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Abstract

We study the problem of determining, for a polynomial function f on a vector space V , the linear
transformations g of V such that f ◦ g = f . When f is invariant under a simple algebraic group
G acting irreducibly on V , we note that the subgroup of GL(V ) stabilizing f often has identity
component G, and we give applications realizing various groups, including the largest exceptional
group E8, as automorphism groups of polynomials and algebras. We show that, starting with a
simple group G and an irreducible representation V , one can almost always find an f whose
stabilizer has identity component G, and that no such f exists in the short list of excluded cases.
This relies on our core technical result, the enumeration of inclusions G < H 6 SL(V ) such that
V/H has the same dimension as V/G. The main results of this paper are new even in the special
case where k is the complex numbers.

2010 Mathematics Subject Classification: 20G15 (primary); 15A72, 20G41 (secondary)

1. Introduction

The following problem appears in a variety of contexts: given a polynomial f
in n variables, determine the linear transformations g such that f ◦ g = f . For
the f studied here it is obvious that such a g must be invertible, so the answer
will be a subgroup of GLn . Frobenius’s 1897 paper [Frob] and Dieudonne’s
1943 paper [Dieu] are both aimed at solving the special case where f is the
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determinant. Solutions to this problems appear in many places in algebra as well
as in geometric complexity theory; see for example [MuS].

This problem is typically solved using arguments that are special to the
particular polynomial f being studied. Here we show that a single result gives
the answer for a large class of f . Roughly speaking, if f is defined on a vector
space V and is invariant under the action of a simple algebraic group G that acts
irreducibly on V , we show that ‘typically’ the stabilizer O( f ) of f has identity
component G. With this in hand, it is not hard to determine the full group O( f ).

This can be viewed as a sort of reverse invariant theory. Suppose an algebraic
group G acts on a vector space V and you pick a G-invariant polynomial
f on V . The stabilizer O( f ) contains G but a priori might be bigger. It is
known, for example, that when G is a semisimple adjoint complex Lie group and
V = Lie(G), then G is the identity component of

⋂
f ∈C[V ]G O( f ); see [Dix]. In

contrast, we show in Section 6 below that; for simple G apart from SO5, not only
is no intersection necessary, but a single homogeneous generator f of C[V ]G
will do. As further illustrative examples, we show (1) that E8 is the (identity
component of) the automorphism group of an octic form in 248 variables and of
a 3875-dimensional algebra (see Sections 3, 5, and 7); and (2) that, up to isogeny
and excluding fields of small characteristic, every simple group is the identity
component of the stabilizer of a cubic form (see Section 8). This latter example
shows that the degree of a homogeneous f need not give any information about
the identity component of O( f ).

The core idea in this paper is that there cannot be many closed connected
overgroups H such that G < H 6 SL(V ), and that furthermore there are
extremely few such H such that V/H and V/G have the same dimension, i.e.,
such that k(V )G is an algebraic extension of k(V )H . (In contrast, for finite G
and H , every inclusion G < H < SL(V ) leads to a proper algebraic extension
k(V )G ) k(V )H by the fundamental theorem of Galois theory.) Indeed, there are
so few such H that we can enumerate them in Theorem 13.1. Because of this, we
can show that, for most pairs (G, V ), there is a polynomial f whose stabilizer
has identity component G, and that in the excluded cases there is no such f .

We work with both groups (in the naive sense) as well as affine group schemes
over an arbitrary field k. Our Theorems 3.1, 5.4, 6.6, 8.1, 8.2, 13.1, and 15.1 are
new already in the case where k is the complex numbers, and Theorem 10.1
is an analog for k an algebraically closed field of prime characteristic that was
previously known only in characteristic zero.

Notation and conventions. An algebraic group scheme over a field k is an
affine group scheme of finite type over k as defined in [SGA3]. An algebraic
group is an algebraic group scheme that is smooth. For an algebraic group
scheme G over k and an extension k ′ of k, we put G(k ′) for the group of
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k ′-points of G, that is, the k-algebra homomorphisms k[G] → k ′; it is a
(concrete) group. If G is smooth and (a) k is algebraically closed or (b) k is
infinite and G is reductive, then G(k) is Zariski-dense in G, and sometimes in
these cases we will conflate G and G(k), as is commonly done.

For a finite-dimensional vector space V over k, we write k[V ] for the ring
of polynomial functions on V with coefficients in k, that is, for the symmetric
algebra on the dual space of V . The (naive) stabilizer in GL(V ) of an f ∈ k[V ] is
the (concrete) subgroup {g ∈ GL(V ) | f ◦g = f in k[V ]}. The scheme-theoretic
stabilizer of f is the sub-group-scheme of GL(V ) centralizing f in the sense of
[ConGP, A.1.9]. In ‘most’ cases, such as if char k is zero or larger than some
bound depending on V and f , the scheme-theoretic stabilizer will be smooth; if
additionally (a) or (b) from the previous paragraph holds, then the two notions
of stabilizer coincide.

The rational irreducible representations (the irreps) of a simple algebraic
group G are denoted L(λ), where λ is a dominant weight for G. (We only
consider rational representations in this paper.) Each λ can be written uniquely
as a sum of fundamental dominant weights λ1, . . . , λr of G, which we number
as in [Bou, Ch. VI, Plates I–IX]. If k has prime characteristic p, the restricted
representations are those L(

∑
ciλi) such that 0 6 ci < p for all i , and every

irreducible representation can be expressed uniquely as a tensor product of
Frobenius twists of restricted ones. If k has characteristic zero, then every irrep
is restricted, by definition.

2. Reminders on group actions

Suppose that G is a connected algebraic subgroup of GL(V ). For each v ∈ V ,
the dimension of the G-orbit Gv and the stabilizer Gv of v are related by the
equation dim Gv+ dim Gv = dim G, as follows by applying the fiber dimension
theorem [EGA4, Section 13.3] to the map G → V defined via g 7→ gv.

We define k[V ]G to be the subring of k[V ] consisting of elements f that are
sent to f ⊗ 1 under the comodule map k[V ] → k[V ] ⊗ k[G]. If G is reductive
and k is infinite, then G(k) is dense in G, and

k[V ]G = { f ∈ k[V ] | f ◦ g = f in k[V ] for all g ∈ G(k)},

that is, the collection of f ∈ k[V ] whose naive stabilizers contain G(k).
Put kalg for an algebraic closure of k. As in [Ro, Theorem 2], [Ses], or [PoV,

Section 2], there is a nonempty and G-invariant open subset U of V ⊗ kalg such
that

trdeg/k k(V )G = dim V − dim Gv for v ∈ U .
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On the other hand, if G is semisimple, an easy argument as in [PoV,
Theorem 3.3] shows that k(V )G is the fraction field of k[V ]G , and we have

dim k[V ]G = dim V − dim G + dim Gv for v ∈ U ; (2.1)

that is, the Krull dimension of k[V ]G equals the codimension of a generic orbit
in V .

We remark that the orbits in U are orbits of maximal dimension in V ⊗ kalg,
as can be seen by applying upper semicontinuity as in [SGA3, Proposition
VI.4.1(i)] to the collection of stabilizers, which form a group scheme over V .
Furthermore, if char k = 0, the conjugacy class of the stabilizer of u ∈ U does
not depend on the choice of u, as follows from the Luna stratification [PoV,
Theorem 7.2]. Regardless of the characteristic, we know the following.

LEMMA 2.2. Let G be a connected algebraic group acting on an irreducible
variety V over an algebraically closed field k such that dim Gv = 0 for some
v ∈ V . Then there exists a nonempty open subvariety U of V such that |Gv(k)|
is finite and constant for v ∈ U.

Proof. Take Y to be the closure of the image of the map f : G × V → V × V
with f (g, v) = (v, gv). Note that the fiber over (v, gv) has k-points {(h, v) |
hv = gv}, and so has cardinality equal to |Gv(k)|. The hypothesis that some Gv

is zero dimensional gives the same conclusion for generic v ∈ V , whereby the
map f : G × V → im f is generically finite. It follows (by, for example, [Sp,
Theorem 5.1.6(iii)]) that there is a nonempty open subvariety Y of im f such that
all fibers have the same size, equal to the separable degree of the finite extension
of function fields k(G × V )/k(Y ). The projection of Y into the first copy of V
contains an open subvariety of V (because the image of the morphism projects
onto the first copy of V ); hence the claim follows.

Comparing invariants under G and Lie(G). For f ∈ k[V ], we can adjoin
an indeterminate t to k and expand, for v, v′ ∈ V ,

f (v + tv′) = f (v)+ t f1(v, v
′)+ (terms of higher degree in t),

where f1(v, v
′) is the directional derivative of f at v in the direction v′. We say

that f is Lie invariant under X ∈ End(V ) if f1(v, Xv) = 0 for all v ∈ V .

Example 2.3. If f is homogeneous, then f1(v, v) = (deg f ) f (v) for all v ∈ V ,
because it is true for every monomial. Thus f is Lie invariant under the scalar
matrices if and only if char k divides deg f .
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For an affine group scheme G 6 GL(V ), we can view Lie(G) as the fiber
over 1G of the map G(k[x]/(x2)) → G(k) induced by x 7→ 0. From this, the
following is obvious. If f ∈ k[V ] is invariant under the group G, then f is Lie
invariant under Lie(G). The converse holds if char k = 0 [J, Lemma 2], but
in characteristic p 6= 0 the situation is more complicated. For example, every
element of the subalgebra k[V ](p) generated by {h p | h ∈ k[V ]} is Lie invariant
under Lie(G). We have the following, which is an application of a result of
Skryabin from [Sk].

LEMMA 2.4. Let V be a representation of a semisimple algebraic group H over
an algebraically closed field k of prime characteristic p.

(0) If k[V ]H = k, then the subring of k[V ] of elements Lie invariant under
Lie(H) is k[V ](p).

(1) If k[V ]H = k[ f ] for some homogeneous f of degree not divisible by
p, then the subring of k[V ] of elements Lie invariant under Lie(H) is
k[V ](p)[ f ], a free k[V ](p) module of rank p.

Recall that case (0) of the lemma encompasses all representations with
dim k[V ]H equal to zero, and that every representation with dim k[V ]H = 1 has
k[V ]H = k[ f ] for some homogeneous f ; see [Po 80, Proposition 12] for k = C
and [BeGL, 6.1] for the general case.

Proof. For (0), this is a straightforward application of [Sk, Theorem 5.5]. For (1),
Example 2.3 shows that, for each v ∈ V , f1(v, v) = 0 if and only if f (v) = 0.
Therefore, the variety Z consisting of those v ∈ V such that the linear form
f1(v,−) vanishes is contained in the vanishing set Y of f , and in fact is the
singular set of Y . Since f is irreducible (because H is connected and has only
trivial characters), Z is a proper subvariety, so Z has codimension at least two
in V , and Skryabin’s result gives the claim.

3. The compact real form of E8

More than 125 years ago, Killing classified the finite-dimensional simple
complex Lie algebras by introducing the notion of a root system and then
classifying the simple root systems. (This is apart from some small errors,
corrected in [Ca 1894].) In the paper containing the classification, [Ki], he
explicitly posed the opposite problem of giving, for each simple root system, a
concrete description of a simple Lie algebra with that root system [Ki, page 38].
He answered this problem for the root systems of types An , Bn , Cn , and Dn
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by showing that they come from sln+1, so2n+1, sp2n , and so2n , respectively,
and these descriptions are now a standard part of the theory as in [Bou,
Section VIII.13] or [Sp, 7.4.7]. Analogous descriptions for types E6 and E7 date
back 120 years to Cartan’s thesis [Ca 1894, pages 139–147], and were followed
by treatments of G2 by Engel [Engel] and Cartan (without proof, [Ca 1914,
page 298]), and of F4 by Chevalley and Schafer [ChS], and by a refinement
of the E7 case by Freudenthal [Fre]. For E8, the only such interpretation
known is as the automorphism group of its Lie algebra—see Section 16 for a
more comprehensive discussion—and we now give another one. Recall that the
smallest faithful irreducible representation of a group of type E8 is its adjoint
representation of dimension 248.

