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Frontispiece

A projection into the plane of a graph whose vertices represent the 27 lines on
a cubic surface, where two vertices are joined by an edge if the lines intersect.
Three of the vertices (which are distinct in the true graph) all have the same
image, the central vertex in the picture, which we have represented as a dot

with two surrounding rings.
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Preface

Albert algebras stand at a crossroads of subjects. They are useful for under-
standing exceptional Lie and algebraic groups and symmetric domains. They
also stand out in their own natural context of non-associative algebras. Just
as their more famous relative, the octonions, are the unique sort of simple al-
ternative algebra that is not associative, Albert algebras are the unique sort of
simple Jordan algebra that are not derived in a natural way from an associative
algebra. These two attributes single out Albert algebras for special study.

In the present volume, such a study will be undertaken over arbitrary com-
mutative rings. Despite the exceptional status enjoyed by Albert algebras within
the general theory of Jordan algebras, they share a number of remarkable fea-
tures with a wider class of Jordan algebras called Freudenthal algebras1, which
will therefore be included in our study, on an almost equal footing with Albert
algebras. From a methodological point of view, Albert algebras cannot be prop-
erly understood without bringing octonion algebras into play. We will do so by
regarding them as the most conspicuous class of examples in the theory of
composition algebras over commutative rings, a subject of interest in its own
right that will be presented here almost from scratch.

Albert algebras in context

Albert algebras, which (over fields) used to be called exceptional simple Jordan
algebras in the past, are a class of exotic algebraic structures that, in spite of
being confined to spaces of dimension 27, have an amazing potential for pro-
found applications in various branches of mathematics. Here are a few striking
examples.

Jordan algebras. Albert algebras made their first appearance in 1934 when
Jordan2, von Neumann and Wigner [148] proposed an algebraic formalism for
quantum mechanics by developing a structure theory for what later would be
called formally real (nowadays euclidean) Jordan algebras. Over a field F of
characteristic not two, a Jordan algebra is defined as a (non-associative) F-
algebra (i.e., an F-vector space equipped with a bilinear product xy, subject

1 Hans Freudenthal (1905–1990).
2 Pascual Jordan (1902–1980), see [57] for some biographical information.
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vi Preface

to no further restrictions) that is commutative and satisfies what, under some
mild hypotheses, turns out to be the minimal identity of degree at most 4 not
implied by the commutative law (see 27.2): the Jordan identity

x
(
y(xx)

)
= (xy)(xx).

Standard examples of Jordan algebras arise as follows: given any associative
algebra A over F, one endows the underlying vector space with a new multi-
plication, the symmetric product, defined by

x • y :=
1
2

(xy + yx), (1)

and one checks that the resulting (commutative) algebra, denoted by A+, is in
fact a Jordan algebra. If a Jordan algebra is isomorphic to a subalgebra of A+,
for some associative algebra A, it is said to be special, otherwise exceptional.

In the course of their investigation, Jordan, von Neumann, and Wigner came
across the 27-dimensional commutative real algebra Her3(O) of 3-by-3 her-
mitian matrices with entries in the Graves-Cayley octonions O (a certain 8-
dimensional real division algebra with involution, see §1 below) under the
symmetric matrix product (1) and asked whether it is a Jordan algebra, and
whether it is exceptional. Both questions were answered affirmatively by Al-
bert3 in [3], an immediate follow-up to [148]. The two papers may thus be
regarded as the birth certificate of Albert algebras. Albert algebras in general
may then be defined, very roughly, as twisted versions of Her3(O) ⊗R C, the
complexification of Her3(O). Over appropriate fields of characteristic not 2,
Albert [8, 10] proved the existence of division exceptional Jordan algebras
and, in a sense, obtained them all. In view of this remarkable achievement, and
of the preceding ones, it is appropriate that simple exceptional Jordan algebras
are called Albert algebras.

The role played by Albert algebras in Jordan theory is not confined to the
set-up described above. On the contrary, thanks to their exceptional character,
they take up a distinguished position within the general hierarchy of Jordan
algebras, and this did not change after McCrimmon [181] invented quadratic
Jordan algebras in the 1960s, which allowed the study of Jordan algebras over
arbitrary commutative rings. The crowning achievement of this study is the
McCrimmon-Zelmanov structure theory [191] of prime Jordan algebras with-
out finiteness conditions, culminating in the conclusion that Albert algebras
over fields of arbitrary characteristic are precisely the simple exceptional Jor-
dan algebras (again no finiteness conditions are imposed). This is in striking

3 A. Adrian Albert (1905–1972), see [139] or [12] for biographical information.
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analogy to Kleinfeld’s theorem 13.10 that octonion algebras over fields are
precisely the simple alternative algebras that are not associative.

The connection between Albert algebras and octonion algebras is more than
just an analogy. Not only can one use octonion algebras to construct Albert
algebras as described in 5.5 and 39.19 (a), one can go the other way as well:
Any Albert algebra, division or not, over a field determines an octonion algebra
over that field, see 41.8, 41.25(iii) and Exc. 46.23.

Exceptional groups and Lie algebras. Albert algebras are tightly connected
with semi-simple algebraic groups and Lie algebras, particularly those of ex-
ceptional type F4, E6, E7 or D4. An in-depth study of this connection will be
carried out in Chapters VIII and IX below. One of the fundamental results in
this context says that assigning to any Albert algebra its automorphism group
(viewed as a group scheme) gives a bijection between isomorphism classes
of Albert algebras and isomorphism classes of semi-simple group schemes of
type F4. Originally due to Hijikata [118] over fields of characteristic not 2 or 3,
this result is extended here in 55.5 to arbitrary base rings. There is a somewhat
weaker connection with groups of type E6, in that the isomorphism group of
the cubic norm on an Albert algebra is a simply connected semisimple affine
group scheme of type E6, see 58.2. Similar statements hold also for Lie alge-
bras. For the reader interested in studying semisimple groups of types F4 and
E6 that are not split, it can be a useful technique to re-state the problem as
one about Albert algebras. This view is pursued for groups over a base field
in [160, 268, 270]. Here we do the same but in the more general setting of an
arbitrary base ring.

There is a distinguished connection between Albert algebras and Lie alge-
bras. More generally, there are numerous relationships between Jordan alge-
bras on the one hand and Lie algebras and semisimple affine group schemes on
the other, such as from a grading as in [171, 80] or the Tits4-Kantor-Koecher
construction or by the Freudenthal-Tits Magic Square, which is related to dual
pairs in the sense of Howe [278]. As a specific example, the approach via
grading gives a way to construct groups of type E7 from Albert algebras, as
explained in [138] or [95]. We do not pursue these constructions here. The ex-
istence of all of these connections was nicely expressed in [187]: “if you open
up a Lie algebra and look inside, 9 times out of 10 there is a Jordan algebra ...
which makes it tick.”

Moufang and Tits polygons. Moufang n-gons (n ≥ 3) are certain bipartite
graphs of diameter n and girth 2n arising naturally in Tits’s theory of spherical
buildings [280, 281]. They have been enumerated completely by Tits-Weiss
4 Jacques Tits (1930–2021), see [294] or [247] for biographical information.
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[283]. As a first important step it is shown that Moufang n-gons exist only
for n = 3, 4, 6, 8 [283, Thm. 17.1]. In the present context, the case n = 6 of
Moufang hexagons is particularly interesting since [283, Thm. 17.5] yields a
bijective correspondence between Moufang hexagons and Freudenthal divi-
sion algebras, which in turn had been enumerated earlier by Petersson-Racine
[225]. This correspondence can be modified to include arbitrary Freudenthal
algebras if one is willing to relax the defining conditions of Moufang polygons,
which will lead to the notion of a Tits polygon. See Mühlherr-Weiss [201] for
details.

Bounded symmetric domains. The theory of bounded symmetric domains,
i.e., of bounded domains in complex affine n-space such that every point p
allows an automorphism of the domain having order 2 and p as an isolated
fixed point, was initiated by E. Cartan [44] and culminated in their complete
classification. The final classification list contains two exceptional types, in
dimension 27 and 16, respectively. Both are intimately tied up with Albert
algebras. A concise description of the 27-dimensional exceptional bounded
symmetric domain in terms of Albert algebras may be found in U. Hirzebruch
[120], while in order to achieve the same for the 16-dimensional one, Albert
algebras must be viewed through the lens of Jordan pairs, see Loos [171, 172]
or [68].

Severi varieties [169]. Freudenthal algebras over a field exist in dimensions 1,
3, 6, 9, 15 and, finally (the Albert case), 27. Let X ⊆ PN be a smooth complex
projective variety of dimension n, not contained in any hyperplane. Given any
point p ∈ PN \ X, the projection from p defines a morphism

πp : X −→ PN−1,

and one may ask under what conditions the map πp, for generic p, is a closed
immersion. Zak [297] has shown that this is always the case for n > 2

3 (N − 2)
and answered the question of what happens on the boundary n = 2

3 (N − 2).
More precisely, he classified what he called Severi varieties, i.e., varieties X as
above such that n = 2

3 (N − 2) and the projection πp for generic p ∈ PN \ X is
always a closed immersion. It turns out that, up to projective equivalence, there
are exactly four Severi varieties, of dimension n = 2, 4, 8, 16, respectively.
Moreover, they may be described concisely as the projective varieties of rank-
one elements in complex Freudenthal algebras of dimension at least 6. In the
Albert case, one obtains the famous E6-variety of dimension 16. See Theorem
41.29 for more on rank-one elements and §58 for more on E6.

The 27 lines on a cubic surface. A celebrated theorem of 19th century alge-
braic geometry, due to Cayley and Salmon, says that there are exactly 27 lines
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on any (smooth) cubic surface in projective 3-space over the complexes, and
that the incidence relation among these lines does not depend on the cubic sur-
face chosen, see for example [117]. To say the same thing differently, if you
create a graph with vertices the lines on the surface and edges joining lines that
are incident, you get the graph depicted in the frontispiece of this book, regard-
less of the surface you start with. This result is intimately connected with the
(unique) Albert algebra over the complex numbers.

In one direction, given a cubic surface, one defines a vector space J with
a basis identified with the lines on the surface. One can define a cubic form
on J with signs chosen according to tritangent planes [77], from which one
obtains a multiplication on J that is unique up to isotopy and which makes J
an Albert algebra. In the other direction, given an Albert algebra J, the group of
linear transformations preserving its (cubic) norm form is a semisimple affine
group scheme of type E6 as explained in 58.2. This leads to an identification
of a basis of J with the 27 lines. Neher [202, II, §5] interprets the elements
of J corresponding to the lines as quantities called tripotents (generalizing the
notion of an idempotent) endowed, among other things, with an orthogonality
relation. For more on the correspondences between Jordan algebras and the 27
lines, a good place to start is [179, §3].

About this book

This book was stimulated by new developments in the theory of Albert alge-
bras over a field and grew out of surveys on the subject presented by subsets
of the authors at Oberwolfach and published as [227], a 2004 survey [218],
lectures at the universities of Artois and Ottawa in 2012, and a 2019 survey
[220]. The aim of those surveys was to fill a gap in the literature: for fields of
characteristic 2, the best reference on Jordan algebras may be [140], which fo-
cuses on the McCrimmon theory, whereas there was a lack of good references
covering the specific properties of Albert algebras.

