with Y D B.

Proposition 5.4. Fix an odd prime p. If Torsp CH2.X/ ¤ 0, then

(i) p D 3 or 5;

(ii) Ch2.R/ ' Z=pZ and Ch3.R/ D 0;

(iii) Torsp CH2.X/ ' Z=pZ and Torsp CH3.X/ ' .Z=pZ/˚r .

Brought to you by | University of California - Los Angeles - UCLA Library
Authenticated

Download Date | 11/20/14 9:02 PM



Garibaldi and Zainoulline, The � -filtration and the Rost invariant 243

Proof. By Proposition 3.2 (or [26, Theorem 3.7]), CH2.X/ and CH2.B/ have the same
p-torsion. As Tors CH2.B/ has order dividing N.G/ by Theorem 3.1 (i), the list of Dynkin
indexes in Section 1.4 gives that p D 3 or 5 and Torsp CH2.B/ ' Z=pZ. Combining this
with Lemma 5.3 (i), it only remains to prove the claims about Ch3.R/ and CH3.X/.

Tensoring sequence (1) with Z=pZ, we find that

�3.B/˝ Z=pZ D ⌧3.B/˝ Z=pZ:

Combining Lemma 5.1 and Theorem 3.1 (iii) gives that Torsp CH3.B/ is a product of at most
n copies of Z=pZ. By Lemma 5.3 (ii) applied to X D B we obtain

.Torsp CH3.B//˝ Z=pZ ' .Z=pZ/˚n ˚ Ch3.R/:

Since the right-hand side already contains n copies of Z=pZ, Torsp CH3.B/ D .Z=pZ/˚n

and Ch3.R/ is zero. The second part of (iii) now follows by Lemma 5.3 (iii).

This proposition gives the claim in the example from the introduction.
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