The paper [CeP] gives an explicit formula for a degree-8 invariant polynomial
f on the Lie algebra of the compact real form of E8 that is not in the span of the
fourth power of the Killing form q , obtained by decomposing the representation
with respect to the maximal subgroup of type D8. Alternatively, such an invariant
may be found by picking any degree-8 polynomial f0 and defining f to be the
average with respect to Haar measure, f (v) := ∫G f (gv) dg; the resulting f will
be E8 invariant and almost certainly not in Rq4.

THEOREM 3.1. The stabilizer in GL248(R) of the octic polynomial f displayed
in [CeP, (2.3)] is generated by the compact form of E8 and ±1. The stabilizer of
f in GL248(C) is generated by the complex E8 and the eighth roots of unity.

Proof. As the compact real E8 and the eighth roots of unity stabilize f by
construction, it suffices to verify that nothing else stabilizes f , for which it
suffices to consider the complex case. Put S for the identity component of the
stabilizer of f in GL248. Because the representation is irreducible, it follows
that S is reductive, and hence semisimple because f is not constant, and hence
simple because the representation is tensor indecomposable for E8. If S properly
contains E8, then it has classical type, and its smallest nontrivial representation
has dimension 248 and is not symplectic; that is, S is SL248 or SO248. But SL248

does not stabilize any nonzero octic form, and the only octic forms left invariant
by SO248 are scalar multiples of the fourth power of a quadratic form (the Killing
quadratic form for E8), so we conclude that S = E8. As the full stabilizer of f
normalizes S and E8 has no outer automorphisms, the full stabilizer is contained
in the group generated by E8 and the scalar matrices; the claim follows.

The compact real form of E8 discussed in the theorem is the one playing a role
in the recent laboratory experiment described in [Coldea+]; compare [BoG].

We will generalize Theorem 3.1 to other fields in Theorem 5.4 and to other
groups in Theorem 6.6. Nonetheless, we have included this doubly special result
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here for two reasons. First, it is an example where the polynomial function is
known explicitly. Second, despite the fact that it is a very special case of our
results below, it already sheds new light on the problem posed by Killing more
than 125 years ago.

4. Containment of Lie algebras

We will prove the following result, which will be used to prove that certain
group schemes are smooth; see Theorems 5.4 and 8.1.

PROPOSITION 4.1. Let G 6 SL(V ) be a simple algebraic group over an
algebraically closed field k of prime characteristic such that V is irreducible and
tensor indecomposable. Suppose that Lie(G) < L 6 sl(V ) are containments of
restricted Lie algebras such that L is invariant under G, and L is minimal with
this property. If char k 6= 2, 3, Lie(G) is simple, and the centralizer of Lie(G) in
L is zero, then there exist a simple simply connected algebraic group H and a
homomorphism φ : H → SL(V ) such that G < φ(H) and L = dφ(Lie(H)).

Proof. Write g for Lie(G). Let I be the subalgebra of L generated by those c ∈ L
such that [c[cL]] = 0, and suppose that I 6= 0. It is G-invariant because G acts
by algebra automorphisms on L; hence [g, I ] 6 I , and by minimality L = I +g.
Since I is nilpotent, by minimality it is abelian. Moreover, it acts completely
reducibly on V because the socle is G-invariant; thus I is a toral subalgebra. As
g does not centralize I , G acts nontrivially on I , an impossibility, so I = 0.

Suppose now that [LL] is smaller than L. As g is perfect, minimality of L
implies that [LL] = g. But L normalizes [LL], and every derivation of g is inner
[Rud], so L/g is naturally identified with the centralizer of g in L, that is, 0. This
contradicts the hypothesis that L 6= g, so [LL] = L.

Now [Pr 87, Theorem 3] (for char k > 5) and [Pr 86] (for char k = 5) give that
L is a sum of simple ideals ‘of classical type’. Since V is tensor indecomposable
for G and V is restricted, it is also tensor indecomposable for g. It follows that L
is itself simple of classical type; cf. [BlZ, Lemma 3.1]. Steinberg [St 63] gives a
simple simply connected group H and a homomorphism φ : H → SL(V ) such
that L is the subalgebra of sl(V ) generated by the images of the root subalgebras
of Lie(H) under dφ.

5. Adjoint representation of E8

The proof of Theorem 3.1 essentially relied on the nonexistence of overgroups
of E8(C) in SL248(C). This can be generalized as follows, which exploits the
observation that overgroups of simple groups in irreducible representations are
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comparatively rare. In the statement, k has characteristic p > 0; when p = 0,
we set k[V ](p) = k.

LEMMA 5.1. Let X < SL(V ) be a simple algebraic group over an algebraically
closed field k such that V is irreducible, restricted, and tensor indecomposable
for X. Put q for a nonzero X-invariant quadratic form on V if one exists;
otherwise, set q := 0. If (X, V ) does not appear in Table 1 of [Sei], then, for
every f ∈ k[V ]X \ k[q], the stabilizer of f in GL(V ) has identity component X.
If additionally char k 6= 2, 3 and does not divide deg f , f is not in k[V ](p)[q],
and furthermore char k does not divide n + 1 if X has type An , then the scheme-
theoretic stabilizer of f in GL(V ) is smooth with identity component X.

If char k = 0, then V irreducible implies V restricted and tensor
indecomposable. If char k 6= 2, 3, then V irreducible and restricted implies
V tensor indecomposable [Sei, 1.6].

Proof. Put S for the identity component of the scheme-theoretic stabilizer of
f in GL(V ), and Sred for its reduced subgroup. Because Sred contains X and
V is an irreducible representation of X , it follows that Sred is reductive, and
hence semisimple because f is not constant. If X 6= Sred, then, as (X, V ) is not
contained in Table 1 of [Sei], p. 278 of [Sei] gives that Sred is the stabilizer of a
symplectic (when char k = 2) or quadratic form on V , and hence k[V ]Sred = k[q],
contradicting the existence of f . Therefore, X = Sred, and the first claim follows.

For the second claim, we have natural containments Lie(X) 6 Lie(S) 6 sl(V )
by [SGA3, Section VIIA.6]. The hypothesis on the characteristic guarantees that
Lie(X) is a simple Lie algebra [Hog, 2.7a]. Since V is a restricted irrep of X , it
is also an irrep of Lie(X); hence the centralizer of Lie(X) in Lie(S) consists of
scalar matrices, and so is 0 by Example 2.3. Proposition 4.1 provides a simple,
simply connected algebraic group (scheme) H and a homomorphism φ : H →
SL(V ) with Lie(S) containing dφ(Lie(H)).

The image φ(H(k)) of the abstract group of k-points of H is a subgroup of
SL(V )(k) containing X (k), so by Seitz it is SL(V )(k), SO(V )(k), or Sp(V )(k).
The map φ is a central isogeny by construction [BorT 72, 2.15], and combining
this with [BorT 73, (A)] gives that H is isomorphic to SL(V ), Spin(V ), or
Sp(V ), respectively. Examining the list of dimensions of the irreps of H from
[Lüb01], we see that φ is equivalent to V or its dual; hence kerφ is zero and
the subalgebra dφ(Lie(H)) of Lie(S) is sl(V ), so(V ), or sp(V ). But f is Lie
invariant under Lie(S), contradicting Lemma 2.4, so S is smooth.

REMARK 5.2. Suppose that f is nonconstant homogeneous and that k is
algebraically closed. Many of our results show that the naive stabilizer of f
in GL(V ) has identity component a simple group G, in which case the naive
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stabilizer of k f in PGL(V ) will have identity component the image of G. In
Lemma 5.1 and Theorems 5.4 and 8.1, we also prove that the scheme-theoretic
stabilizer of f is smooth, in which case its image (the scheme-theoretic stabilizer
of k f in PGL(V )) is also smooth.

‘Most’ pairs (X, V ) with V irreducible and tensor indecomposable satisfy the
hypotheses of Lemma 5.1 above. Indeed, unless (X, V ) appears in (the rather
short) Tables C or D, then there exists an f ∈ k[V ]X \ k[q]; see Section 12.
Furthermore, inspecting the table in Seitz shows that, when char k = 0, a
randomly selected irreducible representation V of any particular simple X will
satisfy the hypotheses of Lemma 5.1 with probability 1, when one defines this
probability as a limit over finite sets of weights of increasing size.

We also use Lemma 5.1 to give a version of Theorem 3.1 for any field. Because
of the importance of this one example, we give a quick proof of Seitz’s result for
this case.

LEMMA 5.3. Let k be an algebraically closed field of characteristic p > 0. Let
G = E8(k) < SL248(k). If p 6= 2, there is a unique proper closed subgroup
H with G < H < SL248(k), and it is isomorphic to SO248(k). If p = 2, there
are precisely three proper closed subgroups Hi , 1 6 i 6 3 of SL248(k) properly
containing G. We have G < H1 < H2 < H3 < SL248(k) with H1

∼= SO248(k),
H2
∼= O248(k), and H3

∼= Sp248(k).

Proof. It suffices to consider closed connected subgroups. Since G acts tensor
indecomposably on the adjoint module, any connected overgroup H of G is
simple. Since the rank of H is greater than 8, H must be of type A, B, C , or D.
Moreover, as any representation of E8 has dimension at least 248, the same must
be true of H . Thus H ∼= SL248, SO248, or Sp248. If p 6= 2, G does not preserve an
alternating form. In any case, since G acts irreducibly, G preserves a unique (up
to scalar) quadratic form (or symplectic form if p = 2). The result follows.

THEOREM 5.4. Let G be a simple algebraic group of type E8 over a field k, and
put q for a nonzero G-invariant quadratic form on V := Lie(G). Then there
exists a homogeneous polynomial f of degree 8 on V that is G-invariant and
does not belong to kq4. For each such f ,

(1) the stabilizer of f in GL(V ) is generated by G(k) and the eighth roots of
unity in k; and

(2) if char k 6= 2, 3, the scheme-theoretic stabilizer of f in GL(V ) and the
scheme-theoretic stabilizer of k f in PGL(V ) is (the image of) G.
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Proof. Suppose first that k is algebraically closed. Put E8 for a split group
scheme of type E8 over Z (and identify E8(k) with G) and q for an indivisible
E8-invariant quadratic form on Lie(E8). As the space of octic E8(C)-invariant
polynomials on Lie(E8) ⊗ C is two-dimensional, the rank of the corresponding
module over Z is 2. This dimension can only increase when we reduce modulo
the characteristic of k, so there is an octic E8-invariant polynomial f on
Lie(E8)⊗k that is not a multiple of (q⊗k)4 (equivalently, is not a multiple of q4).
The stabilizer of f in GL(V ) is generated by E8(k) and the eighth roots of unity
by Lemma 5.1 or Lemma 5.3. Claim (2) is a direct application of Lemma 5.1
and Remark 5.2.

Now let k be arbitrary. The natural homomorphism k[V ]G ⊗ kalg →
kalg[V ⊗ kalg]G×kalg is an isomorphism [Ses, Lemma 2], so there exists an
f ∈ k[V ]G \ k[q]. As G(k) = G(kalg) ∩ GL(V ), claim (1) follows. Claim (2) is
obvious because it can be verified after base change to kalg.

We conjecture that the scheme-theoretic stabilizer of k f in PGL(V ) is smooth
for all k, and that the scheme-theoretic stabilizer S of f is also smooth when
char k = 3. However, if char k = 2, then S is not smooth, because Lie(S) contains
both Lie(G) and the scalar matrices (because they are the Lie algebra of the
group scheme of eighth roots of unity), so dim Lie(S) > dim Lie(G) = dim G =
dim S.