Why over commutative rings and not fields? Our original interest was to
write a book on Albert algebras over a field including also fields of charac-
teristic 2. That required writing in the language of quadratic Jordan algebras
as explained above. Surprisingly, once this more powerful machinery has been
brought to bear, it is very little extra work to consider algebras over an arbi-
trary ring instead of merely a field. (This observation is less surprising in view
of the McCrimmon-Zelmanov structure theory already mentioned.) Hence our
decision to write a book about Albert algebras over rings.

Remarks on prerequisites. We aim to make the presentation at a level ac-
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cessible to graduate students in mathematics. Towards that goal, in most of
the book we prove everything we use that is not already in standard reference
books such as Bourbaki’s Algebra [28, 29] and Commutative Algebra [27]. We
also provide references to the Stacks Project [271] because it is so convenient
and free. In the final two chapters, on Lie algebras and group schemes respec-
tively, the presentation requires more background and we expand our scope of
references in order to control the length of the presentation.

Exercises. There are more than 300 exercises contained in the book. They
are intended to serve the didactic principle of active learning and to provide
the reader with important additional material complementing the main text.
Solutions to the exercises are available online as [96].

Plan of the book

Authors writing a monograph on a topic as versatile as Albert algebras in the
most general setting are faced with a serious difficulty: it takes a considerable
amount of time before the principal object of study can be properly defined.
In the present case, the notion of an Albert algebra over an arbitrary commu-
tative ring appears for the first time only on page 403. In order to mitigate the
unpleasant side-effect of our approach and, also, to have early on motivating
examples at our disposal, we start out with an introductory chapter (Chap. I)
where the principal characters of the book (octonions and Albert algebras) are
presented in the more familiar surroundings of the field R of real numbers and
the ring Z of rational integers. This has the additional advantage of following
rather closely the historical development of the subject (stretching back into
the 19th century), and of providing a first motivation for the study of quadratic
Jordan algebras. We describe in detail the Hurwitz quaternions [127] and the
Dickson-Coxeter octonions [56, 64] over the integers, which in turn give rise
to our first encounter with Albert algebras over Z.

Researchers working on non-associative algebras over commutative rings
often ignore properties of the underlying modules by simply treating them as
a black box. In Chap. II we proceed differently and not only introduce the
standard vocabulary of non-associative algebras over commutative rings (§§7,
8) but also recall two of the most important technical ingredients utilized in
the present volume: scalar extensions (or base change) and (finitely generated)
projective modules (§9). Standard properties of involutions (§10) and quad-
ratic maps (§11) are also recalled before we conclude the chapter with a short
introduction into Roby’s theory [249] of polynomial laws (§12).
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In Chap. III we make an excursion into alternative algebras over commu-
tative rings. We prove Artin’s theorem (14.5) and study in greater detail Mc-
Crimmon’s theory of homotopes (§15), which gets short shrift in many texts
on alternative algebras.

Chapter IV is devoted to the study of composition algebras over a commuta-
tive ring k, which we carry out within the more general framework of what we
call conic algebras (called quadratic algebras or algebras of degree 2 by other
authors). We present the Cayley-Dickson construction in this general setting
(§18) and define composition k-algebras, basically, as unital non-associative
algebras over k that are projective as k-modules and allow a non-singular quad-
ratic form permitting composition (19.5). We then use the Cayley-Dickson
construction to obtain first examples of octonion algebras and to derive first
structure theorems for composition algebras over arbitrary commutative rings.
Specializing, it is shown that all composition algebras of rank r > 1 over
an LG ring5 arise from an appropriate quadratic étale algebra by an at most
two-fold application of the Cayley-Dickson construction. Another technique
of producing examples of octonion algebras using ternary hermitian spaces
is presented in §21. It immediately leads to the notion of a split composition
algebra (21.19) and here, in particular, to the split octonions of Zorn vector ma-
trices (21.18). After an excursion into reduced composition algebras (§22), we
proceed to address the norm equivalence problem in §23, which asks whether
composition algebras are classified by their norms and has an affirmative an-
swer when working over an LG ring (Theorem 23.5) but not in general (Gille’s
theorem 23.9). Section 24 is devoted to an elementary tour de force through the
theory of affine (group) schemes, which will be used in §26 to split arbitrary
composition algebras by faithfully flat extensions, even by étale covers.

In Chap. V, we develop from scratch the elementary theory of (quadratic)
Jordan algebras over commutative rings, confining ourselves to what is abso-
lutely indispensable for the intended applications. Over fields of characteristic
not 2, or over commutative rings in which 2 is invertible, this theory is well
documented in book form (Jacobson [136] or McCrimmon [190]). The sole
justification for the present chapter derives from the fact that the only sys-
tematic account of quadratic Jordan algebras, in the Jacobson lecture notes
[137, 140], is becoming less and less accessible.

Inspired by McCrimmon [183], we take up the study of cubic norm struc-
tures and cubic Jordan algebras in Chap. VI. Our approach is distinguished
by its precision (in that it works for the first time with a precise concept of a
cubic form) and by its generality (in that the underlying modules are nearly
5 LG rings are defined in 11.20. Every semi-local ring is an LG ring, and so is the ring of all

algebraic integers.
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arbitrary). The only concession we allow ourselves to make is the assumption
that the base point of a cubic norm structure, i.e., the unit element of the corre-
sponding cubic Jordan algebra, is unimodular, which holds automatically if the
underlying module is projective. This assumption has the advantage of guar-
anteeing the validity of certain identities (e.g., that the norm of a cubic norm
structure permits Jordan composition) which fail in McCrimmon’s original set-
ting (Exc. 34.28). The foundations of the theory will be laid out in §§33, 34,
which in particular clarify the connection between cubic Jordan algebras and
cubic alternative ones (34.12). In §35 we will be concerned with a general ele-
mentary principle of building up “big” cubic norm structures out of “smaller”
ones. This principle, which will play a crucial role in the two Tits construc-
tions later on, is based on a number of important identities that will also be
the subject of this section. Section 36 is devoted to the study of cubic Jordan
matrix algebras, providing the reader with examples of cubic Jordan algebras
that are as explicit as one could possibly hope for. The construction of cubic
Jordan matrix algebras will be formalized in a peculiar way making sure that it
commutes with arbitrary base change. In §37 we turn to the important concept
of elementary idempotents, which are the analogue in cubic Jordan algebras of
absolutely primitive idempotents in finite-dimensional linear Jordan algebras
over fields of characteristic not 2. We use elementary idempotents to present a
special version of the Jacobson Co-ordinatization Theorem 37.17, whose proof
will be provided at the end of the section. In §38 we draw the connection to
Loos’s theory [174] of generically algebraic Jordan algebras over commuta-
tive rings, allowing us to talk, in an ad-hoc manner, about Jordan algebras of
degree 3 as a subclass of cubic Jordan algebras. This paves the way for our in-
troduction of Freudenthal algebras in §39, where we use (and prove) Racine’s
enumeration theorem for semi-simple cubic Jordan algebras over fields to show
that Freudenthal algebras exist only in ranks 1, 3, 6, 9, 15, and 27, with those
of rank 27 being (finally!) referred to as Albert algebras. We define the notion
of a split Freudenthal algebra and prove, pretty much in the spirit of what we
have done for composition algebras in §26, that all Freudenthal algebras are
split by some faithfully flat extension, though not always by an étale cover. Af-
ter having investigated isotopies, norm similarities and isomorphisms in §40,
with an important characterization of isotopes in Jordan matrix algebras over
LG rings (Thm. 40.10) as its central result, we proceed in §41 to study reduced
Freudenthal algebras over fields by exhibiting various classifying quadratic
form invariants.

When it comes to exhibiting specific examples of cubic Jordan algebras not
derived from hermitian matrices with entries in a composition algebra, the two
Tits constructions are the method of choice. A new approach to these construc-
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tions, a first outline of which may be found in [220, §§8–10], will be described
in Chap. VII. In analogy to the Cayley-Dickson construction of composition
algebras, the classical version of the first Tits construction [183, Thm. 6], [226,
Thm. 3.5] has a cubic associative algebra as well as an invertible scalar in the
base ring as input and produces a cubic Jordan algebra as output. The second
Tits construction [183, Thm. 7], [226, Thm. 3.4], being a twisted version of
the first, starts out from a cubic associative algebra with involution of the sec-
ond kind and an “admissible scalar” as input to produce again a cubic Jordan
algebra as output.

By contrast, the approach adopted here has been initiated by Faulkner’s re-
markable observation [75] that the first Tits construction survives in the more
general setting of cubic alternative algebras rather than cubic associative ones.
In fact, as we will be able to make abundantly clear, cubic alternative algebras
are the natural habitat of the two Tits constructions. In order to derive the most
important properties of the first Tits construction, we rely on the concept of
a Kummer element 42.8 and its important characterization 42.16. Using this
concept, we can show, for example, that, given a cubic Jordan algebra J and a
Kummer element of J relative to some regular cubic Jordan subalgebra J0 of
J, there exists a cubic alternative algebra A such that J0 = A(+) and J arises
from A as well as some invertible scalar in the base ring by means of the first
Tits construction. Our approach to the second Tits construction is based on iso-
topy involutions (43.2) rather than ordinary ones and on the concept of an étale
element (44.8). Étale elements have the advantage of being available in abun-
dance over an infinite field once we know they exist over the algebraic closure.
This elementary observation plays a crucial role in the proof of Cor. 45.12,
which says that over an LG ring all Albert algebras arise from the second Tits
construction.

The chapter concludes in §46 with an application of the preceding results to
mostly finite-dimensional cubic Jordan division algebras over fields. We show
in particular that they are either (the Jordan algebras of) purely inseparable
field extensions of characteristic 3 and exponent at most 1 or Freudenthal alge-
bras of dimension 1, 3, 9 or 27 (46.8). In each of these dimensions, we construct
examples over appropriate fields and, as a counter point, conclude the section
by showing that over the “standard” fields (C, R, finite, local and global ones),
Albert division algebras do not exist.

In the Cartan-Killing classification of finite-dimensional simple Lie algebras
over an algebraically closed field of characteristic 0, there are infinite families
and a few exceptional ones. Albert algebras over a field are the only exceptional
simple Jordan algebras. While octonion algebras over fields were not called ex-
ceptional alternative algebras, they could well have been in view of Kleinfeld’s
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theorem. One could therefore argue that this book is a study of exceptional ob-
jects over rings. After studying derivation algebras of octonion algebras over
rings, Chapter VIII describes various Lie algebras associated with a Jordan
algebra J, the structure Lie algebra, and the algebra of derivations. Particular
attention is paid to the case when J is an Albert algebra. While we try to work
over a general ring, the results over fields, in particular over fields of charac-
teristic 2 or 3, make clear some limitations.