REMARK 5.5. The method of proof used in this section can be applied more
generally to argue for example that G is the identity component of the stabilizer
of a subset of V⊗r ⊗ (V ∗)⊗s for some r , s. As a concrete illustration, consider
V the minuscule 56-dimensional representation of a group G of type E7 over
an algebraically closed field k of characteristic 2. Then G stabilizes a nonzero
quadratic form q , and k[V ]G = k[q] (see Proposition 12.1), so G is not the
identity component of the stabilizer of a homogeneous form. But there is a
nonsymmetric 4-linear form Ψ on V whose stabilizer has identity component
G; see [Lurie, Section 6] and [Luz]. This claim could be proved following the
methods of this section by checking that SO(q) does not stabilize Ψ .

The case where k has characteristic different from 2 is easier. Then k[V ]G =
k[ f ] for a quartic form f and Lemma 5.1 says that the stabilizer of f has
identity component G. So in any characteristic G is the identity component of
the stabilizer of a degree-4 element in the tensor algebra on V .

6. Adjoint groups are stabilizers of canonical homogeneous forms

In this section, we show that each split adjoint group, roughly speaking, can be
realized as the identity component of the stabilizer of a canonical homogeneous
form on its Lie algebra.
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Table A. Torsion primes and primes that are not very good.

B` (` > 3) or
Type of R A` D` (` > 4) C` E6, E7, F4 E8 G2

Torsion primes ∅ 2 ∅ 2, 3 2, 3, 5 2
Not very good Divisors 2 2 2, 3 2, 3, 5 2, 3

primes of `+ 1

To see this, fix a simple root system R, and put A for the ring obtained by
adjoining to Z the inverses of the torsion primes listed in Table A, and also
adjoining 1/2 if R has type C` for some ` > 1. (This list is chosen in order
to apply the results of [De 73].) This data uniquely determines a split adjoint
algebraic group G over A of type R [SGA3, Section XXV.1]. Let T be a split
maximal A-torus in the simply connected cover G̃ of G , and put W for the Weyl
group NG̃ (T )/T .

The free module Lie(T ) is naturally identified (via a pinning) with Q∨ ⊗ A,
where Q∨ denotes the root lattice of the dual root system R∨. It is classical that
R[Q∨⊗R]W is a polynomial ring with homogeneous generators p1, p2, . . . , p`,
where

2 = deg p1 < deg p2 6 · · · 6 deg p`−1 < deg p` = (Coxeter # of R), (6.1)

and that these degrees are all distinct unless R has type D2`′ , in which case both
p`′ and p`′+1 have degree `′. These generators are not uniquely determined.

Example 6.2 (Flat bases). Whatever the type of R, one can impose an additional
condition on the generators of the real ring of invariants. Write 〈 , 〉 for a Weyl-
invariant symmetric bilinear form on P ⊗ R, where P = (Q∨)∗ is the weight
lattice with basis the fundamental dominant weights ω1, . . . , ω`, and define a
bilinear map b on polynomials in P ⊗ R, b : R[Q∨ ⊗ R] × R[Q∨ ⊗ R] →
R[Q∨ ⊗ R] by

b(p, p′) =
∑

i

∑
j

∂p
∂ωi

∂p′

∂ω j
〈ωi , ω j 〉.

In [SaiYS], the generators p1, . . . , p` are said to be a flat basis if
(∂/∂p`)b(p, p′) belongs to R for all p, p′. (This definition was motivated
by the study of logarithmic poles; see [Sai].) Flat bases were constructed in [Ta]
for types E7 and E8, and in [SaiYS] for the remaining types. The latter paper
also proved that there is a unique flat basis up to scaling the elements by nonzero
real numbers, or interchanging the two invariants of degree `′ in the case when
R has type D2`′ .
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LEMMA 6.3. A[Lie(T )]W is a polynomial ring with homogeneous and
indivisible generators p1, . . . , p` with degrees as in (6.1). For every
homomorphism of A into a field k, the natural map A[Lie(T )]W ⊗ k →
k[Lie(T )⊗ k]W is an isomorphism, and k[Lie(T )⊗ k]W is a polynomial ring
with generators the images of p1, . . . , p`.

Proof. The main result of [De 73] says that the arrow in the statement of
the lemma is an isomorphism and that the rings are graded polynomial rings.
Taking k = R and tracing through the proof of [De 73, Lemma 6], shows that
A[Lie(T )]W has homogeneous indivisible generators of the same degrees as
those of R[Lie(T )⊗ R]W .

In view of Lemma 6.3, we may:

Choose indivisible homogeneous p1, . . . , p` ∈ A[Lie(T )]W
whose images in R[Lie(T )⊗ R]W are a generating set. (6.4)

Example 6.5 (Type A`). For R of type A`, we may identify Lie(T ) with the
space of (` + 1)-vectors whose coordinates sum to zero, which identifies
A[Lie(T )]W with A[x1, . . . , x`+1]/(

∑
xi). The fundamental theorem of

symmetric polynomials gives that one may take pi to be the elementary
symmetric polynomial in x1, . . . , x`+1 of degree i + 1.

The generators p1, p2 of degrees 2, 3, respectively, are the same as those in
the flat basis in Example 6.2, but pi for i > 3 are different in the two cases, as
follows from [SaiYS, 2.5.4].

Fix a homomorphism of A to a field k. The natural map k[Lie(G̃ ) ⊗ k]G →
k[Lie(T ) ⊗ k]W is an isomorphism by [SpSt, Section II.3] or [KacW,
Theorem 4(i)], and we write fi for the pullback of the element pi chosen
in (6.4). Note that f1 is a G -invariant quadratic form, a scalar multiple of the
Killing form.

If R has type A1, then G is SO3, the identity component of the stabilizer of
f1. For R of higher rank, we have the following.

THEOREM 6.6. Suppose that R is not of type A1 or C2, char k is very good for
R, and f ∈ { f2, . . . , f`} satisfies the following.

(i) If R has type C` for ` > 3, then f 6= f`.

(ii) If R has type D` for ` > 4, then deg f 6= `.
(iii) If R has type A3, then f = f3 (hence deg f = 4).
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If k is infinite, then the naive stabilizer of f has identity component G (k). If
char k 6= 2, 3, and does not divide deg f , then the scheme-theoretic stabilizer of
f has identity component G × k.

Proof. We reduce the proof to Lemma 5.1. Because the characteristic is very
good, Lie(G̃ ) is a restricted irreducible representation of G [Hi], and is tensor
indecomposable [Sei, 1.6(i)]. This representation appears only in lines I1, I2, I4,
and I6 of Seitz’s table.

Line I1 says that PSp2n is contained in S2 SL2n; this larger group has a unique
invariant of degree 2n, hence exception f 6= fn in (i). Line I2 says that SO2n+1

is contained in ∧2 SL2n+1, which has no nonconstant invariants so this gives no
exceptions. Line I4 says that PSO2n is contained in ∧2 SL2n which has a degree n
invariant, hence the exception deg f 6= n in (ii). Finally, line I6 says that PGL4 is
contained in ∧2 SL6, which has a degree 3 invariant, hence the exception f 6= f2

in (iii).
Suppose now that additionally char k 6= 2, 3. The restriction of f to Lie(T̃ )

⊗ k cannot be in the k-span of h pqr for some nonconstant h ∈ k[Lie(T̃ ) ⊗ k]
and r > 1, for if it were then h p would also belong to k[Lie(T̃ ) ⊗ k]W , which
would contradict the fact that the restriction of f is a generator.

Applying Lemma 5.1 completes the proof of the proposition in the case when
k is algebraically closed. The claim for arbitrary k follows.

Although type C2 is excluded from the theorem, in that case G = PSp4 =
SO5 is the identity component of the stabilizer of the degree-8 homogeneous
polynomial f1 f2, the degree-4 (but inhomogeneous) f1+ f2, or anything in k[ f1,

f2] \(k[ f1] ∪ k[ f2]).
Example 6.7 (E8 octic). In the case of E8, we choose p1, . . . , p8 as in Example
6.2, so that their images over R are rational multiples of the flat basis q̂1, . . . ,

q̂8 from [Ta, page 15]. Taking p1 := q̂1 and p2 := 15q̂2/8 gives indivisible
polynomials with integer coefficients; to see this it is helpful to refer to [Meh,
page 1089]. In particular,

p2 = 8x8
1−28x4

1 x4
2−14x4

1 x2
2 x2

3+· · · , and p4
1 = x8

1+19x4
1 x4

2+72x4
1 x2

2 x2
3+· · · ,

where the x1, . . . , x8 are a basis for the weight lattice defined in [Meh]. From
this, it is clear that the image of p2 in k[Lie(T̃ )⊗ k]W is not in the k-span of p4

1 ,
not even when char k = 2, 3, which we have excluded. (Although p2 − 8p4

1 is
divisible by 5.) The pullback f of p2 to Lie(G̃ )⊗ k then provides an octic form
whose scheme-theoretic stabilizer has identity component E8 × k, and this octic
form is canonical in the sense that it is determined up to multiplication by a unit
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in Z[1/30] by the property of restricting to be an element in the flat basis for the
Weyl invariants.

7. 3875-dimensional representation of E8

LEMMA 7.1. Let G be a simple algebraic group of type E8 over a field k, and
let V be the second smallest faithful irreducible representation of G. There exist
nonzero G-equivariant bilinear maps b : V × V → k and ? : V × V → V
satisfying

v1 ? v2 = v2 ? v1 and b(v1 ? v2, v3) = b(vπ(1) ? vπ(2), vπ(3))

for all v1, v2, v3 ∈ V and every permutation π of {1, 2, 3}, and these properties
determine b and ? uniquely up to multiplication by an element of k×.

The representation V in the lemma has dimension 3875 if char k 6= 2 and
3626 if char k = 2; cf. [Lüb01, A.53]. In either case, the highest weight is the
one denoted ω1 in [Bou].

Proof. Put E8 for a split semisimple group scheme of type E8 over Z and V for
a Weyl module of E8 over Z with highest weight λ1. Then E8×C is the complex
group E8 and V ⊗ C is its second smallest faithful irreducible representation.
Note that V ⊗C is orthogonal and has a unique E8-invariant line in (V ⊗C)⊗3;
this line consists of symmetric tensors. It follows that the same is true for the
representation V ⊗ Q of E8 × Q, and we find a symmetric bilinear form b
on V and a bilinear map ? : V × V → V which are both indivisible and
E8-equivariant. We can interpret ? as a (not necessarily associative) product
operation on V , and we define corresponding operations on V ⊗ k by base
change. Because the invariant tensor in (V ⊗ C)⊗3 is symmetric, the displayed
equations hold when k = C, and it follows by base change that they hold also
for arbitrary k.

Suppose that G is k-split. If char k 6= 2, then V ⊗ k is irreducible, that is, is
V (because G is split), and the proof is complete. If char k = 2, then V ⊗ k
is reducible, and the second displayed identity implies that the maximal proper
submodule of V ⊗ k is an ideal for the multiplication ?. It follows that ? and b
factor through to give a multiplication and a nondegenerate symmetric bilinear
form on the irreducible quotient V , both of which are nonzero and (E8 × k)-
invariant.

In the general case, G is isomorphic to a Galois twist of E8× k by a 1-cocycle
z ∈ Z 1(k,E8×k). Using z and Galois descent from a separable closure of k gives
G-equivariant maps b and ? defined on V over k. Uniqueness and the identities
follow because they hold after base change to a separable closure.
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We offer the following observations about the multiplication ? on V .
If char k 6= 2, 3, then the automorphism group scheme of (V, ?) is G by
Lemma 5.1.

If char k = 3, then Lemma 5.1 gives that the automorphism group of this
multiplication has k-points G(k).

If char k = 2, then, by [Sei], the only other closed connected overgroups of
E8(k) in SL(V ) are H = SO(V ) or Sp(V ), but these cannot stabilize ?: the
highest weight λ of the defining representation of such an H is not in the root
lattice but 2λ is, so there is no nonzero H -invariant multiplication. Therefore
G(k) is the naive automorphism group of the multiplication ? on V . Alexander
Premet asks: Does this multiplication satisfy the Jacobi identity?

8. Simple groups as stabilizers of cubic forms

Groups of type B and D over an algebraically closed field k are isogenous
to SOn for some n; that is, they are isogenous to the identity component of the
stabilizer in GLn of a quadratic form. Analogous statements hold for type E6

with a cubic form and type E7 for a quartic form (as long as char k 6= 2). What
about types C , G2, F4, E8, and also A? We observe now that all of these, and E7

also, can almost always be obtained as stabilizers of cubic forms. This result is
new even in the case when k = C.

THEOREM 8.1. Let G be a simple and simply connected algebraic group over an
algebraically closed field k with (a) char k = 0 or (b) char k > 2 rank G+1. There
exist an irreducible kG-module V and a homogeneous polynomial f ∈ k[V ] of
degree 3 such that the image of G in GL(V ) is the identity component of the
scheme-theoretic stabilizer of f .

At the cost of replacing cubic forms in some cases with quadratic forms, we
can ease the hypothesis on the characteristic.

THEOREM 8.2. Let G be a simple and simply connected algebraic group over
an algebraically closed field k of characteristic p 6= 2. Assume that, if G is of
type An−1 or Cn , then p does not divide n. There exist an irreducible and tensor
indecomposable kG-module V and a homogeneous polynomial f ∈ k[V ] of
degree 2 or 3 such that the image of G in GL(V ) is the identity component of the
naive stabilizer of f .

We postpone the proofs of these theorems until after the following examples,
which will be used also in the proof of Theorem 13.1.
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Example 8.3 (Trace zero matrices). Consider the conjugation action of SLn

(equivalently, of PGLn) on the space M of n-by-n matrices over an algebraically
closed field k, for some n > 2. Because the matrices with distinct eigenvalues are
dense and the normalizer of the diagonal matrices equals the monomial matrices
in SLn , the ring k[M]SLn equals the symmetric polynomials in n variables. That
is, it is a polynomial ring with generators of degrees 1, 2, . . . , n, the coefficients
of the characteristic polynomial.

Put M0 for the Lie algebra of SLn , that is, the trace zero subspace of M .
Tracking the proof of [N, 4.1] shows that k[M0]SLn is polynomial, with generators
the restrictions of the generators of k[M]SLn of degrees 2, 3, . . . , n.

Finally, suppose that char k | n, and put M̄0 for M0 modulo the scalar matrices.
Then k[M̄0]SLn is identified with the subring of elements f ∈ k[M0]SLn such that
f (t In + m) = f (m) for all m ∈ M0 and t ∈ k. It is easy to see that this ring has
transcendence degree n − 2.

For later use, we note that when k has characteristic 2 and n = 4, one
checks that the coefficients c2, c3 of degrees 2, 3 of the characteristic polynomial
belong to k[M̄0]SL4 , but that det(t I4+m) = t4+ (terms of lower degree in t). So
k[M̄0]SL4 = k[c2, c3].
REMARK 8.4. The previous example noted that k[sln]PGLn is a polynomial ring.
In contrast, k[pgln]PGLn is isomorphic to the Weyl-group-invariant subspace of
the symmetric algebra on the An−1 root lattice tensored with k [SpSt, page 199],
that is, with the Sn-invariant subalgebra of the symmetric algebra on the obvious
(n − 1)-dimensional subspace of the n-dimensional permutation representation
of Sn . When char k divides n and n > 5, this ring is not polynomial, by [KeM,
5.2] or [N, 4.3]; cf. [SpSt, Problem II.3.18].

Example 8.5 (Self-adjoint endomorphisms). Let k be an algebraically
closed field. Fix a 2n-dimensional k-vector space W for some n > 3 and a
nondegenerate alternating bilinear form b on W ; write Sp(W ) for the isometry
group of b. Define Y to be the space of self-adjoint endomorphisms of W , that
is, the collection of endomorphisms T so that b(Tw,w) = 0 for all w ∈ W .
Note that Sp(W ) acts on Y by conjugation; cf. [GoGu, Section 2].

It is shown in [GoGu, Theorem 2.7] that any self-adjoint operator leaves
invariant a pair of totally singular complementary spaces with respect to b. With
respect to an appropriate basis, it follows that a self-adjoint operator corresponds
to diag(A, A>), and the stabilizer of a pair of such spaces in Sp(W ) is GLn ,
which acts via conjugation. Thus, the Sp(W )-orbits in Y can be identified
with similarity classes of n-by-n matrices, and k[Y ]Sp(W ) is generated by the
coefficients of the characteristic polynomial of a generic self-adjoint operator;
that is, it is a polynomial ring generated in degrees 1, . . . , n. A generic element
will be one in which the minimal polynomial of A has degree n and has
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distinct roots. (Such an element has stabilizer isomorphic to SLn
2 .) It follows

that k[Y ]Sp(W ) is a polynomial ring in generators of degrees 1, . . . , n.
Write Y0 for the subspace of Y on which the linear invariant vanishes. The

same proof shows that k[Y0]Sp(W ) is isomorphic to the ring of PGLn-invariant
functions on M0 as in the preceding example.

Now let X denote the space of alternating 2n-by-2n matrices, that is, those
matrices L so that L i j = −L j i and L i i = 0 for all i, j . Then G acts on X via
g · L = gLg>, and this representation is isomorphic to Y , via sending L to J L ,
where J is the alternating matrix defining b; cf. [GoGu, Section 2]. We write X0

for the submodule of X corresponding to Y0.
We now describe k[V ]Sp(W ) for V the irreducible representation with highest

weight λ2. If n is not divisible by char k, then X0 is V , and the claim follows from
above. If n is divisible by char k, then V is isomorphic to X0/k, and the pullback
k[V ]Sp(W ) ↪→ k[X0]Sp(W ) identifies k[V ]Sp(W ) with the ring of PGLn-invariants on
the space M̄0 from the previous example.

Proof of Theorem 8.2. By Lemma 5.1, it suffices to produce, for G of each of
the types A2, An (n > 4), Cn (n > 3), E7, E8, F4, and G2, a restricted dominant
weight λ so that the corresponding irrep L(λ) has a G-invariant cubic form and
λ does not appear in Seitz’s Table 1.

For the groups G and weights λ listed in Table B, the Weyl module of highest
weight λ is irreducible (with the restrictions on the characteristic in the table)
by [Lüb01], and the corresponding irrep for a split complex Lie group has a
G-invariant cubic form. Therefore, the irrep L(λ) of G over k also has a
G-invariant cubic form, and we are done with this case.

Example 8.3 gives a restricted irrep for type An (n > 4, p not dividing n + 1)
with an invariant cubic form, and this irrep does not appear in Seitz’s Table 1;
this proves Theorem 8.2 for those groups. Similarly, Example 8.5 handles type
Cn for n = 3 and n > 5 (for p not dividing n).

The theorem holds also in characteristic 2 for many types by the same
proof. However, the argument fails in particular for types A1, C4, and G2. For
example, the only nontrivial restricted irrep of A1 does not support any invariant
nonconstant forms, so in this case one must consider irreps that are tensor
decomposable.

Proof of Theorem 8.1. In Theorem 8.2, the only places where the polynomial is
quadratic is for types Bn (n > 1) and Dn (n > 3). Such a group is isogenous to
SOr for r = 3 or r > 5. By the hypothesis on the characteristic, the irrep V with
highest weight 2λ2 is the vector space of trace zero r -by-r symmetric matrices
where SOr acts by conjugation. The degree-3 coefficient of the characteristic
polynomial is invariant under SOr and V does not appear in Seitz’s Table 1, so
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Table B. Examples of irreducible representations L(λ) over a field k such that L(λ) has a
nonzero G-invariant cubic form and there is no overgroup H that stabilizes a cubic form
and lies properly between G and SL(L(λ)).

Group G Highest weight λ dim L(λ) char k

A2 2λ1 6 6= 2

C4 2λ2 308 6= 2, 3, 5
2λ4 594 6= 2, 5, 7

λ2 + λ4 792 6= 2, 3, 7

E7 2λ1 7 371 6= 2, 5, 19
λ2 + λ7 40 755 6= 2, 3, 7

E8 λ1 3 875 6= 2

F4 λ4 26 6= 3
λ1 + λ4 1 053 6= 2

G2 2λ1 27 6= 2, 7
2λ2 77 6= 2, 3

Lemma 5.1 gives that G is the identity component of the (naive) stabilizer, and
further that the scheme-theoretic stabilizer is smooth.

9. There are only finitely many overgroups

For the proof of the main result Theorem 15.1, we need the statement that
a semisimple irreducible subgroup of SL(V ) is contained in only finitely many
closed subgroups of SL(V ). We prove instead Proposition 9.2, which is much
more general. For x, y in a group G, we write x y := xyx−1, and for A ⊆ G we
put A y := {a y | a ∈ A} and x A := {xa | a ∈ A}.

LEMMA 9.1. Let G < H < X be groups. If [NX (G) : G] is finite and the number
of H-conjugacy classes of subgroups x G, x ∈ X which are contained in H is
finite, then G has finitely many fixed points on X/H.

Proof. Suppose that Gx−1 H = x−1 H (equivalently that x G < H ). Let
G i = xi G, 1 6 i 6 m be representatives for the H -conjugacy classes of
{x G | x G < H}. So x G = hi xi G for some i and some hi ∈ H . Thus y := x−1

i h−1
i x

is in NX (G).
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Further,
yGx−1 H = Gyx−1 H = Gx−1

i H,
and so NX (G)x−1Y = NX (G)x−1

i H . Of course NX (G)x−1
i H is a finite union of

G\X/H double cosets, whence the result.

PROPOSITION 9.2. Let X be a semisimple algebraic group over an
algebraically closed field k. If G is a closed, connected subgroup of X not
contained in a proper parabolic subgroup of X, then G is semisimple, CX (G) is
finite, [NX (G) : G] is finite, and there are only finitely many closed subgroups
H of X with G 6 H 6 X.

Proof. As G is not contained in a proper parabolic subgroup of X , it cannot
normalize a nontrivial unipotent subgroup, nor can it centralize a nontrivial torus
in X [BorT 65, Theorem 4.15a]. This implies that G is semisimple and that the
identity component of CX (G) is trivial; hence CX (G) is finite. Since the outer
automorphism group of a semisimple group is finite, it follows that [NX (G) : G]
is finite.

We next show that, for any connected, closed subgroup H such that
G 6 H 6 X , the following holds (see also [Mar 13, Lemma 11]).

The set {x G | x G 6 H} is a finite union of H -conjugacy classes. (9.3)

First assume that k is not the algebraic closure of a finite field. Then we can
choose g1, g2 ∈ G so that G is the Zariski closure of 〈g1, g2〉. Let f : H 2/H →
X 2/X be the morphism of varieties induced by the inclusion of H 2 in X 2, where
H, X act on H 2, X 2 by simultaneous conjugation. By [Mar 03, Theorem 1.1],
f is a finite morphism. Let pH : H 2 → H 2/H and pX : X 2 → X 2/X be
the canonical projections. If two elements in H 2 generate H -cr subgroups and
both belong to the same fiber of pH , then they are H -conjugate by [BaMR,
Theorem 3.1], or see [Ri 88, Theorem 6.4].

If x ∈ X and x G 6 H , then, since G is not contained in a parabolic subgroup
of X , x G cannot be contained in a parabolic subgroup of H . In particular, x G is
an H -cr subgroup of H and pX (

x g1,
x g2) = pX (g1, g2). Thus, pH (

x g1,
x g2) lies

in the fiber of f above pX (g1, g2). Since f is a finite map, this fiber is finite. So,
by the previous paragraph, (x g1,

x g2) lies in one of finitely many H -conjugacy
classes.