Chapter IX is about group schemes and their relationships with Albert al-
gebras and other sorts of algebras studied in the rest of the book. It describes
the automorphism groups in the language of semisimple group schemes from
SGA3 [101]. We describe faithfully flat descent and non-abelian cohomol-
ogy in §54 and use it to prove correspondences between algebras and group
schemes in §55. Section 56 departs temporarily from the main theme of the
chapter to give an important example of an Albert algebra over the integers
that is constructed by interpreting clever computations from Elkies-Gross [71]
as concerning an isotopy. This eventually leads to a classification of Albert al-
gebras over Z in §57. The problem of classifying such algebras was viewed as
an open question until the development of this book, which led to the paper
[95] containing a cosmetically different solution. The proof relies on various
results from the literature and is a substantial deviation from our general goal
of proving everything we use that is not in Bourbaki. In a final section, §58,
we prove some connections of Albert algebras with groups of type E6.
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Conclusion
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Notation and conventions

In this book, rings have a multiplication that is associative but possibly not
commutative. Every ring R has a 1, which we sometimes denote 1R, and every
homomorphism of rings ϕ : R → S satisfies ϕ(1R) = 1S . (This definition of
ring agrees with the one in Bourbaki [28, §I.8.1].) The set with one element
has a unique ring structure, and we call it the zero ring; it is the terminal object
in the category of rings. The set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}, denoted
Z, is a commutative ring; it is the initial object in the category of rings.

Most of the action in this volume takes place over an arbitrary commutative
ring, usually denoted by k. Unadorned tensor products are always to be taken
over k. Fields are denoted by capital letters, like F,K, L, . . ..

We write kn for a free module of rank n over k, usually identified with n-by-1
column vectors, and we write uT for the transpose of a matrix or vector u. With
this convention, for u, v ∈ kn, uTv is an element of k (commonly called the dot
product of u and v) and uvT is an n-by-n matrix. We write 1n for the n-by-n
identity matrix.

Let M be a k-module. A bilinear form b on M is a k-linear map b : M⊗M →
k. Equivalently, it is a function M × M → k that is linear in each of the copies
of M. This definition naturally extends to a notion of multilinear form, i.e., a
k-linear function M⊗M⊗ · · · ⊗M → k, see [28, §II.3.9]. A multilinear form is
alternating if it vanishes on every simple tensor with two slots that agree, i.e.,
of the form · · · ⊗ m ⊗ · · · ⊗ m ⊗ · · · for some m ∈ M.

We provide a table of some of the notation used in this book.

N the set of non-negative integers: 0, 1, 2, . . .
Matn(k) the set of n-by-n matrices with entries in the ring k

diag(γ1, . . . , γn) the diagonal matrix in Matn(k) with diagonal entries γ1, . . . , γn
GLn(k) the group of invertible elements of Matn(k)
Sm the symmetric group on m letters
□ when written at the end of a theorem or corollary, indicates that

the proof was already given or a reference is provided instead of
a proof

− placeholder for an unspecified argument to a function or functor
1◦, 2◦, ... subdivisions of a proof, used to indicate the logical structure to

the reader

xvi
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I

Prologue: the ancient protagonists

Prominent specimens of the protagonists of the present volume will be intro-
duced here not only over the field R of real numbers but also over the ring Z
of rational integers. The results we obtain or at least sketch along the way will
serve as a motivation for the systematic study we intend to carry out in the
subsequent chapters of the book.

1 The Graves-Cayley octonions

At practically the same time, William R. Hamilton (1843), John T. Graves
(1843) and Arthur Cayley (1845) discovered what are arguably the most im-
portant non-commutative, or even non-associative, real division algebras: the
Hamiltonian quaternions and the Graves-Cayley octonions. It is particularly
the latter, with their ability to co-ordinatize the euclidean Albert algebra (cf. 5.5
below), that deserve our attention. We begin with a brief digression into ele-
mentary linear algebra.

1.1 The cross product in 3-space. We regard complex column 3-space C3 as
a right vector space over the field C of complex numbers in the natural way. It
carries the canonical hermitian inner product

C3 × C3 −→ C, (u, v) 7−→ ūTv,

with respect to which the unit vectors ei ∈ C
3, 1 ≤ i ≤ 3, form an orthonormal

basis; we write u 7→ ∥u∥ for the corresponding hermitian norm on C3. Recall
that the cross (or vector) product on C3 can be defined by the formula

(u × v)Tw = det(u, v,w) (u, v,w ∈ C3). (1)

The cross product is complex linear in each variable and u, v ∈ C3 are linearly
dependent if and only if u×v = 0; in particular, the cross product is alternating,
i.e., u × u = 0 for all u ∈ C3. Moreover, (1) implies that the expression (u ×
v)Tw remains invariant under cyclic permutations of its arguments. The cross
product of the unit vectors is determined by the formula

ei × e j = el for (i jl) ∈ {(123), (231), (312)}. (2)

1
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2 Prologue: the ancient protagonists

The specification of the indices i, j, l in this formula will henceforth be ex-
pressed by saying that it holds for all cyclic permutations (i jl) of (123). Finally,
the cross product satisfies the Grassmann identity

(u × v) × w = vwTu − uwTv = w × (v × u) (3)

for all u, v,w ∈ C3, which immediately implies the Jacobi identity

(u × v) × w + (v × w) × u + (w × u) × v = 0. (4)

1.2 Real algebras. A detailed dictionary of non-associative algebras will be
presented in 7.1 below. For the time being, it suffices to define a real algebra
as a vector space A over the field R of real numbers together with an R-bilinear
product (x, y) 7→ xy from A × A to A that need neither be associative nor
commutative. Nor will A in general admit an identity element, but if it does,
i.e., if there exists an element e ∈ A (necessarily unique) such that ex = x = xe
for all x ∈ A, the algebra is said to be unital. A sub-vector space of A stable
under multiplication is called a subalgebra; it is a real algebra in its own right.
We speak of a unital subalgebra B of a unital algebra A if B ⊆ A is a subalgebra
containing the identity element of A. For X,Y ⊆ A, we denote by XY the
additive subgroup of A generated by all products xy, x ∈ X, y ∈ Y; we always
write X2 := XX and Xy := X{y}, xY := {x}Y for all x, y ∈ A. If A and B are real
algebras, we define a homomorphism from A to B as a linear map h : A → B
preserving products: h(xy) = h(x)h(y) for all x, y ∈ A. A real algebra A is said
to be a division algebra if A , {0} and for all u, v ∈ A, u , 0, the equations
ux = v and yu = v can be solved uniquely in A; if A has finite dimension (as a
vector space over R), this is equivalent to the absence of zero divisors: for all
a, b ∈ A, the equation ab = 0 implies a = 0 or b = 0.

Now suppose A is a finite-dimensional real algebra and let (ei)1≤i≤n be a
basis of A over R. Then there is a unique family (γi jl)1≤i, j,l≤n of real numbers
such that

e jel =

n∑
i=1

γi jlei (1 ≤ j, l ≤ n). (1)

The γi jl are called the structure constants of A relative to the basis chosen;
they determine the multiplication of A uniquely. But note that different bases of
the same algebra may have vastly different structure constants. Given a finite-
dimensional real algebra, it sometimes helps to look for a basis with a particu-
larly simple set of structure constants. If A and B are two real algebras of the
same finite dimension, with bases (ei)1≤i≤n and (di)1≤i≤n, respectively, then the
linear bijection h : A → B sending ei to di for 1 ≤ i ≤ n is easily seen to be an
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1 The Graves-Cayley octonions 3

isomorphism of real algebras if and only if the family of structure constants of
A relative to (ei) is the same as the family of structure constants of B relative
to (di).

1.3 Real quadratic maps. A map Q : V → W between finite-dimensional real
vector spaces V,W is said to be quadratic if it is homogeneous of degree 2, so
Q(αv) = α2Q(v) for all α ∈ R, v ∈ V , and the map

DQ : V × V −→ W, (v1, v2) 7−→ Q(v1 + v2) − Q(v1) − Q(v2), (1)

is (symmetric) bilinear. In this case, we call DQ the bilinearization or polar
map of Q. We mostly write Q(v1, v2) := DQ(v1, v2) if there is no danger of
confusion.

For example, given a finite-dimensional real algebra A, the squaring

sq : A −→ A, x 7−→ x2, (2)

is a quadratic map with bilinearization given by

sq(x, y) = D sq(x, y) = xy + yx (3)

for all x, y ∈ A.
Recall that a real quadratic form, i.e., a quadratic map q : V → R, is positive

(resp. negative) definite if q(v) > 0 (resp. < 0) for all non-zero elements v ∈ V .

1.4 Real euclidean vector spaces. By a real euclidean vector space we mean
a real vector space V together with a symmetric bilinear form σ : V × V → R
which is positive definite in the sense that σ(v, v) > 0 for all non-zero elements
v ∈ V . We then refer to σ as the euclidean scalar product of (V, σ) and define
the corresponding euclidean norm as the map ∥ · ∥ : V → R given by ∥v∥ :=
√
σ(v, v) for all v ∈ V .

1.5 Defining the Graves-Cayley octonions. We may view

O := C × C3

as a real vector space of dimension 8 whose elements have the form (a, u),
a ∈ C, u ∈ C3. Following Zorn [299, p. 401], we make O into a real algebra by
the multiplication

(a, u)(b, v) := (ab − ūTv, vā + ub + ū × v̄) (a, b ∈ C, u, v ∈ C3). (1)

This algebra, also denoted by O, is called the algebra of Graves-Cayley octo-
nions. It has an identity element furnished by

1O := (1, 0) (2)
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but is neither commutative nor associative. For example, i ∈ C being the imag-
inary unit, an easy computation shows(

(0, e1)(0, e2)
)
(0, e3i) = (−i, 0) = −(0, e1)

(
(0, e2)(0, e3i)

)
.