If k is the algebraic closure of a finite field, let k ′ be a bigger algebraically
closed field containing k. If G1(k),G2(k) are closed subgroups of H(k), let
G i(k ′) be the Zariski closures of G i(k) in H(k ′). Then {g ∈ H(k ′) | gG1(k ′) =
G2(k ′)} is a variety defined over k. So, if there are k ′-points, there are k-points.
So, if the G i(k ′) are conjugate in H(k ′), then the G i(k) are conjugate in H(k),
completing the verification of (9.3).



S. Garibaldi and R. M. Guralnick 20

By Lemma 9.1, it follows that the closed overgroups of G in X contain only
finitely many subgroups in a given X -conjugacy class of subgroups.

We now prove that there are only finitely many closed subgroups H lying
between G and X . By the first paragraph of the proof, any such H is semisimple.
By induction on the codimension of G in X , we are reduced to proving that G
is contained in only finitely many semisimple maximal subgroups of X . Further,
(9.3) and the fact that [NX (G) : G] is finite reduce us to showing there are only
finitely many conjugacy classes of maximal closed subgroups containing G. If
X is simple, then in fact X only has finitely many conjugacy classes of maximal
closed subgroups, by representation theory in the case of classical groups and by
[LieS] for exceptional groups.

Suppose that X = X1× X2×· · ·× Xm with m > 1 and that the X i are simple.
There are only finitely many conjugacy classes of maximal subgroups of the
form Y1 × · · · × Ym for Y j = X j for all j 6= i , and Yi is maximal in X i , and so
we can ignore these.

The other possible maximal closed subgroups of X are ‘diagonal’, that is,
up to reordering of the factors in X are of the form Y × X3 × · · · × Xm ,
where there is a bijective morphism φ : X1 → X2, and Y is the image of X1

under IdX1 ×φ. There are countably many conjugacy classes of such subgroups
(essentially corresponding to Frobenius morphisms and outer automorphisms).
It is straightforward to see that the intersection of any infinite collection of
nonconjugate diagonal subgroups of X1×X2 is a finite group. (Indeed, as long as
we take more than Out(X1) such subgroups, the intersection is finite.) Thus, G
cannot be contained in infinitely many nonconjugate maximal closed subgroups
of X , for then up to reordering G would be contained in A× X3×· · ·× Xm with
A finite and so in X3 × · · · × Xm , a contradiction.

10. Generic stabilizers

The purpose of this section is to prove the following theorem.

THEOREM 10.1. Let G be a closed, simple, and irreducible subgroup of SL(V )
over an algebraically closed field k. If dim V > dim G (in particular if V is
tensor decomposable), then, for a generic v ∈ V , the identity component of Gv

is unipotent.

In characteristic 0, irreducible implies tensor indecomposable, so the
hypothesis is that dim V > dim G, and it is already known that Gv is finite (that
is, the identity component is trivial) and, with a small number of exceptions,
Gv is itself trivial; see [AnVE] or [PoV, Theorem 7.11]. This seems likely to
be true in positive characteristic as well, and will be the subject of future work.
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For our applications, Theorem 10.1 more than suffices. Note that, if V is tensor
decomposable, then, since the minimal dimension d of a representation of G
satisfies d2 > dim G, dim V > dim G. Note also that, if dim G > dim V , then
dim Gv > dim G − dim V > 0, and almost always Gv will contain a torus for
generic v. (In characteristic 0, only the natural representation of SL2 has generic
stabilizer with an identity component that is nontrivial unipotent.)

We give the proof at the end of the section. A key part of the proof is the
main result of [Ken] that in most cases, if dim V > dim G + 2, then the identity
component of Gv contains only unipotent elements.

For G an algebraic group acting on a variety V , let V x be the fixed space of x
on V and V (x) := {v ∈ V | gx · v = v for some g ∈ G}.

LEMMA 10.2. Let G be a reductive algebraic group acting on an irreducible
variety V over an algebraically closed field k.

(1) If dim Gv = 0 for some v ∈ V , then, for all sufficiently large primes r ,
dim V (x) < dim V for every x ∈ G of order r .

(2) If dim V (x) < dim V for all nonidentity x ∈ G, then, for v in a nonempty
open subvariety of V , Gv is trivial.

(3) If r is prime, r 6= char k, and dim V (x) < dim V for all x of order r ,
then, for v in a nonempty open subvariety, the identity component of Gv is
unipotent.

Proof. (1): By Lemma 2.2 there is a nonempty open subvariety U of V and
there is a positive integer n such that |Gv(k)| = n for all v ∈ U . For every
v ∈ U and prime r not dividing n, the conjugacy class of x does not meet Gv, so
dim V (x) < dim V , proving (1).

Now let X ⊂ G be the union of finitely many conjugacy classes and let it
satisfy dim V (x) < dim V for all x ∈ X . Then, as V is irreducible, the finite
union

⋃
x∈X V (x) is contained in a proper closed subvariety Z of V , and, for

every v in the nonempty open set V \Z , the stabilizer Gv does not meet X .
Suppose that dim V (x) < dim V for all nonidentity x ∈ G, and take X to be

the union of the nonidentity unipotent elements in G and the elements of order
r , for some prime r not equal to char k. As G is reductive, X consists of a finite
number of conjugacy classes, and the previous paragraph gives that Gv is finite
for generic v. Let n be such that |Gv| = n for v in a nonempty open subvariety of
V . Repeating the argument of the previous paragraph with X the set of elements
of G whose order divides n completes the proof of (2).

Taking X to be the set of elements of G of order r gives (3).



S. Garibaldi and R. M. Guralnick 22

Next we note how to pass from characteristic 0 to positive characteristic for
semisimple elements. One can obviously generalize the result, but we just state it
in the form we need. Fix a simple Chevalley group G over Z and a representation
of G on V := Zn for some n. Fix algebraically closed fields K and k so that
char K = 0 and char k = p > 0.

LEMMA 10.3. Maintain the notation of the previous paragraph. If G(K )v is
finite for generic v ∈ V ⊗ K , then the identity component of G(k)v is unipotent
for generic v ∈ V ⊗ k.

Proof. Since G(K )v is finite for generic v, there exists a prime r 6= p so that
G(K )v contains no elements of order r ; as in Lemma 10.2(1), dim V (x) < dim V
for every x ∈ G(K ) of order r .

Let C be a conjugacy class of elements of order r in G(k). This class is actually
defined over the ring of algebraic integers R, and consequently C(K ) and C(k)
are both irreducible and have the same dimension. Choose x ∈ C(K ) ∩ G(R).
Consider the morphism from G × V x → V defined by α : (g, v) 7→ gv; the
image of this morphism is V (x). Note that this map is actually defined over R.
As the image of α(K ) is contained in a proper closed subvariety of V ⊗ K , then
the same is true of α(k), as any hypersurface of V can be defined by an equation
f = 0 for some polynomial f over R, and then we can reduce modulo p. Thus,
dim V (x̄) < dim V , where x̄ is the reduction of x and is an element of C(k), and
dim V (y) < dim V for any element y of order r in G(k). Now apply Lemma
10.2(3).

We need to deal with a few special cases.

LEMMA 10.4. Suppose that the hypotheses of Theorem 10.1 hold. If V ∼= W ⊗
W ′ for a representation W of G, where W ′ is a nontrivial Frobenius twist of W
or W ∗, then Gv is finite for generic v ∈ V .

Proof. It suffices to consider the case that G = SL(W ), in which case G has
finitely many orbits on P(V ) by [GuLMS, Lemma 2.6], and the result follows
since dimP(V ) = dim G.

LEMMA 10.5. Let G be an algebraic group acting on an irreducible variety V
over an algebraically closed field k. For x ∈ G, if dim G x + dim V x < dim V ,
then V (x) is contained in a proper closed subvariety of V .

Proof. Define α : G × V x → V by α(g, w) = gw, so the image of α is
precisely V (x). The fiber over gw contains (gc−1, cw) for c ∈ CG(x), and so
has dimension at least that of CG(x), whence dim V (x) 6 dim G x+dim V x .
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LEMMA 10.6. Suppose that the hypotheses of Theorem 10.1 hold, and that G
has type A1. If dim V > 5, then Gv is trivial for generic v. If dim V = 4 or 5,
then Gv is finite for generic v.

Proof. Suppose that dim V > 5. For nonidentity x ∈ G,

dim V x 6 (1+ dim V )/2 < dim V − 2.

Since dim G x = 2 for any noncentral x ∈ G, Lemmas 10.5 and 10.2(2) give that
Gv is trivial for generic v.

If dim V = 4 and V is not a twist of a restricted module, then apply Lemma
10.4. Finally, suppose that dim V = 4 or 5 and that V is restricted (in particular,
the characteristic is at least 5). Any nontrivial unipotent element x has a one-
dimensional fixed space, and so dim V (x) 6 3. Suppose that x is semisimple but
noncentral. If dim V = 4, then dim V x 6 1 unless x has order 3, whence Gv has
exponent 3, and so is finite. If dim V = 5, then dim V x = 1 unless x has order 4
(and so is acting as an involution on V ). Again, we see that Gv is finite.

Example 10.7 (S2SOn). Let G = SOn(k) for some n > 4, V = L(2ω1), and
p 6= 2. We claim that the generic stabilizer is elementary abelian of order 2n .

Let W be the natural module for G, and consider V ′ := Sym2(W ). If p does
not divide n, then V ′ ∼= k⊕ L(2ω). Thus, we see the stabilizer of a generic point
is the intersection of G with some conjugate of G in SL(W ). Since SO(W ) is the
centralizer of an involution in SL(W ) and generically the product of two such
involutions is a regular semisimple element, it follows that the intersection will
generically be the group of involutions in a maximal torus.

If p does divide n, then V ′ is a uniserial module for G with three composition
factors with a trivial socle and head. Let V ′′ be the radical of this module, and
so V ∼= V ′′/k. Clearly, a generic point v ∈ V ′′ corresponds to a nondegenerate
quadratic form. Thus, the stabilizer of v in SL(W ) is precisely a conjugate of
SO(W ). Since p 6= 2, SO(W ) is a maximal closed subgroup of SL(W ). Thus, if
g ∈ SL(W ) and gv − v ∈ k, then g normalizes the stabilizer of v. Since SO(W )

is self-normalizing in SL(W ), this implies that g already fixed v. The argument
of the previous paragraph still applies to give the claim.

Proof of Theorem 10.1. Suppose first that dim V > dim G + 2. By [Ken,
page 15], Lemma 10.4, and Example 10.7, it suffices to consider the following
cases.

(a) G = SL8(k) = SL(W ) and V = ∧4W .

(b) G = C4(k) and V = L(λ4), p 6= 2.

(c) G = HSpin16 and V is a half-spin representation of dimension 128.
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(d) G = SL9(k) = SL(W ) and V = ∧3W .

(e) G = C4(k) and V = L(λ3), p = 3.

The first four cases follow from [V] for char k 6= 2, 3, 5, as we now explain
using [Levy]. Set e = 1 for cases (a)–(c), and e = 2 for case (d). Then there
is a subspace c of V such that dim c 6 (1/e) rank G, and there is a finite
and surjective morphism of varieties c → V/G; see [Levy, Lemma 2.7 and
page 432], respectively. Therefore, dim V − dim G + dim Gv 6 (1/e) rank G.
For each of the possibilities for G and V , one checks that e(dim V − dim G) =
rank G, so Gv is finite for generic v if char k 6= 2, 3, 5.

In any characteristic, for (a), (c), and (d), the representation is minuscule, and
so equals the Weyl module of the same highest weight over k, and Lemma 10.3
gives that generic stabilizers have unipotent identity component. For (b) and
p > 5, L(λ4) is the Weyl module, and the same argument works; for p = 3,
we find that the generic stabilizer for the Weyl module V ′ has unipotent identity
component, and it is easy to see that the same holds for L(ω4) = V ′/k.

For (e), V = L(ω3) has dimension 40. Let W be the natural eight-dimensional
module for G. Then ∧3W has composition factors W,W, V . Now compute for
each involution x ∈ Sp(W ) that dim V x + dim G x < dim V . Thus, for a generic
v, Gv contains no involutions, and so no torus.

We are reduced to considering the cases dim V = dim G + 1 or dim G + 2.
First suppose that G is tensor decomposable. If d is the minimal dimension of an
irreducible representation of G, then dim V > d2 > dim G + 2 unless G = An ,
and up to a twist V ∼= W ⊗ W ′, where W is the natural module for G and W ′ is
a Frobenius twist of W or W ∗. By Lemma 10.4, the result holds in this case.

So we may assume that V is tensor indecomposable and in particular is
restricted if p 6= 0. Inspection of the tables in [Lüb01] leave the following
possibilities.

(f) G = A1 and V = L(3ω1) or L(4ω1) with p > 5.

(g) G = A2, V = L(3ω1) and p > 5.

(h) G = A3, V = L(ω1 + ω2) and p = 3.

(i) G = B2, V = L(ω1 + ω2) and p = 5.

In case (f), Gv is finite for generic v by Lemma 10.6. In case (g), the result
follows by Lemma 10.3. In case (h), [CohW] shows that Gv is finite. It remains
to consider case (i). Note that the nonidentity central element z of G acts
nontrivially. Let x ∈ G be a noncentral involution (there is precisely one such
conjugacy class). Since x and xz are conjugate, it follows that dim V x = 6 =
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(1/2) dim V . Since dim G x = 4, we see that, for generic v ∈ V , Gv contains no
involutions, whence the result.

11. Same rings of invariants: examples

In this section, k is a field of characteristic p > 0. We give examples of simple
algebraic groups G < H < GL(V ) so that k[V ]G = k[V ]H .

Example 11.1 (Spin11 ⊂ HSpin12). Let V be a half-spin module for H =
HSpin12, and consider the subgroup G = Spin11. Suppose first that char k 6= 2.
Igusa calculates in [Ig] that k[V ]G = k[V ]H = k[ f ] for a homogeneous quartic
form f on V . (Alternatively, this can be understood from the point of view
of internal Chevalley modules as in [AzBS] and [Rub, Theorem 4.3(3)]. For
the determination of the ring of invariants, it suffices to note that there is an
H -invariant quartic form on V , which can be constructed from the root system
as in [He].)

Now let char k = 2. The representation V of H is obtained by base change
from a representation defined over Z, and the quartic form as in the previous
paragraph reduces to the square of a quadratic form q , that is, k[V ]H contains
k[q], and in fact we have equality because dim k[V ]H = 1 by [BeGL, 6.2]. Now,
dim k[V ]G = 1 by [GuLMS, 2.11], so k[V ]G = k[V ]H = k[q].
Example 11.2 (PGL3 ⊂ G2 in char. 3). Suppose that p = 3, and put V for
the seven-dimensional irreducible representation of H split of type G2. The
short root subgroups of H generate a subgroup G isomorphic to PGL3 (see,
for example, [ConGP, Section 7.1]) such that the restriction of V to G is the
irreducible part of the adjoint representation [Sei]. (Alternatively, the inclusion
PGL3 6 G2 can be viewed from the perspective of octonion algebras as in
[MaV].)

There is a nonzero G2-invariant quadratic form q on V , and G2 acts
transitively on the nonvanishing set of q in P(V ); it follows that k[V ]H = k[q].
As A2 has finitely many orbits on P(V ) [GuLMS, 2.5], it follows that k[V ]G
must equal k[q] too.

Example 11.3 (SO2n in Sp2n in char. 2). Let W be a 2n-dimensional vector
space over k algebraically closed of characteristic 2, for some n > 3. Write
q for a nondegenerate quadratic form on W and b for the alternating form
b(v,w) := q(v + w)+ q(v)+ q(w) for v,w ∈ W . Put SO(W ) and Sp(W ) for
the special orthogonal group of q and the symplectic group of b, respectively.
Set V to be the irrep of Sp(W ) with highest weight ω2 as in Example 8.5. We
now sketch a proof that k[V ]SO(W ) = k[V ]Sp(W ).
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Recall the definition of the space Y of self-adjoint operators from Example 8.5.
We claim that for semisimple self-adjoint operators T , Sp(W ) · T = SO(W ) · T .
To see this, note that T is a polynomial in a semisimple self-adjoint operator
S whose minimal polynomial has degree n. Thus W = W1 ⊥ W2 ⊥ · · · ⊥
Wn where the Wi are two-dimensional nondegenerate (and are the distinct
eigenspaces of S). Since SO(W ) is transitive on such decompositions, the
SO(W ) and Sp(W ) orbits of T agree. As the semisimple elements are dense
in Y , it follows that k[Y ]Sp(W ) = k[Y ]SO(W ), and the same proof shows that the
rings of invariants also coincide for Y0, and if n is even for Y0/Y Sp(W )

0 .
Note that this representation of SO(W ) is the irreducible part of the adjoint

module, and that roughly speaking the generators of the ring of invariants have
half the degree one finds in characteristic zero.

Example 11.4 (F4 in char. 2). Let H = F4, and take V to be the 26-dimensional
irreducible representation for k a field of characteristic 2. Then H contains
subgroups G of type C4 and adjoint D4, and the restriction of V to G is the
representation studied in the previous example; see [Sei, Section 4]. Viewing
V as the space of trace-zero elements in an Albert algebra A and H as the
automorphism group of A, we see that H preserves the coefficients of the generic
minimal polynomial on A whose restrictions to V are algebraically independent
functions of degree 3 (the norm) and 2 (sometimes called the ‘quadratic trace’).
The last paragraph of Example 8.3 gives that k[V ]G is a polynomial ring with
generators of degrees 3 and 2; as it is contained in k[V ]H , we conclude that
k[V ]H = k[V ]G .

Example 11.5 (Tensor decomposable in positive characteristic). Let
G = SL(W ), where W is a k-vector space and char k 6= 0. Let σ be a Frobenius
twist on H . Let V be either W ⊗ W σ or W ∗ ⊗ W σ . Then G is contained in
H = SL(W ) ⊗ SL(W ), and G and H both act irreducibly on V . Identifying V
with End(W ), we see that H leaves invariant det. Since G has a dense orbit on
P(V ) [GuLMS, Lemma 2.6], it follows that k[V ]G = k[V ]H = k[det]. Note also
that the generic point of V has a finite stabilizer in G, as follows by dimension
and the fact that G has a dense orbit on P(V ).

12. Representations with few invariants

We now prove the following result, which is most interesting in prime
characteristic. We use what is known in characteristic zero (as in [SaK], [Kac],
or [PoV]) in our proof.

PROPOSITION 12.1. Let G 6 SL(V ) be a simple algebraic group over an
algebraically closed field k, such that V is an irreducible G-module. Then, up to
a Frobenius twist or a twist by a graph automorphism, we have the following.
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Table C. Simple G 6 SL(V ) with k[V ]G = k.

G V dim V Symplectic? char k

An λ1 n + 1 No All
An (even n > 4) λ2

(n+1
2

)
No All

Bn λ1 2n Yes 2
Cn λ1 2n Yes All
D5 Half-spin 16 No All
G2 λ1 6 Yes 2

Table D. Simple G 6 SL(V ) with k[V ]G = k[q] for a nonzero quadratic form q .

G V dim V char k G V dim V char k

Bn λ1 2n + 1 6= 2 A1 λ1 + piλ1 (i > 1) 4 = p 6= 0
Dn λ1 2n All A2 λ1 + λ2 7 3
A1 2λ1 3 6= 2 A3 λ2 6 All
A5 λ3 20 2 B4 λ4 16 All
B3 λ3 8 All B5 λ5 32 2
C3 λ3 8 2 C3 λ2 13 3
D6 Half-spin 32 2 G2 λ1 7 6= 2
E7 λ7 56 2 F4 λ4 25 3

(1) k[V ]G = k if and only if (G, V ) appears in Table C.

(2) k[V ]G = k[q] for a nonzero quadratic form q if and only if (G, V ) appears
in Table D.

Proof. The dimension of k[V ]G is at most 1 if and only if G has an open orbit
in P(V ). Therefore, to identify all pairs (G, V ) with k[V ]G = k or k[q], it
suffices to examine the list of (G, V ) with finitely many orbits in P(V ) from
Tables I and II of [GuLMS]. Some of the entries in Table I are excluded
because they have dim k[V ]G = 1 (for example, because they are defined over
Z and dimC[V ]G = 1) and are not self-dual. The spin representation of B4

is defined over Z, and C[V ]B4 is generated by a quadratic form, so the same
holds over k. The representations (A5, λ3) and (E7, λ7) from Table I behave like
(D6, λ6) as described in Example 11.1; when char k = 2, they belong to Table D.
The half-spin representation of D5 has an open orbit in characteristic 6= 2 by [Ig]
and in characteristic 2 by [Lie, 2.9], so it belongs to Table C. The invariants of
(A1, λ1+ piλ1), (A2, λ1+λ2), (C3, λ2), (F4, λ4), and (B5, λ5)were determined in
Section 11. The ring of invariants of (A3, λ1 + λ2) is generated by an octic form
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Table E. Representations excluded from Theorem 15.1.

G H dim V char k Degrees See

Spin11 HSpin12 32 All

{
4 if char k 6= 2
2 if char k = 2

11.1

PGL3 G2 7 3 2 11.2

SO2n (n > 3) Sp2n

{
2n2 − n − 2 if n even
2n2 − n − 1 if n odd

2

{
?
2, 3, . . . , n

8.5, 11.3

SO8 or Sp8 F4 26 2 2, 3 11.4
SLn SLn ⊗SLn n2 6= 0 n 11.5

[Chen]. The representation (C3, λ3) with char k = 2 is in Table II, so its ring of
invariants is one dimensional; on the other hand, this representation is identified
with the spin representation of B3, so it leaves a quadratic form invariant.

13. Same transcendence degree

The proof of our main result, Theorem 15.1, relies on showing that there are
very few inclusions of groups G < H 6 SL(V ) where the rings of invariant
functions k[V ]G and k[V ]H have the same (Krull) dimension (equivalently
k(V )G and k(V )H have the same transcendence degree). We actually prove a
stronger result, namely that, when the dimensions are the same, the rings are
actually the same.

THEOREM 13.1. Suppose that G < H 6 SL(V ) with G a simple algebraic
group over an algebraically closed field k acting irreducibly on V , and H closed
in SL(V ). If dim k[V ]G = dim k[V ]H , then k[V ]G = k[V ]H and one of the
following holds, up to a Frobenius twist and/or a twist by a graph automorphism.

(a) H = SL(V ), (G, V ) is in Table C and k[V ]G = k.

(b) H = Sp(V ), char k = 2, G = G2, dim V = 6, and k[V ]G = k.

(c) H = SO(V ), (G, V ) is in Table D and k[V ]G = k[q].
(d) (G, H, V ) is in Table E.

The case when k = C of the theorem, under the additional hypothesis that
k[V ]G = k[V ]H , was previously investigated in [So] and [Sc 08]. Of course, in
the positive characteristic case, we can always replace V by a Frobenius twist
(this does change the module but not the subgroup of SL(V )). We will ignore
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this distinction in what follows. In particular, if V is tensor indecomposable, we
will assume that V is restricted.