1.6 Norm, trace and conjugation. The map nO : O→ R defined by

nO
(
(a, u)

)
:= āa + ūTu = |a|2 + ūTu (a ∈ C, u ∈ C3) (1)

is called the norm of O and satisfies nO(1O) = 1. It is a positive definite real
quadratic form whose bilinearization may be written as

nO(x, y) = āb + b̄a + ūTv + v̄Tu = 2 Re(āb + ūTv) (2)

for x = (a, u), y = (b, v), a, b ∈ C, u, v ∈ C3 and hence gives rise, in the sense
of 1.4, to a euclidean scalar product on O defined by

⟨x, y⟩ :=
1
2

nO(x, y) = Re(āb + ūTv), (3)

making O into a real euclidean vector space with the corresponding euclidean
norm

∥x∥ :=
√
⟨x, x⟩ =

√
nO(x) =

√
|a|2 + ∥u∥2. (4)

While Definition (3) is the standard way of introducing a euclidean scalar prod-
uct in the present set-up, expression (2) is important in a more general context
when working over commutative rings where 1

2 is not available.
The norm of O as defined in (1) canonically induces the trace of O, i.e., the

linear form tO : O→ R defined by

tO(x) := nO(1O, x) = 2 Re(a) = a + ā, (5)

and the conjugation of O, i.e., the linear map

ιO : O −→ O, x 7−→ x̄ := tO(x)1O − x, (6)

which obviously satisfies

(a, u) = (ā,−u) (a ∈ C, u ∈ C3), (7)

leaves the norm invariant:

nO(x̄) = nO(x) (x ∈ O), (8)

and has period 2: ¯̄x = x for all x ∈ O. We view

O0 := Ker(tO) = {x ∈ O | x̄ = −x} = (iR) × C3 (9)
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as a euclidean subspace of O. For a ∈ C, u ∈ C3, we use (1.5.1) to compute

(a, u)2 = (a2 − ūTu, 2 Re(a)u) = 2 Re(a)(a, u) − (|a|2 + ∥u∥2)(1, 0),

so by (1), (5) every element x ∈ O satisfies the quadratic equation

x2 − tO(x)x + nO(x)1O = 0. (10)

Combining this with (6), we conclude

xx̄ = nO(x)1O = x̄x, x + x̄ = tO(x)1O. (11)

Moreover, replacing x by x + y, expanding and collecting mixed terms in (10),
we conclude (see also (1.3.3))

x ◦ y := xy + yx = tO(x)y + tO(y)x − nO(x, y)1O. (12)

The process of passing from (10) to (12) will be encountered quite frequently
in the present work and is called linearization. We also note

nO(x, ȳ) = tO(xy) = nO(x̄, y) (13)

for x = (a, u), y = (b, v), a, b ∈ C, u, v ∈ C3 since (1.5.1), (5), 2 yield

tO(xy) = 2 Re(āb − ūTv) = nO
(
(ā,−u), (b.v)

)
= nO(x̄, y),

hence the second equation of (13), while the first now follows from (8) lin-
earized.

1.7 Alternativity. As we have seen in 1.5, the algebra of Graves-Cayley oc-
tonions is not associative. On the other hand, it follows from Exc. 1.16 below
that it is alternative: the associator [x, y, z] := (xy)z − x(yz) is an alternating
(trilinear) function of its arguments x, y, z ∈ O. In particular, the identities

x2y = x(xy), (xy)x = x(yx), (yx)x = yx2

hold in all of O. Alternative algebras are an important generalization of ass-
ociative algebras and will be studied more systematically, under a much broader
perspective, in later portions of the book, see particularly Chap. III below. We
speak of a properly alternative algebra if it is alternative but not associative.

1.8 Theorem. The Graves-Cayley octonions form an eight-dimensional prop-
erly alternative real division algebra, and the norm of O permits composition:
nO(xy) = nO(x)nO(y) for all x, y ∈ O.

Proof As we have seen, the real algebra O is alternative (1.7) but not ass-
ociative (1.5). It remains to show that the positive definite quadratic form nO
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permits composition since this immediately implies that O has no zero divi-
sors, hence is a division algebra (1.2). Accordingly, let x = (a, u), y = (b, v),
a, b ∈ C, u, v ∈ C3. Then (1.5.1), (1.6.1) yield

nO(xy) = nO
(
(ab − ūTv, vā + ub + ū × v̄)

)
=

(
āb̄ − v̄Tu

)(
ab − ūTv) + (v̄Ta + ūTb̄ + (u × v)T)(vā + ub + ū × v̄

)
= āab̄b − āb̄ūTv − v̄Tuab + v̄TuūTv + v̄Tvaā + v̄Tuab + v̄T(ū × v̄)a

+ ūTvāb̄ + ūTub̄b + ūT(ū × v̄)b̄ + (u × v)T (vā + ub + ū × v̄) .

Observing (1.1.1), we obtain v̄T(ū× v̄) = ūT(ū× v̄) = (u× v)Tv = (u× v)Tu = 0,
while (1.1.1) combined with the Grassmann identity (1.1.3) implies

(u × v)T(ū × v̄) = v̄T((u × v) × ū
)
= v̄TvūTu − v̄TuūTv.

Hence the preceding displayed formula reduces to

nO(xy) = āab̄b + āav̄Tv + ūTub̄b + ūTuv̄Tv = nO(x)nO(y),

as claimed. □

1.9 Remark. The composition formula nO(xy) = nO(x)nO(y) is bi-quadratic in
x, y ∈ O and by (repeated) linearization yields

nO(x1y, x2y) = nO(x1, x2)nO(y),

nO(xy1, xy2) = nO(x)nO(y1, y2),

nO(x1y1, x2y2) + nO(x1y2, x2y1) = nO(x1, x2)nO(y1, y2)

for all x, y, x1, x2, y1, y2 ∈ O.

1.10 Inversion formula. Given x , 0 in O, Theorem 1.8 yields unique ele-
ments y, z ∈ O such that xy = zx = 1O. In fact, by (1.6.11), we necessarily
have

y = z = x−1 :=
1

nO(x)
x̄.

We call x−1 the inverse of x in O

1.11 The Hamiltonian quaternions. The subspaceH := R×R3 ofO is actually
a subalgebra since

(α, u)(β, v) = (αβ − uTv, αv + βu + u × v). (α, β ∈ R, u, v ∈ R3) (1)

This algebra is called the algebra of Hamiltonian quaternions. It contains an
identity element since 1H := 1O ∈ H. Note that the Hamiltonian quaternions
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can be defined directly, without recourse to the Graves-Cayley octonions, by
the product (1) on the real vector space R × R3. Moreover, the vectors

1H := 1O, i := (0, e1), j := (0, e2), k := (0, e3) (2)

form a basis of H over R in which 1H acts as a two-sided identity element and,
by (1) combined with (1.1.2),

i2 = j2 = k2 = −1H, ij = k = −ji, jk = i = −kj, ki = j = −ik. (3)

Thus we have obtained a basis of the Hamiltonian quaternions with a partic-
ularly simple family of structure constants (cf. 1.2). We will see in Cor. 1.12
below that the Hamiltoniam quaternions are associative. Hence (3) may be
written more concisely as

i2 = j2 = k2 = ijk = −1H. (4)

Restricting the norm, trace, conjugation of O to H, we obtain what we call
the norm, trace, conjugation of H, denoted by nH, tH, ιH, respectively, which
enjoy the same algebraic properties we have derived for the Graves-Cayley
octonions in 1.6. By the same token, H may also be viewed canonically as a
real euclidean vector space. Consulting Thm. 1.8, we now obtain the following
result.

1.12 Corollary. The Hamiltonian quaternions H form an associative but not
commutative real division algebra of dimension four, and the norm of H per-
mits composition: nH(xy) = nH(x)nH(y) for all x, y ∈ H.

Proof The only statement demanding a proof is the assertion that H is ass-
ociative. But this can either be verified directly, or follows immediately from
Exc. 1.16 combined with the Jacobi identity (1.1.4). □

1.13 Vista: spatial rotations. The Hamiltonian quaternions are widely used
today to represent the attitude of a rigid body such as a spacecraft [166] or
smart phone (e.g., via the class CMAttitude in the Apple iPhone API) and
perhaps even a toothbrush [128].

The aim is to keep track of how the rigid body has rotated relative to some
known starting orientation, represented by an element g in the group SO(3) of
rotations of R3 about the origin. In earlier systems, g was represented using
“Euler angles”, which capture how much the body has rotated along three dif-
ferent axes, such as pitch, roll, and yaw. However, that approach suffers from
various challenges.

The quaternionic approach is by keeping track of a versor, i.e., a quater-
nion v ∈ H with norm 1. It follows from 1.10 that the set V of versors is a
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group. The conjugation action of the group V on the trace zero quaternions,
R3, gives a surjective group homomorphism V → SO(3) by Exercise 1.20,
and one records a preimage v of g rather than g itself. This approach avoids
some of the challenges of Euler angles (e.g., “gimbal lock”) and makes it easy
to smoothly interpolate between different attitudes by interpolating between
versors, see, for example, [177, 58].

1.14 Vista: classifying real algebras. A famous theorem says that a finite-
dimensional unital real algebra A endowed with a positive-definite quadratic
from n : A → R that permits composition is isomorphic to R, C, H, or O. We
prove this result in 23.13 below. There are many ways to go about proving this
result: [198] and [38] provide recent and particularly elementary approaches,
whereas §4 of [161] provides a proof that generalizes and is more in line with
the historical development.

Varying the hypotheses somewhat leads to similar-sounding conclusions that
can require very different techniques. One variation ignores the quadratic form
and instead requires A to be alternative. It turns out that this seeming extra
generality does not result in any additional algebras, see Exc. 19.30.

Another variation only asks for A to be a division algebra. It takes just a
few lines to explicitly describe all the possibilities when dim A = 1, so assume
dim A > 1. Exercise 1.15 shows that dim A is even. With a little topology,
one can show that dim A must be a power of 2, see [124] or [119]. With a
lot more work, the Bott-Milnor-Kervaire theorem [26, 150] says that A must
have dimension 1, 2, 4, or 8. This relies on deep algebraic topology, and it is
closely related to the fact that the only spheres that are parallelizable are those
of dimension 0, 1, 3, or 7.

Within dimensions 2, 4, and 8, there is a whole zoo of division algebras.
The 2-dimensional ones are classified in the sense that there is a short list
of distinct isomorphism classes, albeit infinitely many since the entries in the
list involve a parameter that can take uncountably many different values, see
[125] and [66]. For the 4-dimensional or 8-dimensional division algebras, a
dimension counting argument from “algebraic geography” shows that those
algebras break up into uncountably many equivalence classes not just up to
isomorphism but even up to a weaker equivalence relation known as isotopy,
see [210, §5].

Later in this book, we will return to the notion of isotopy in slightly different
contexts in sections 15 and 31.
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Exercises
1.15. Suppose A is a finite-dimensional real division algebra. Prove that dim A is even
or 1.

1.16. The associator of O (McCrimmon). The deviation of a real algebra A from being
associative is measured by its associator [x, y, z] := (xy)z − x(yz) for x, y, z ∈ A. Prove
for i = 1, 2, 3 and xi := (ai, ui) ∈ O, ai ∈ C, ui ∈ C

3, that

[x1, x2, x3] =
(
det(u1, u2, u3) − det(u1, u2, u3),

∑(
(ui × u j) × ūk + (ūi × ū j)(ak − āk)

))
,

where the sum on the right is extended over all cyclic permutations (i jk) of (123).
Conclude that the associator of O is an alternating (trilinear) function of its arguments.

1.17. Prove without recourse to properties of the norm that O is a division algebra.

1.18. Norm, trace and conjugation under the product of O.

(a) Prove that the conjugation of O is an (algebra) involution, i.e., not only ¯̄x = x
but also xy = ȳx̄ for all x, y ∈ O.

(b) Show that trace and norm of O satisfy

tO(xy) = tO(yx), tO
(
(xy)z

)
= tO

(
x(yz)

)
, nO(x, zȳ) = nO(xy, z) = nO(y, x̄z)

for all x, y, z ∈ O.
(c) Prove x(x̄y) = nO(x)y = (yx)x̄ and xyx := (xy)x = x(yx) = nO(x, ȳ)x − nO(x)ȳ

for all x, y ∈ O.

1.19. The Moufang identities. We will see later (cf. 13.3) that the Moufang identities

x
(
y(xz)

)
= (xyx)z, (xy)(zx) = x(yz)x,

(
(zx)y

)
x = z(xyx)

(cf. Exc. 1.18 (c) for a parentheses-saving notation) hold in arbitrary alternative alge-
bras. Give a direct proof for the alternative algebra O by reducing to the case y, z ∈
{0} × C3 and using as well as proving the cross product identity

(u × v)wT + (v × w)uT + (w × u)vT = det(u, v,w)13 (1)

for all u, v,w ∈ C3.

1.20. View R3 as the subspace of trace zero elements of H as in 1.11.

(a) For an angle θ and unit vector u ∈ R3, verify that v = (cos(θ/2), sin(θ/2)u) is a
versor, i.e., nH(v) = 1. Verify that all versors are of this form.

(b) For s ∈ R3, verify that

vsv−1 = s cos θ + (u × s) sin θ + u(u · s)(1 − cos θ). (1)

Remark. Rodrigues’ Rotation Formula says that the right side of (1) is the
vector obtained from s by applying the rotation of R3 around the axis u through
the angle θ. So by (b), the map s 7→ vsv−1 is in SO(3) and by (a) we find a group
homomorphism V → SO(3) of the group of versors to SO(3). Moreover, part
(b) says that it is surjective, because every element of SO(3) is a rotation about
some axis u by some angle θ by Euler’s Rotation Theorem.
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2 Cartan-Schouten bases

In 1.11 we have exhibited a basis for the Hamiltonian quaternions with a par-
ticularly simple family of structure constants. In this section, we will pursue
the same objective for the Graves-Cayley octonions. Due to their higher di-
mension and the lack of associativity, however, matters will be not quite as
simple as in the quaternionic case.

2.1 Defining Cartan-Schouten bases (Cartan-Schouten [45]). We define a
Cartan-Schouten basis of O as a basis consisting of the identity element 1O
and additional vectors u1, . . . , u7 ∈ O such that the following two conditions
are fulfilled, for all r = 1, . . . , 7:

u2
r = −1O, (1)

ur+iur+3i = ur = −ur+3iur+i (i = 1, 2, 4), (2)

where the indices in (2) are to be reduced mod 7. We then put u0 := 1O, al-
lowing us to write Cartan-Schouten bases as (ur)0≤r≤7. By (1) and (1.6.10), we
have tO(ur) = 0, hence ur ∈ O

0, for 1 ≤ r ≤ 7. The conscientious reader may
wonder whether equations (1), (2) really define a multiplication table for the
basis chosen, i.e., whether all possible products between the basis vectors are
well defined and uniquely determined by the preceding conditions. That this
is indeed the case will be settled affirmatively in Exc. 2.7 below. We also note
by Exc. 2.8 that Cartan-Schouten bases are orthonormal relative to the inner
product ⟨x, y⟩ of (1.6.3). Finally, as an illustration of the connection between
structure constants and isomorphisms explained in 1.2, we conclude from (1)
and (2) that the linear map φ : O → O defined by φ(ur) = ur+1 (1 ≤ r ≤ 7,
indices mod 7) is an automorphism of O having order 7.

2.2 Proposition. Cartan-Schouten bases of O exist.

Proof Let (u1, u2) be a pair of ortho-normal vectors in the seven-dimensional
euclidean vector space O0. Then (1.6.13) yields

tO(u1u2) = nO(ū1, u2) = −nO(u1, u2) = 0,

hence u1u2 ∈ O
0. Now let u3 ∈ O

0 be an orthonormal vector that is perpen-
dicular to u1, u2, and u1u2. Then Exc. 2.8 shows that u0 = 1O, u1, u2, u3, ur :=
ur−3ur−2 (4 ≤ r ≤ 7) make up a Cartan-Schouten basis of O. □

There is a remarkable interplay between Cartan-Schouten bases and projec-
tive planes that provides a first glimpse at the profound connection between
non-associative algebras and geometry; for more on this fascinating topic, we
refer the reader to Faulkner [78]. Here we only sketch some details.
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2.3 Incidence geometries. An incidence geometry consists of

(i) two disjoint sets P, whose elements are called points, and L, whose
elements are called lines,

(ii) a relation between points and lines, i.e., a subset I ⊆ P × L.

If P ∈ P, ℓ ∈ L satisfy (P, ℓ) ∈ I, we say P is incident to ℓ (or P lies on ℓ, or ℓ
passes through P). If several points all lie on a single line, they are said to be
collinear.

2.4 Projective planes. An incidence geometry as in 2.3 is called a projective
plane if

(i) any two distinct points lie on a unique line,
(ii) any two distinct lines pass through a unique point,
(iii) there are four points no three of which are collinear.

Important examples are provided by P2(F), the projective plane of a field F: its
points (resp. lines) are defined as the one-(resp. two-)dimensional subspaces
of (three-dimensional column space) F3 over F, and a point P is said to be
incident with a line ℓ if P ⊆ ℓ. Working with the canonical scalar product
(x, y) 7→ xTy on F3, it is clear that P (resp. ℓ) ⊆ F3 is a point (resp. a line) if
and only if P⊥ (resp. ℓ⊥) ⊆ F3 is a line (resp. a point), and P is incident to ℓ if
and only if ℓ⊥ is incident to P⊥. In particular, over a finite field F, there are as
many points as there are lines in P2(F).

2.5 The Fano plane and Cartan-Schouten bases. The Fano plane is the pro-
jective plane P2(F2), where F2 stands for the field with two elements. The
points of this geometry have the form {0, x} with 0 , x ∈ F3

2, hence identify
canonically with the seven elements of F3

2 \{0}, while the lines of this geometry
have the form {0, x, y, x + y}, where x, y ∈ F3

2 \ {0} are distinct points. Hence
each line, of which there are seven by what we have seen in 2.4, consists of
three points (besides 0) that are permuted cyclically under addition.

In the standard visualization of the Fano plane (see Fig. 2a(i)), its seven
lines are represented by (i) the three sides, (ii) the three medians, and (iii) the
inner circle of an equilateral triangle, while its seven points are located and
numbered as shown. The entire picture fits into a directed graph whose nodes
agree with the points of the Fano plane and give rise to subdivisions of the
seven lines, yielding fifteen edges directed in the way indicated; for an artist’s
rendition of the Fano plane, see Fig. 2a(ii). The key feature of this construction
is that one can use it to recover the Graves-Cayley octonions on the free real
vector space generated by the nodes ur, 1 ≤ r ≤ 7, and an additional element
u0. In order to accomplish this, it suffices to define a multiplication on the
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(ii) An artist’s presentation.

Figure 2a Two visualizations of the Fano plane.

basis vectors that enjoys the characteristic properties (2.1.1), (2.1.2) of Cartan-
Schouten bases. We do so by setting u0ur := ur =: uru0 for 0 ≤ r ≤ 7, u2

r = −u0

for 1 ≤ r ≤ 7, and by defining urus for 1 ≤ r, s ≤ 7, r , s, in the following
way: let ut, 1 ≤ t ≤ 7, be the third point on the line containing ur and us. If,
after an appropriate cyclic permutation of the indices r, s, t, the orientation of
the edge joining ur and us leads from ur to us (resp. from us to ur), we put
urus := ut (resp. urus := −ut). Then (2.1.1) holds by definition, while (2.1.2)
can be verified in a straightforward manner.

We remark that these multiplication rules can alternatively be expressed in
terms of Kirkman’s (7, 3, 1) block design, see [151] or [37] or [237], the last of
which also contains alternative illustrations of the Fano plane.

2.6 Symmetries of the Graves-Cayley octonions. One of the most impor-
tant features of the Graves-Cayley octonions is the fact that, in spite of their
non-associative character, they have lots of symmetries. More specifically, we
consider their automorphism group, denoted by Aut(O) and defined as the set
of bijective linear maps φ : O→ O satisfying φ(xy) = φ(x)φ(y) for all x, y ∈ O;
it is obviously a subgroup of GL(O), the full linear group of the real vector
space O. We know from Exc. 2.9 below that Aut(O) canonically embeds as a
closed subgroup into the orthogonal group O(O0) � O7(R) of the euclidean
vector space O0, a compact real Lie group of dimension 21, and hence is a
compact real Lie group in its own right [51, Cor. of Prop. IV.XIV.2]. Our claim
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that O has lots of symmetries will now be corroborated by the formula

dim
(
Aut(O)

)
= 14. (1)

At this stage, we will not be able to give a rigorous proof of this formula; in-
stead, we will confine ourselves to a naive dimension count making the formula
intuitively plausible.

First of all, the automorphism group of O acts simply transitively on the
set of Cartan-Schouten bases of O. Each Cartan-Schouten basis, in turn, by
Exc. 2.8 below, is completely determined by an element of

X0 := {(u1, u2, u3) ∈ X | ⟨u1u2, u3⟩ = 0}, (2)

where X stands for the set of orthonormal systems of length 3 in the euclidean
vector space O0 � R7. Thus we have dim(Aut(O)) = dim(X0). On the other
hand, the orthogonal group O7(R) acts transitively on X, and for the first three
unit vectors e1, e2, e3 ∈ R

7, the isotropy group of (e1, e2, e3) ∈ X identifies
canonically with O4(R). Hence

dim(X) = dim
(
O7(R)

)
− dim

(
O4(R)

)
=

7 · 6
2
−

4 · 3
2
= 21 − 6 = 15.

But (2) shows that X0 is a “hypersurface” in X, which gives

dim
(
Aut(O)

)
= dim(X0) = dim(X) − 1 = 14,

as claimed in (1).

Exercises
2.7. Put M := {r ∈ Z | 1 ≤ r ≤ 7} × {1, 2, 4} and show for s, t ∈ Z, 1 ≤ s, t ≤ 7, that
s , t if and only if either there is a unique element (r, i) ∈ M satisfying r + i ≡ s mod 7
and r + 3i ≡ t mod 7, or there is a unique element (r, i) ∈ M satisfying r + 3i ≡ s mod 7
and r + i ≡ t mod 7.

2.8. Characterization of Cartan-Schouten bases. Prove for a family (ur)0≤r≤7 of ele-
ments in O that the following conditions are equivalent.

(i) (ur)0≤r≤7 is a Cartan-Schouten basis of O.
(ii) u0 = 1O and

u2
r = −1O = (urur+1)ur+3 = ur(ur+1ur+3) (1 ≤ r ≤ 7, indices mod 7). (1)

(iii) u0 = 1O, and (ur)1≤r≤7 is a basis of O0 such that ∥ur∥ = 1 for 1 ≤ r ≤ 7 and

ur+iur+3i = ur (1 ≤ r ≤ 7, i = 1, 2, 4, indices mod 7). (2)

(iv) u0 = 1O, and (u1, u2, u3) is an orthonormal system in the euclidean vector space
O0 such that

nO(u1u2, u3) = 0, ur = ur−3ur−2 (4 ≤ r ≤ 7). (3)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

14 Prologue: the ancient protagonists

In this case, (ur)0≤r≤7 is an orthonormal basis of O (relative to the inner product ⟨x, y⟩
of (1.5.3)).