We remark that in cases (a)–(d), we do have k[V ]G = k[V ]H .
In our theorem, we find a fortiori that, in almost all of the examples with

dim k[V ]G = dim k[V ]H , the rings of invariants are polynomial rings. Such
representations have been called variously regular, coregular, or cofree; they have
been classified in characteristic zero in the papers [KacPV], [Sc 78], etc.; cf. the
books [PoV] or [Po 92]. The proofs below do not rely on the full strength of
those results, but rather only on the determination of those representations with
dim k[V ]G 6 1, which can be found in [SaK] or [Kac] in the case when k = C
or in [GuLMS] for arbitrary k; see Section 12. Note that, if k does not have
characteristic 2, then all examples have k[V ]G of dimension at most 1.

We start with some lemmas.

LEMMA 13.2. Let k be an algebraically closed field with H a connected
reductive group over k. Suppose that G is a proper reductive subgroup of H
and that U is a connected unipotent subgroup of H. Then GU is not dense in H.

Proof. Suppose that GU is dense in H ; we may assume that U is a maximal
connected unipotent subgroup, that is, the unipotent radical of a Borel subgroup.
By [Ri 77, Theorem A], H/G is an affine variety; hence every orbit of U on
H/G is closed (as follows from the Lie–Kolchin theorem). So if U has a dense
orbit on H/G, it has only one orbit; hence H = GU .

Then (U ∩G)◦ is a maximal connected unipotent subgroup of G. Indeed, let V
be a maximal connected unipotent subgroup of G; so V 6 U g for some g ∈ H .
However, H = GU implies that V = G ∩U g is conjugate in G to G ∩U .

Thus dim GU = dim G + dim U − dim V = rank(G) + dim V + dim U <
rank(H)+ 2 dim U = dim H .

LEMMA 13.3. Suppose that G < H < SL(V ), where G and H are connected
reductive. If k[V ]G and k[V ]H have the same transcendence degree, then, for
generic v ∈ V , G Hv is dense in H, and the identity component of Hv is not
unipotent.

Proof. The transcendence degree of k[V ]H is the codimension of the highest-
dimensional orbit of H on V . Thus, for v generic, Gv is dense in Hv, whence
G Hv is dense in H . Now, by Lemma 13.2, this cannot happen if the identity
component of Hv is unipotent.

LEMMA 13.4. Suppose that G < H < SL(V ) and that k[V ]G and k[V ]H have
the same transcendence degree. Assume further that G is a simple algebraic
group and that V is a tensor decomposable irreducible G-module. Then
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G = SL(W ), up to a twist V = W ⊗ W ′, where W ′ is a (nontrivial) Frobenius
twist of W or W ∗, and H = SL(W )⊗ SL(W ).

Proof. Note that H is semisimple and dim V is not prime. Suppose that H is
simple and that V is tensor decomposable for H . Then it follows by Theorem
10.1 that the generic stabilizer in H of an element of V has unipotent identity
component, contradicting Lemma 13.3.

If H is simple and V is tensor indecomposable for H , then, by [Sei,
Theorem 1], H is SL(V ), SO(V ), or Sp(V ). In particular, k[V ]H = k or k[q]
with q quadratic, so dim k[V ]G 6 1 as well. On the other hand, as we have
already noted, dim V > dim G+1 unless G = SL(W ) and V = W ⊗W ′, where
W ′ is a twist of W or W ∗. In that case k[V ]G = k[ f ] with f of degree dim W .
Thus, dim V = 4, and H = SO(V ) is tensor decomposable.

So we may assume that H is not simple.
First consider the case that G is maximal in H . It follows that H is a central

product of two copies of G, and G embeds diagonally in H . For convenience we
consider H̃ = G × G. Let πi denote the projection onto the i th factor.

Thus, V = W1 ⊗ W2, where the first copy of G acts trivially on W2 and
the second copy acts trivially on W1. Assume that dim W1 6 dim W2. A
straightforward computation shows that, for a generic v ∈ V , π2(H̃v) is an
injection into SL(W2). Moreover, if dim W1 < dim W2, the π2(H̃v) is proper
in G. In particular, dim Hv < dim G, whence dim(G Hv) < 2 dim G = dim H .
Thus dim Gv < dim Hv, and so dim k[V ]G > dim k[V ]H .

If dim W1 = dim W2, we can view G 6 SL(W ) and G 6 SL(W ) 6 H 6 Y :=
SL(W ) × SL(W ) < SL(V ). Note that, if v is a generic point of V , then Yv is a
diagonal subgroup of Y . If G is proper in SL(W ), then dim Hv is generically
less than dim G since the intersection of H with a generic Yv will not be a
full diagonal subgroup of H . In that case, dim G + dim Hv < dim H , whence
dim k[V ]G > dim k[V ]H .

If G = SL(W ), then (since V is irreducible) we see that V is a twist of W⊗W ′,
where W ′ is a Frobenius twist of W or W ∗ as allowed in the conclusion.

If G is not maximal in H , then we can choose Y with G < Y < H with G
maximal in Y , whence by induction we are in the one case allowed. Then Y is
maximal in SL(V ) [Sei, Theorem 3], a contradiction.

We need one more preliminary result.

LEMMA 13.5. Let G = SL(W ) with dim W = 2m > 2. Then SO(W ) g Sp(W )

is not dense in G for any g ∈ G.

Proof. If G is in characteristic 2, then SO(W ) 6 Sp(W ). Hence by [GoGu],
dim(Sp(W ) ∩ g Sp(W )) > 3m, whence the result. In any other characteristic,
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we can take SO(W ) = CG(τ ), where τ is the inverse transpose map and
g Sp(W ) = CG(τ J ), where J is a skew-symmetric matrix. Thus, SO(W ) ∩
g Sp(W ) = CG(τ, τ J ). Generically, J will be a semisimple regular element,
and so this intersection is the centralizer of τ in SL(W ) ∩ k[J ]×, which has
dimension m − 1, whence the result.

Proof of Theorem 13.1. If V is tensor decomposable for G, the result follows
by Lemma 13.4; this case is in Table E. So we assume that V is tensor
indecomposable for G (and so also for H ). This forces H to be a simple algebraic
group as well.

If H = Sp(V ), then (G, V ) is symplectic and appears in Table C, giving the
claim in (b). As the representations in (a) and (c) have already been listed in
Tables C and D, we assume that H 6= SL(V ), Sp(V ), SO(V ), and Theorem 1 in
[Sei] asserts that (G, H) appears in Table 1 in [Sei].

If dim V > dim H , then H ◦v is unipotent for generic v, a contradiction by
Lemma 13.3. So we may assume that dim V 6 dim H , and therefore V is one of
the representations enumerated in [Lüb01].

Suppose that V is the irreducible part of the adjoint module for H . If dim V >
dim H − 2, then G will not act irreducibly. Otherwise, as in [Hi], H has type
B, C , or F4 and p = 2, or H has type G2 and p = 3. Consulting Seitz’s table,
the only possibility for G is G = Dn in the case when H = Cn and p = 2;
but in this case the representation is a twist of the natural module, and we have
k = k[V ]H 6= k[V ]G .

We can exclude many cases by exploiting equation (2.1) and its analog for H .
Combining these, we obtain

dim G + dim k[V ]H > dim V . (13.6)

If H has type En for some n, then the only representations in [Lüb01]
not already considered are the cases H = E6 or E7 and V the minuscule
representation of H of dimension 27 or 56, respectively. In either case,
dim k[V ]H = 1. According to Seitz’s table, the only possibility for G is C4

and p 6= 2 (and H = E6), in which case the restriction of V to C4 is L(ω2),
which has dim k[V ]C4 > 2 by [GuLMS].

If H ∼= F4, then the only remaining choice for V from [Lüb01] is that
dim V = 26 (if p 6= 3) or 25 (if p = 3). Note that the identity component of
Hv for generic v is D4, so dim k[V ]H is 2 (if p 6= 3) or 1 (if p = 3). By Seitz’s
table, the only possibilities for G are G2 with p = 7 (which is too small by
(13.6)), or D4 or C4 with p = 2 (which are in Table E).

If H ∼= G2, then dim V = 7 (6 if p = 2) is the only remaining possibility, and
dim k[V ]H 6 1; hence dim G > 5. By [Sei], the only possibility for G is A2,
with p = 3 and V the irreducible part of the adjoint representation of G, as in
Table E.



S. Garibaldi and R. M. Guralnick 32

Thus, H is a classical group of rank at least 2, and V is not the natural module.
Comparing the tables in [Lüb01] and [GuLMS] shows that most of the

possibilities for V have dim k[V ]H 6 1. (This includes such cases as H = SL4(k)
and V = L(λ1 + λ2) for p = 3.) Of the possibilities for G listed in Seitz’s table,
most fail condition (13.6). The only interesting cases are where H has type D
and V is a half-spin representation, or H = SL(W ) and V = ∧2W or L(2λ1).

So suppose that H = HSpinn and G = Spinn−1 for n = 10 or 14. If char k 6= 2,
Igusa showed in [Ig] that dim k[V ]G = dim k[V ]H+1. Without restriction on the
characteristic, for n = 14, dim k[V ]H = 1 by [BeGL, Proposition 6.2], whereas
dim k[V ]G > 2 by [GuLMS]. For n = 10 and char k = 2, k[V ]H = k by [Lie,
2.9], whereas k[V ]G contains a quadratic form (by reduction from Z). So these
cases do not occur. The case when n = 12 is in Table E.

Suppose that H = SL(W ) with dim W > 3 and V = L(λ2). If dim W is
odd, then k[V ]H = k, and there are no possibilities for G by Table C. Suppose
that dim W is even. Then dim k[V ]H = 1, and the only semisimple maximal
subgroups G with large enough dimension to possibly satisfy (13.6) are Sp(W )

or SO(W ). Of course Sp(W ) is not irreducible on V . It follows by Lemma 13.5
that GSO(W ) is not dense in SL(W ).

Suppose that H = SL(W ) and V = L(2λ1). As V is restricted, we have p 6= 2.
The generic stabilizer is SO(W ). There is no semisimple maximal subgroup G
of H such that GSO(W ) is dense in H , whence the result holds in this case
(the only semisimple subgroup of sufficiently large dimension is Sp(W ), but by
Lemma 13.5 Sp(W )gSO(W ) is never dense in SL(W )).

We now consider the remaining representations from [Lüb01] with
dim k[V ]H > 1. Suppose that H = Sp2m(W ) and V = L(λ2): this is the
irreducible part of ∧2W . By Example 11.3, dim k[V ]H = m − 1 or m − 2,
depending upon whether p divides m or not. Thus, dim G > dim V − (m − 1)
or (m − 2). The only semisimple maximal subgroup of Sp(W ) with such a
dimension is SO(W ) with p = 2. This case is in Table E.

The tables in [Lüb01] leave only V = L(λm) for H = Sp2m(k) for m = 3
(all p), or 4, 5, or 6 (p = 2 only). But, for these cases, [Sei] shows there are no
irreducible simple algebraic subgroups.

Here is another result, where we allow G to be semisimple.

PROPOSITION 13.7. Suppose that G < H 6 SL(V ) with H a simple algebraic
group and G a semisimple irreducible subgroup of SL(V ). If H acts tensor
indecomposably on V and dim k[V ]G = dim k[V ]H , then either G is simple,
or k[V ]G = k, or dim V = 8 with G = Sp2×Sp4 and H = SO8(V ).

Proof. Assume that G is not simple. By [Sei, Theorem 1], it follows that
H = SO(V ), Sp(V ), or SL(V ). In the last two cases, k[V ]H = k, whence the
result holds.
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Thus, we may assume that H = SO(V ) and dim V > 8. Then G 6 Y :=
Sp(W1)⊗ Sp(W2) or SO(W1)⊗ SO(W2), and moreover G has a dense orbit on
P(V ). Assume that m1 = dim W1 6 m2 = dim W2. It follows that the stabilizer
Yv of a generic v ∈ V has dimension equal to dim SOm2−m1 in the second case
and equal to (3/2)(dim W1)+ dim Spm2−m1

in the first case.
Note that in the second case m1 > 3. Thus, we see that dim k[V ]Y = dim V −

dim Y +dim Yv > 1 = dim k[V ]H unless we are in the first case with m1 = 2 and
m2 = 2 or 4. If m2 = 2, then H = SO(V ) is not simple. If m2 = 4, then in fact
Sp2⊗Sp4 does have a dense orbit on P(V ) because V is an internal Chevalley
module [GuLMS, Table I]. The only possible proper irreducible subgroup of Y
is SL2×SL2 and is too small to have a dense orbit on P(V ).