2.9. The algebra O+. The real vector space O becomes a commutative real algebra O+
under the multiplication

x · y :=
1
2

x ◦ y =
1
2

tO(x)y +
1
2

tO(y)x −
1
2

nO(x, y)1O (x, y ∈ O)

with identity element 1O+ := 1O. Show that Aut(O) ⊆ Aut(O+) is a closed subgroup
and that the assignment φ 7→ φ|O0 determines a topological isomorphism from Aut(O+)
onto O(O0).

3 Unital subalgebras of O and their Z-structures

The Graves-Cayley octonions, and the Hamiltonian quaternions as well, de-
rive a considerable amount of their significance from the profound connections
with seemingly unrelated topics in other areas of mathematics and physics.
One of these connections pertains to the arithmetic theory of quadratic forms.
Without striving for completeness or maximum generality, it will be briefly
touched upon in the next two sections. Our results, incomplete as they are, un-
derscore the need for an understanding of quaternion and octonion algebras
not just over fields but, in fact, over arbitrary commutative rings.

3.1 The general set-up. (a) Throughout this section, we fix a real vector space
V of finite dimension n and assume most of the time, but not always, that V is
equipped with a positive definite quadratic form q : V → R. Speaking of (V, q)
as a positive definite real quadratic space under these circumstances, we may
and always will regard V as a euclidean vector space with the scalar product
⟨x, y⟩ := 1

2 q(x, y) and denote the associated euclidean norm by ∥x∥ =
√
⟨x, x⟩ =√

q(x), for all x, y ∈ V .

(b) We also denote by D one of the unital subalgebras R, C, H, or O of O.
Via restriction, D inherits from O the data norm, trace, bilinearized norm and
conjugation, denoted by nD, tD, DnD, ιD, respectively, that mutatis mutandis
enjoy the various properties assembled in 1.6 for the Graves-Cayley octonions.
These properties will be freely used here without further ado. In particular,
nD : D → R is a positive definite quadratic form permitting composition, and
(D, nD) is a positive definite real quadratic space as in (a), allowing us to regard
D as a euclidean subspace of O in a natural way.

3.2 Algebras over Z and Q. There is nothing special about the base field R in
the definition of an algebra. It may be replaced by any commutative associative
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3 Unital subalgebras of O and their Z-structures 15

ring of scalars, a point of view adopted systematically in the remainder of the
book. For example, we may pass to the field Q of rational numbers or the
ring Z of integers: by a Q-algebra (resp., a Z-algebra) we mean a Q-vector
space (resp., an additive abelian group) A together with a Q-bilinear (resp., a
bi-additive) map from A × A to A. The conventions of 1.2 carry over to this
modified setting virtually without change. Any real algebra may be viewed as
a Q-algebra (resp., a Z-algebra) by restriction of scalars: rather than allowing
scalar multiplication by arbitrary real numbers, one does so only by elements
of Q (resp. Z).

3.3 Power-associative algebras and the minimum polynomial. Let A be a
finite-dimensional unital algebra over K, where either K = R or K = Q. Powers
of x ∈ A with integer exponents ≥ 0 are defined inductively by x0 := 1A,
xn+1 := xxn for n ∈ N. We say A is power-associative if xm+n = xmxn for all
x ∈ A, m, n ∈ N, equivalently, if

K[x] :=
∑
n∈N

Kxn ⊆ A (1)

is a unital commutative associative subalgebra, for all x ∈ A. When this holds,
it makes sense to talk about the minimum (or minimal) polynomial of x (over
K) in its capacity as an element of K[x]. It will be denoted by µx, or µK

x to
indicate dependence on K, and is the unique monic polynomial in K[t] that
generates the ideal of all polynomials in K[t] killing x.

The preceding considerations apply in particular to K = R and the real alge-
bra D; indeed, D is power-associative since, for x ∈ D, we may invoke (1.6.10)
to conclude that R[x] = R1D + Rx ⊆ D is a unital commutative associative
subalgebra of dimension at most 2. Moreover, again by (1.6.10),

µx = t2 − tD(x)t + nD(x) ⇐⇒ x < R1D, (2)

while, of course, µα1D = t − α for α ∈ R.

3.4 Integral elements. Let A be a finite-dimensional unital power-associative
algebra over K = R or K = Q. An element x ∈ A is said to be integral if
f (x) = 0 for some monic polynomial f ∈ Z[t]. For example, x is integral if its
minimal polynomial has integral coefficients. The converse of this also holds
in important special cases.

3.5 Proposition. Let A be a finite-dimensional unital power-associative alge-
bra over Q and x ∈ A. Then the following conditions are equivalent.

(i) x is integral.
(ii) Z[x] :=

∑
n∈N Zxn is a finitely generated abelian group.
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(iii) µx ∈ Z[t].

Proof (i) ⇔ (ii). Apply Bourbaki [27, V, §1, Thm. 1] or [271, Tag 052I] to
A := Z, R := Z[x].

(iii)⇒ (i). Clear.
(i)⇒ (iii). Apply [27, V, §1, Cor. of Prop. 11] to A := Z, K := Q, K′ := Q[x]

to conclude that the coefficients of µx ∈ Q[t] are integral over Z. Hence (iii)
holds since Z is integrally closed. □

3.6 Integral quadratic lattices and Z-structures. (a) A subset L ⊆ V is called
a lattice in V if there exists a basis (e1, . . . , en) of V (as a real vector space)
which is associated with L in the sense that

L = Ze1 ⊕ · · · ⊕ Zen.

Then L is a free abelian group of rank n, and QL := Qe1 ⊕ · · · ⊕ Qen is an
n-dimensional vector space over Q.

(b) By an integral quadratic lattice in (V, q) (or simply in V , the quadratic
form q being understood) we mean a lattice L ⊆ V such that q(L) ⊆ Z, which
after linearization implies q(x, y) ∈ Z for all x, y ∈ L.

(c) Let A be a finite-dimensional unital R-algebra. A lattice L in A is said to be
unital if 1A ∈ L. Note in particular that a unital integral quadratic lattice L ⊆ D
satisfies tD(L) ⊆ Z and is stable under conjugation; in particular, the minimum
polynomial of x ∈ L by (3.3.2) has integer coefficients, so L consists entirely
of integral elements.

(d) Let A be a finite-dimensional unital R-algebra. By a Z-structure of A we
mean a unital lattice M ⊆ A that is closed under multiplication (M2 ⊆ M).
Z-structures M ⊆ A are, in particular, unital Z-algebras, more precisely, Z-
subalgebras of A. Note further that QM is a unital Q-subalgebra of A.

3.7 Lemma. Let L ⊆ V be a lattice. A family of elements in QL that is linearly
independent over Q is so over R.

Proof Let (e1, . . . , en) be a basis of V associated with L. If x1, . . . , xm ∈ QL
are linearly independent over Q, they can be extended to a Q-basis (x1, . . . , xn)
of QL. This implies x j =

∑n
i=1 αi jei for 1 ≤ j ≤ n and some matrix (αi j) ∈

GLn(Q) ⊂ GLn(R). Thus (x1, . . . , xn) is an R-basis of V , forcing x1, . . . , xm to
be linearly independent over R. □

3.8 Proposition. Let A be a finite-dimensional unital power-associative real
algebra, L a unital lattice in A such that QL ⊆ A is a subalgebra over Q. Then

https://stacks.math.columbia.edu/tag/052I
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µRx = µ
Q
x for all x ∈ QL, so the minimum polynomial of x over R agrees with

the minimum polynomial of x over Q. In particular, it belongs to Q[t].

Proof By definition, µRx divides µQx over R. But both are monic polynomials
in R[t] of the same degree, by Lemma 3.7. Hence µRx = µ

Q
x . □

3.9 Corollary. Every Z-structure M of D is a unital integral quadratic lattice.

Proof Unitality being part of the definition, it remains to show nD(x) ∈ Z
for all x ∈ M. First of all, QM is a finite-dimensional unital power-associative
Q-algebra containing x, and µx as given in 3.3 is the minimum polynomial of
x over Q (Prop. 3.8). On the other hand, let Z[x] =

∑
n≥0 Zxn be the unital

subalgebra of M generated by x. Since M is finitely generated as a Z-module,
so is Z[x] ⊆ M. Thus x is integral over Z (Proposition 3.5). By Proposition 3.5
again and (3.3.2), this implies nD(x) ∈ Z, as claimed. □

3.10 Basis transitions. If E = (e1, . . . , en) is an ordered basis of V , then so is
ES = (e′1, . . . , e

′
n), e′j :=

∑n
i=1 si jei, 1 ≤ j ≤ n, for any invertible real n-by-n

matrix S = (si j). In this way, GLn(R) acts on the set of bases of V from the
right in a simply transitive manner, so any two bases E, E′ of V allow a unique
S ∈ GLn(R) such that ES = E′. We call S the transition matrix from E to E′.

Let E := (e1, . . . , en) be an R-basis of V . Then we write

Dq(E) :=
(
q(ei, e j)

)
1≤i, j≤n ∈ Matn(R) (1)

for the matrix of the symmetric bilinear form Dq : V × V → R relative to
the basis E. Along with Dq, the matrix Dq(E) is also positive definite. Given
S ∈ GLn(R), it is well known and easily checked that

Dq(ES ) = S TDq(E)S . (2)

If L is an integral quadratic lattice in V and the basis E is associated with L,
then the positive definite matrix Dq(E) has integral coefficients and its diagonal
entries are even.

3.11 Proposition. Let L ⊆ V be an integral quadratic lattice and E an R-basis
of V that is associated with L. Then

det(L) := det
(
Dq(E)

)
is a positive integer that only depends on L and not on the basis chosen.

Proof Since Dq(E) belongs to Matn(Z), its determinant is an integer, which
must be positive since Dq(E) is positive definite. The transition matrix from
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E to another basis E′ of V associated with L not only has integral coeffi-
cients but is also unimodular, i.e., has determinant ±1. Now (3.10.2) shows
det(Dq(E′)) = det(Dq(E)). □

3.12 The discriminant. Let L be an integral quadratic lattice of V . The quan-
tity det(L) exhibited in Proposition 3.11 is called the determinant of L; it is a
positive integer. Following Kneser [156, 10.1, p. 43], on the other hand, the
non-zero (possibly negative) integer

disc(L) := (−1)⌊
n
2 ⌋ det(L)

is called the discriminant of L. By a unimodular integral quadratic lattice of V
we mean an integral quadratic lattice of discriminant ±1.