14. Same rings of invariants, but without containment of groups

We close our discussion of groups with the same invariants with an easy
consequence of Theorem 13.1, where we drop the hypothesis that G is contained
in H , but we strengthen the hypothesis on the invariants to be that the rings k[V ]G
and k[V ]H are the same.

COROLLARY 14.1. Assume that G is a simple algebraic group acting
irreducibly on V and that dim k[V ]G > 1. If H is a connected algebraic
subgroup of SL(V ) acting irreducibly on V with k[V ]H = k[V ]G , then
H = G or one of the following holds, up to a Frobenius twist and/or a
graph automorphism.

(1) char k = 2, H = Sp2n , G = SO2n with n > 3, and V = L(λ2).

(2) char k = 2, dim V = 26, G has type D4 or C4, and H has type F4.

Proof. Let Y be the group generated by G and H (which we assume is distinct
from G). Then G < Y have the same invariants, and so Theorem 13.1 implies
that char k = 2 and Y = Sp and V = L(λ2), or Y = F4 and dim V = 26. Also
by Theorem 13.1, there is no other simple H , and by Proposition 13.7 (since G
is simple) there is no semisimple example either.

15. Main theorem

We now fix a pair (G, V ) and ask whether there is some f ∈ k[V ]G such that
G is the identity component of the stabilizer of f . Trivially, we must exclude
those representations where k[V ]G = k or k[q] for a quadratic form q (when
G 6= SO(V )); these make a short list that we provide in Tables C and D. These
lists are well known in characteristic zero: a convenient reference is the table at
the end of [PoV].
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In the following theorem, we write kalg for an algebraic closure of a field k.

THEOREM 15.1. Let G < GL(V ) be an absolutely simple algebraic group over
a field k such that V is absolutely irreducible and (G(kalg), V ⊗ kalg) is not
in Table C or Table D up to Frobenius twists and graph automorphisms. Then
exactly one of the two following statements holds.

(1) There exists a homogeneous f ∈ k[V ]G such that the naive stabilizer of f
in GL(V ⊗ kalg) has identity component G(kalg).

(2) (G(kalg), V ⊗ kalg) is a Frobenius twist of a representation from Table E.

The theorem gives tight control over the stabilizer of f , because the normalizer
N of G in GL(V ) is known precisely. It has identity component N ◦ generated by
G and the scalar matrices, and N itself can hardly be much larger. Indeed, there
is an inclusion of N/N ◦ into the automorphism group of the Dynkin diagram of
G, which is 1 (type A1, B, C , E7, E8, F4, or G2), Z/2 (type An for n > 2, Dn

for n > 5, or E6), or has order 6 (type D4); see for example [Sp, Section 16.3].
In any concrete case, one is reduced to checking which representatives of N/N ◦

in N stabilize f .
The shortness of the proof hides the fact that it relies on all of the results from

Sections 9–13.

Proof of Theorem 15.1. We assume that (G(kalg), V ⊗ kalg) does not appear in
Tables C, D, or E, and we will produce an f as in (1).

Suppose first that k is perfect. By Proposition 9.2 there are only finitely many
closed connected proper overgroups of G × kalg in SL(V ⊗ kalg); write O for the
set of such. The k-automorphisms of kalg permute the elements of O , so there is
a finite Galois extension L of k such that all L-automorphisms of kalg fix every
element of O . Write H1, . . . , Hr for representatives of the orbits in O under the
group Γ of k-automorphisms of L .

As (G, V ), by hypothesis, does not appear in Table E, Theorem 13.1 gives
that dim L[V ]Hi < dim L[V ]G for each i , and we can pick a homogeneous
polynomial fi ∈ k[V ]G \ k[V ]Hi . Define

f :=
r∏

i=1

∏
σ∈Γ

σ( fi).

As Hi is semisimple, it has no nontrivial characters, so the irreducible factors
(in L[V ]) of a Hi -invariant function are also Hi -invariant, and hence f is not
invariant under any of the Hi . As f is fixed by every element of Γ , it belongs to
k[V ], and the theorem is proved in this case.
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Now suppose that k is imperfect. The case where k is prefect provides an
f ∈ k p−∞[V ]G as in (1). Writing f as a polynomial in a dual basis for V , we find
finitely many coefficients in k p−∞ , so there is a positive integer s such that f ps

belongs to k[V ] and has stabilizer with identity component G(kalg).

Theorem 15.1 can be compared with the following famous theorem of
Chevalley [Sp, 5.5.3]: if G is a subgroup of a linear algebraic group G ′, then
there is a finite-dimensional representation V of G ′ so that G is precisely the
stabilizer in G ′ of a point in P(V ). Chevalley’s result holds in much greater
generality (G need not be simple, or even reductive), but Theorem 15.1 says that
for a typical irreducible and tensor indecomposable representation V there is a
G-fixed point [ f ] in P(Symd(V )) for some d such that the identity component
of the stabilizer of [ f ] is G.

16. Realizations of simple groups as automorphism groups

There are several general-purpose mechanisms for realizing a semisimple
group (up to isogeny, taking identity components, and avoiding some bad
characteristics or special cases) as automorphism groups of some algebraic
structure, namely as the automorphism group of

• the spherical building associated with G [Ti 74];

• a twisted flag variety of G [De 77]; or

• the Lie algebra of G [St 61].

These three interpretations are easiest to understand when the group G is split,
but it is easy to see via twisting that these interpretations extend to describing
also nonsplit semisimple algebraic groups over any field. These bullets only give
adjoint groups. One can also interpret G as the automorphism group of

• some finite-dimensional k-algebra [GorP].

This construction is more precise than the previous one in that it gives G on
the nose (and not just up to isogeny) but also less precise in that one does not
have control of the algebra. For E8, this interpretation just gives that E8 is the
automorphism group of its Lie algebra, as in the previous bullet.

Our Theorem 15.1 adds an additional item to this list:

• a homogeneous function f on a representation V of G.

Here one can pick a faithful and absolutely irreducible representation V (if one
exists), and get G on the nose (and not just up to isogeny).
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Although f is not uniquely determined, there is still enough of a connection
between G and f so as to play properties of one off against the other. Here are
three examples of such.

First, we can relate isotropy of G (that is, whether G contains a nonzero split k-
torus) with isotropy of f (whether there is a nonzero v ∈ V such that f (v) = 0).

LEMMA 16.1. Suppose that G is a linear algebraic group acting with finite
kernel on a vector space V over an infinite field k and that f ∈ k[V ]G is
homogeneous and nonconstant. If G is isotropic, then f is isotropic.

Proof. Put T for the nontrivial k-split torus in G. Its image in GL(V ) is also a
nontrivial split k-torus in GL(V ), so there is a nonzero v ∈ V that is not fixed by
the action of T . But f is homogeneous and T -invariant, so f (v) = 0.

This relationship between the isotropy of G and isotropy of f is similar to
what one finds for the Tits algebras of G. (Recall that the Tits algebras defined in
[Ti 71] or [KMRT] are classes in the Brauer group of finite separable extensions
of k corresponding to dominant weights of G. When G is the spin or special
orthogonal group of a quadratic form, the only possibly nontrivial Tits algebra is
the Brauer class of the Clifford algebra or the even part of the Clifford algebra.)
One knows that, if G is isotropic, then the Tits algebras cannot have too large an
index, where the precise bounds depend on the maximal split torus in G and the
dominant weight corresponding to the Tits algebra. There is no corresponding
converse implication, in that the Tits algebras may all be zero and yet the group
can be anisotropic, which occurs for example when G is any of the compact real
groups Spin(8n) for n > 1, G2, F4, or E8. Nonetheless, the one-way implication
between isotropy of G and small indexes for the Tits algebras, notably exploited
by Merkurjev in [Mer] to disprove Kaplansky’s conjecture, is now a standard
tool in the study of semisimple algebraic groups, quadratic forms, division
algebras, etc., over arbitrary fields. See the survey [Hof 00] or papers such as
[Hof 98, Hof 99, Iz, GaS], and [Mey].

Second, Theorem 15.1 gives a way to study k-forms of G. Recall that an
algebraic group G ′ over k (respectively, f ′ ∈ k[V ]) is called a k-form of G
(respectively, of f ) if there is an extension field L/k so that G ′×L is isomorphic
to G × L (respectively, there is a g ∈ GL(V ⊗ L) so that f ′ = f ◦ g in L[V ]).
If f is k-similar to a homogeneous form f ′ (that is, if there is a g ∈ GL(V ) and
µ ∈ k× so that f ′ = µ f ◦ g in k[V ]) then obviously f and f ′ have isomorphic
stabilizers in GL(V ⊗ L) for every extension L of k. That is, taking identity
components of stabilizers gives an arrow

k-forms of f
up to k-similarity →

k-forms of G
up to k-isomorphism (16.2)
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that is functorial in k. This arrow is well known to be injective (but typically not
surjective) in the case where G is the special orthogonal group of a quadratic
form f . It is bijective when G has type E8 and f is the octic form studied in
Sections 3 and 5 or the cubic form studied in Section 7. In general, the arrow
(16.2) may be injective, surjective, both, or neither, and a careful choice of V
and f can guarantee that it is bijective; this question is studied in [BeR].

Third, for S the scheme-theoretic stabilizer of f , faithfully flat descent trivially
gives a bijection

H 1(k, S)↔ k-forms of f up to k-isomorphism (16.3)

that is functorial in k, where H 1 denotes flat cohomology. By examining the
number of independent parameters appearing in explicit k-forms of f , one can
in principle give an upper bound on the essential dimension of the group S as
defined in [Re 10] or [Re 12]. This is a usual method for giving an upper bound
on the essential dimension of an orthogonal group. Our results here give an
effective means for describing S as an algebraic group, thereby allowing one to
use (16.3) to prove statements about essential dimensions of familiar groups. For
example, can studying k-forms of an octic as in Section 3 or 5 give a better upper
bound on the essential dimension of E8 over C? The strongest result currently
known is that the essential dimension is at most 231 [Lem, Corollary 1.4], which
is quite far from the lower bound of 9 [Re 10].

We expect that the homogeneous forms provided by our Theorem 15.1
will provide many new avenues for studying simple algebraic groups over
arbitrary fields, since the three relationships we have chosen to highlight here are
analogous to previously known tools that have already been widely exploited.
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[BaMR] M. Bate, B. Martin and G. Röhrle, ‘A geometric approach to complete reducibility’,
Invent. Math. 161(1) (2005), 177–218.

[BeGL] H. Bermudez, S. Garibaldi and V. Larsen, ‘Linear preservers and representations with
a 1-dimensional ring of invariants’, Trans. Amer. Math. Soc. 366 (2014), 4755–4780.
doi:10.1090/S0002-9947-2014-06081-9.

[BeR] H. Bermudez and A. Ruozzi, ‘Classifying simple groups via their invariant
polynomials’, J. Algebra 424 (2015), 448–463. doi:10.1016/j.jalgebra.2014.08.057.

[BlZ] R. E. Block and H. Zassenhaus, ‘The Lie algebras with a nondegenerate trace form’,
Illinois J. Math. 8 (1964), 543–549.

[BorT 65] A. Borel and J. Tits, ‘Groupes réductifs’, Publ. Math. Inst. Hautes Études Sci. 27
(1965), 55–150.
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