3.13 Proposition. Let L′ ⊆ L be integral quadratic lattices of V. Then L/L′ is
finite and disc(L′) = [L : L′]2 disc(L).

Proof Let E (resp. E′) be an R-basis of V associated with L (resp. L′) and
S the transition matrix from E to E′. Then S ∈ Matn(Z) ∩ GLn(R), and the
Elementary Divisor Theorem [141, Thm. 3.8] implies that there exist P,Q ∈
GLn(Z) and a chain of successive non-zero integral divisors d1| · · · |dn satis-
fying S = P diag(d1, . . . , dn)Q. Replacing E′ by E′T , T := Q−1, and E by
EP, we may assume S = diag(d1, . . . , dn). With E = (e1, . . . , en) this implies
E′ = ES = (d1e1, . . . , dnen), and

L/L′ � (Z/d1Z) ⊕ · · · ⊕ (Z/dnZ)

is finite of order
∏n

i=1 |di|. On the other hand, applying Proposition 3.11 and
(3.10.2), we conclude

disc(L′) = (−1)⌊
n
2 ⌋ det

(
Dq(ES )

)
= (−1)⌊

n
2 ⌋
( n∏

i=1

di
)2 det

(
Dq(E)

)
= [L : L′]2 disc(L),

as claimed. □

3.14 Corollary. A unimodular integral quadratic lattice of V is maximal in the
sense that it is not contained in any other integral quadratic lattice of V. □

3.15 Remark. The preceding observations apply in particular to Z-structures of
D. For example, a Z-structure of D that is unimodular (as an integral quadratic
lattice) is maximal as an integral quadratic lattice by Corollary 3.14, hence as
a Z-structure as well (Cor. 3.9).
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3.16 Examples. Let M be a Z-structure and E an orthonormal basis of D (as
a euclidean real vector space). If E is associated with M, then (3.10.1) shows
DnD(E) = 2 · 1r, r := dimR(D), and we conclude

disc(M) = (−1)⌊
r
2 ⌋2r. (1)

We now consider a number of specific cases.

(a) By Exc. 3.19 below, M := Z is the unique Z-structure of D := R, and we
have disc(Z) = 2.

(b) The Gaussian integers Ga(C) := Z[i] = Z⊕Zi are a Z-structure of D := C,
and we have disc(Ga(C)) = −22 = −4. The Gaussian integers are the integral
closure of Z in C [203, Thm. 1.5]. Hence Corollary 3.9 shows that they form a
maximal Z-structure.

(c) In (1.11.1) we have exhibited an orthonormal basis (1H, i, j,k) of D := H,
with structure constants by (1.11.3) equal to ±1. Thus

Ga(H) := Z1H ⊕ Zi ⊕ Zj ⊕ Zk (2)

is a Z-structure of H having discriminant disc(Ga(H)) = 24 = 16. We call
Ga(H) the Gaussian integers of H. (Some authors call Ga(H) the Lipschitz
quaternions.)

(d) Let E = (ur)0≤r≤7 be a Cartan-Schouten basis of D := O. From Exc. 2.8
we deduce that E is an orthonormal basis of O, while (2.1.1), (2.1.2) show that
the corresponding structure constants are ±1. Hence

Ga(O) := GaE(O) :=
7⊕

r=0

Zur (3)

is a Z-structure of O having discriminant disc(Ga(O)) = 28 = 256. We call
Ga(O) the Gaussian integers of O relative to E.

Exercises
3.17. Prove for an additive subgroup L ⊆ V that the following conditions are equiva-
lent.

(i) L is a lattice.
(ii) L spans V as a real vector space and is a free abelian group of rank at most

dimR(V).
(iii) There are lattices L0, L1 ⊆ V such that L0 ⊆ L ⊆ L1.

3.18. Let M be a Z-structure of D. Show that there exists an additive subgroup of D
properly containing M that is free of finite rank and closed under multiplication but not
a Z-structure of D.
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3.19. Let M be a Z-structure of D. Prove M ∩ R = Z. (Hint: Note that M is a dis-
crete additive subgroup of D under the natural topology and that the non-zero discrete
additive subgroups of R have the form Zv for some non-zero element v ∈ R.)

4 Maximal quaternionic and octonionic Z-structures

Contrary to the Gaussian integers inC, their simple-minded analogues inH and
O (cf. 3.16 (c),(d)) are not maximal Z-structures. In fact, they will be enlarged
to maximal ones in the present section.

4.1 Towards the Hurwitz Z-structure ofH. Starting out from the orthonormal
basis (1H, i, j,k) of H exhibited in (1.11.2), we put

h :=
1
2

(1H + i + j + k) ∈ H (1)

and note

nH(h) = tH(h) = nH(i,h) = nH(j,h) = nH(k,h) = 1. (2)

After an obvious identification, we can realize the complex numbers via

C := R[i] = R1H ⊕ Ri (3)

as a subalgebra of H, which satisfies the relation

H = C ⊕ Ch (4)

as a direct sum of subspaces. To see this, it suffices to show that the sum on
the right of (4) is direct, so let u, v ∈ C and suppose u = vh. If v , 0, then
h = v−1u ∈ C, a contradiction. Thus u = v = 0, as desired. Note that

Ga(C) = Z[i] = Z1H ⊕ Zi (5)

after the identification carried out in (3).

4.2 Theorem (Hurwitz [127]). With the notation and assumptions of 4.1,

Hur(H) := Ga(C) ⊕ Ga(C)h (1)

is a Z-structure and a maximal integral quadratic lattice of H, called its Z-
structure of (or simply the) Hurwitz quaternions. Hur(H) contains the Gaussian
integers of H as a sub-Z-structure and has discriminant 4:

Ga(H) ⊆ Hur(H), disc (Hur(H)) = 4. (2)

Moreover, (1H, i,h, ih) and (1H, i, j,h) are R-bases of H that are both associ-
ated with Hur(H).
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Proof Since H is a division algebra by Corollary 1.12, the map H→ H, x 7→
xh, is bijective. Combining (4.1.4), (4.1.5) with (1), we therefore conclude that
M := Hur(H) ⊆ H is a unital lattice and that (1H, i,h, ih) is an R-basis of H
associated with M.

Next we prove that M is closed under multiplication. Let u ∈ Ga(C). Then
(1.6.12) implies uh+hu = tH(u)h+ tH(h)u− nH(u,h)1H, where the coefficients
of the linear combination on the right by (4.1.2) are all integers. Hence M =
Ga(C) ⊕ h Ga(C). We conclude Ga(C)h Ga(C) ⊆ Ga(C)2 + Ga(C)2h = M, and
(1.6.10), (4.1.2) imply

Ga(C)h Ga(C)h ⊆ Mh = Ga(C)h + Ga(C)h2

= Ga(C)h + Ga(C)(h − 1H) ⊆ Ga(C) ⊕ Ga(C)h = M.

Thus M is indeed multiplicatively closed and hence a Z-structure of H. Since

ih =
1
2

(i − 1H + k − j) = −(1H + j − h),

we see that E := (1H, i, j,h) is another R-basis of H associated with M. In
particular, Ga(H) ⊆ M (since k = 2h − 1H − i − j) and

DnH(E) =


2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2

 .
Subtracting the arithmetic mean of the first two rows from the fourth, we con-
clude

disc(M) = det


2 0 0 1
0 2 0 1
0 0 2 1
0 0 1 1

 = 4 · (2 − 1) = 4.

(Alternately, note that Hur(H)/Ga(H) = Z/2, so by Prop. 3.13,

16 = disc Ga(H) = 22 disc(Hur(H)),

yielding disc(Hur(H)) = 4.) It remains to show that M is a maximal integral
quadratic lattice of H, which we leave as an exercise (Exc. 4.9). □

4.3 Remark. The Hurwitz quaternions are endowed with a rich arithmetic
structure that has been investigated extensively in the literature. For exam-
ple, it is possible to derive Jacobi’s famous formula [129], [130, pp. 238-9]
for the number of ways a positive integer can be expressed as a sum of four
(integral) squares in a purely arithmetic fashion by appealing to properties of
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the Hurwitz quaternions [127, p. 335]. The reader may consult Brandt [35] or
Conway-Smith [55, Ch. 5] for further details on the subject. There are also
profound connections with the theory of automorphic forms, cf. Krieg [164]
for a systematic and essentially self-contained study of this topic.

In the second part of the present section, we will imitate our approach to the
Hurwitz quaternions on the octonionic level. This will lead us to a Z-structure
of O that is not only maximal but even, remarkably, a unimodular integral
quadratic lattice.

4.4 Towards the Dickson-Coxeter octonions. In 1.11, we have defined the
Hamiltonian quaternions H explicitly as a unital subalgebra of O. For our sub-
sequent considerations, it will be important to select a different realization of
this kind, depending on the choice of a Cartan-Schouten basis E = (ur)0≤r≤7

of O that will remain fixed throughout the rest of this section. Recall from
Exc. 2.8 that E is an orthonormal basis of O obeying the multiplication rules
(2.1.2) which may be conveniently read off from Fig. 2a on page 12.

In particular, we have the relations u1u2 = u4, u2u4 = u1, u4u1 = u2, which
show that the Hamiltonian quaternions may also be identified via

H = R1O ⊕ Ru1 ⊕ Ru2 ⊕ Ru4 (1)

as a unital subalgebra of O under the matching 1H = 1O, i = u1, j = u2, k = u4.
This obviously implies

Ga(H) = Z1O ⊕ Zu1 ⊕ Zu2 ⊕ Zu4 (2)

for the Gaussian integers of H. We now put

p :=
1
2

(1O + u1 + u2 + u3) ∈ O (3)

and note

u1p =
1
2

(−1O + u1 + u4 + u7), (4)

u2p =
1
2

(−1O + u2 − u4 + u5), (5)

u3p =
1
2

(−1O + u3 − u5 − u7), (6)

u4p =
1
2

(−u1 + u2 + u4 − u6) (7)

as well as

nO(p) = tO(p) = nO(u1,p) = nO(u2,p) = nO(u3,p) = 1, nO(u4,p) = 0. (8)
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We also claim

O = H ⊕ Hp, (9)

which will follow once we have shown that the sum on the right is direct.
Indeed, suppose u = vp , 0 for some u, v ∈ H. Then Exc. 1.18 (c) yields
nO(v)p = v̄(vp) = v̄u ∈ H, hence p ∈ H, a contradiction to (1), (3).

4.5 Theorem (Dickson [64], Coxeter [56]). With the notation and assumptions
of 4.4,

DiCo(O) := DiCoE(O) := Ga(H) ⊕ Ga(H)p (1)

is a Z-structure and a positive definite unimodular integral quadratic lattice of
O, called its Z-structure of (or simply the) Dickson-Coxeter octonions (relative
to E). DiCo(O) contains the Gaussian integers of O as a sub-Z-structure, and

E′ := (1O, u1, u2, u4,p, u1p, u2p, u4p) (2)

is an R-basis of O associated with DiCo(O).

Proof From (4.4.9) and (1) we deduce that M := DiCo(O) is a unital lattice
in O and E′ as defined in (2) is an R-basis of O associated with M.

Now we show that the lattice M is integral quadratic. Indeed, from (4.4.8)
we obtain nO(Ga(H),p) ⊆ Z. But then, given u, v ∈ Ga(H), we may apply
Exc. 1.18 (c) as well as Thm. 1.8 and (4.4.3) to conclude

nO(u + vp) = nO(u) + nO(u, vp) + nO(vp) = nO(u) + nO(v̄u,p) + nO(v) ∈ Z,

as claimed. Moreover, consulting (4.4.3)–(4.4.7), we see that Ga(O) ⊆ M, so
M contains the Gaussian integers of O.

Our next aim is to prove that M is a Z-structure of O, which will follow once
we have shown that it is closed under multiplication, equivalently, that

Ga(H) (Ga(H)p) ⊆ M, (3)

(Ga(H)p) Ga(H) ⊆ M, (4)

(Ga(H)p) (Ga(H)p) ⊆ M. (5)

Noting that M is a unital integral quadratic lattice, we first let u ∈ Ga(H) and
apply (1.6.12) to obtain

up + pu = tO(u)p + tO(p)u − nO(u,p)1O =
(
u − nO(u,p)1O

)
+ tO(u)p,

which in view of (1.6.6) implies

up + pu ≡ tO(u)p mod Ga(H), (6)

pu ≡ ūp mod Ga(H). (7)
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Now let u, v ∈ H. Linearizing the first alternative law in 1.7 and using (6), (7)
as well as Exc. 1.18 (a), we obtain

u(pv) ≡ (up + pu)v − p(uv) ≡ tO(u)pv − p(uv)

≡ p(ūv) ≡ (v̄u)p mod Ga(H),

hence u(pv) ∈ M. But then (3) follows since u(vp) ≡ u(pv̄) mod Ga(H) by (7).
On the other hand,

(vp)u = u(vp) + (vp)u − u(vp)

= tO(u)vp + tO(vp)u − nO(u, vp)1O − u(vp),

which by (3) proves (4). And finally, by (7), (3), Exc. 1.19 and Exc. 1.18 (c),

(up)(vp) ≡ (pū)(vp) ≡ p(ūv)p ≡ nO(p, v̄u)p − nO(p)v̄u ≡ 0 mod M,

which proves (5).
It remains to show that M is unimodular as an integral quadratic lattice. To

this end, we compute the matrix DnO(E′). Applying 1.9 gives nO(urp, usp) =
nO(ur, us) = 2 · δrs, so DnO(E′) is the block matrix(

2 · 14 T
T T 2 · 14

)
,

where T := (nO(ur, usp))r,s∈{0,1,2,4} by (4.4.3)–(4.4.7) has the form

T =


1 −1 −1 0
1 1 0 −1
1 0 1 1
0 1 −1 1

 ∈ Mat4(Z).

One checks immediately that the columns of T all have euclidean length
√

3
and are mutually orthogonal. Hence Exc. 4.10 below implies det(DnO(E′)) =
(22 − 3)4 = 1, and the proof of the theorem is complete. □

4.6 Vista: even positive definite inner product spaces. One of the key no-
tions dominating the arithmetic theory of quadratic forms is that of a unimod-
ular integral quadratic lattice as defined in 3.6 (b), which is studied, e.g., in
Milnor-Husemoller [197] (see also Serre [259] or Kneser [156]), under the
name “even positive definite inner product space over Z”. A prominent and
particularly important example is furnished by the integral quadratic lattice
underlying the Dickson-Coxeter octonions. In order to appreciate the signifi-
cance of this example, we record the following facts.
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(a) Every even positive definite inner product space over Z splits uniquely
into the orthogonal sum of indecomposable subspaces [197, (6.4)].

(b) The rank of an even positive definite inner product space over Z is
divisible by 8 [197, (5.1)].

(c) There exists an even positive definite inner product space of rank 8 over
Z [197, (6.1)] which is unique up to isomorphism [255, Appendix 4,
p. 399].

The integral quadratic lattice in (c), discovered independently by Smith [263]
and Korkine-Zolotarev [162], is the root lattice of the root system E8 and is
therefore called the E8-lattice. By (a), (b) above, the E8-lattice is indecompos-
able, while uniqueness in (c) shows that it is isomorphic to the integral quad-
ratic lattice underlying the Dickson-Coxeter octonions. We refer to Exc. 4.13
below for more details.

4.7 Remarks. (a) Since the automorphism group of O acts simply transitively
on the set of Cartan-Schouten bases of O, the Dickson-Coxeter octonions up
to isomorphism do not depend on the Cartan-Schouten basis chosen.

(b) The similarity of our approach to the Hurwitz quaternions on the one hand
and to the Dickson-Coxeter octonions on the other is not accidental: in [219],
a purely algebraic formalism has been developed that contains both of these
constructions as special cases.

(c) The reader is referred to Van der Blij-Springer [286] and Conway-Smith
[55, Chap. 9–11] for a detailed study of arithmetic properties of the Dickson-
Coxeter octonions. Concerning a purely arithmetic approach to a Jacobi-type
formula for the number of ways a positive integer may be expressed as a sum
of eight squares using the Dickson-Coxeter octonions, the reader may consult
Rehm [248].

Exercises
4.8. Characterization of the Hurwitz quaternions by congruence conditions. Prove

Hur(H) = {m1H + ni + pj + qk | m, n, p, q ∈ Z or m, n, p, q ∈
1
2
+ Z}.

4.9. Complete the proof of Theorem 4.2 by showing that the Hurwitz quaternions form
a maximal integral quadratic lattice in H: if L ⊆ H is an integral quadratic lattice con-
taining Hur(H), then L = Hur(H).

4.10. A determinant formula. Let p, q be positive integers and r, s be positive real num-
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bers. Prove for matrices T1 ∈ Matp,q(R), T2 ∈ Matq,p(R) that the matrix

S :=
(
r · 1p T1

T2 s · 1q

)
∈ Matp+q(R)

has determinant det(S ) = rp−q charT2T1 (rs), where “char” stands for the characteristic
polynomial of a square matrix. Conclude in the special case T1 = T , T2 = T T, where all
the columns of T ∈ Matp,q(R) are assumed to have euclidean length

√
a for some a > 0

and to be mutually orthogonal, that det(S ) = rp−q(rs− a)q and that S is positive definite
if a < rs. What happens if we drop the assumption of the columns of T all having the
same euclidean length but retain the one that they be mutually orthogonal?

4.11. Units of Z-structures. (a) Let M be a Z-structure of D, where D is one of the
unital subalgebras R, C, H, O of O. Show for u ∈ M that the following conditions are
equivalent.

(i) u is a left unit or left invertible in M: vu = 1D for some v ∈ M.
(ii) u is a right unit or right invertible in M: uv = 1D for some v ∈ M.
(iii) nD(u) = 1.

In this case, u is said to be a unit of (or invertible) in M; moreover, the quantity v in (ii)
(resp. (iii)) is unique and v = ū. Conclude that M×, the set of units of M, contains 1D
and is closed under multiplication as well as under taking inverses.

(b) Determine the units of the Gaussian integers in R, C, H, O and of the Hurwitz
quaternions.

Remark. The notions of this exercise should be seen within the more general context
of alternative algebras: for invertibility (resp. one-sided invertibility), see 13.4 (resp.
Exc. 14.10) below.

4.12 (Loos). Alternate description of the Hurwitz quaternions. Show with

ε1 :=
1
2

(j − k), ε2 := −
1
2

(j + k), ε3 :=
1
2

(1H + i), ε4 := −
1
2

(1H − i)

that (εi)1≤i≤4 is an orthonormal basis of H relative to the modified euclidean scalar prod-
uct 2⟨x, y⟩ = nH(x, y) and that

Hur(H) = Z(ε1 − ε2) ⊕ Z(ε2 − ε3) ⊕ Z(ε3 − ε4) ⊕ Z(ε3 + ε4).

Conclude

Hur(H) = {
4∑

i=1

ξiεi | ξi ∈ Z (1 ≤ i ≤ 4),
4∑

i=1

ξi ∈ 2Z}

and

Hur(H)× = {±εi ± ε j | 1 ≤ i < j ≤ 4}.

Remark. This exercise shows that Hur(H) is the root lattice of the root system
D4, while Hur(H)× consists precisely of the roots of that system. See 47.12 or
[31, Plate IV] for more details.
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4.13 (Loos). Alternate description of the Dickson-Coxeter octonions and their units.
Let E = (ur)0≤r≤7 be a Cartan-Schouten basis of O.

(a) Show with

ε1 :=
1
2

(−u0 + u2), ε2 :=
1
2

(u0 + u2), ε3 := −
1
2

(u1 + u3), ε4 :=
1
2

(u1 − u3),

ε5 :=
1
2

(−u4 + u5), ε6 :=
1
2

(u4 + u5), ε7 :=
1
2

(u6 − u7), ε8 :=
1
2

(u6 + u7)

that (εi)1≤i≤8 is an orthonormal basis ofO relative to the euclidean scalar product 2⟨x, y⟩ =
nO(x, y).

(b) Conclude that DiCo(O) is the additive subgroup of O generated by the expressions

±εi ± ε j,
1
2

8∑
i=1

siεi, (1)

where 1 ≤ i < j ≤ 8 for the first type of (1), while (si)1≤i≤8 in the second type of (1)
varies over the elements of {±1}8 such that the number of indices i = 1, . . . , 8 having
si = −1 is even.

(c) Show further that

DiCo(O) =
{ 8∑

i=1

ξiεi | ξi ∈ R, 2ξi, ξi − ξ j ∈ Z (1 ≤ i, j ≤ 8),
8∑

i=1

ξi ∈ 2Z
}
. (2)

(d) Deduce from (c) that the units of O are precisely the elements listed in (1) and that
there are exactly 240 of them.

(Hint: In order to derive (b) (resp. (c)), show that the additive subgroup of O generated
by the elements in (1) (resp. by the right-hand side of (2)) is an integral quadratic lattice
of O containing DiCo(O).)

Remark. The elements of (1) are precisely the roots of the root system E8 and, therefore,
DiCo(O) is the corresponding root lattice. See 47.12 or [31, Plate VIII] for more details.

4.14 (Kirmse [152]). The Kirmse lattice. Let E := (ur)0≤r≤7 be a Cartan-Schouten basis
of O. Show that

Kir(O) := KirE(O) := Ga(O) +
4∑

i=1

Zvi

with

v1 :=
1
2

(1O + u1 + u2 + u4), v2 :=
1
2

(u3 + u5 − u6 − u7),

v3 :=
1
2

(1O + u1 + u3 − u7), v4 :=
1
2

(1O + u2 + u3 + u5)

is a unital unimodular integral quadratic lattice in O which, however, contrary to what
has been claimed in [152, p. 70], is not a Z-structure of O. (Hint: Consider the product
v1v3.)
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Remark. It follows from 4.7 that Kir(O) is isomorphic to the Dickson-Coxeter octo-
nions as an integral quadratic lattice, hence, by what has been shown in Exercise 4.13 (d),
must have exactly 240 units, in agreement with [152, p. 76].

The following exercise may be viewed as a corrected version of Kirmse’s
approach to the construction of “integer octonions”.

4.15. An alternate model of the Dickson-Coxeter octonions. Let (ui)0≤i≤7 be a Cartan-
Shouten basis of O and put

v1 :=
1
2

(1O + u1 + u2 + u4), v2 :=
1
2

(1O + u1 + u5 + u6),

v3 :=
1
2

(1O + u1 + u3 + u7), v4 :=
1
2

(u1 + u2 + u3 + u5).

Then show that

R := Ga(O) +
4∑

i=1

Zvi ⊆ O

is a Z-structure isomorphic to the Dickson-Coxeter octonions.

4.16. Show that there is an embedding of the Hurwitz quaternions into the Dickson-
Coxeter octonions as Z-algebras.

5 The euclidean Albert algebra

In the present section, we define the euclidean Albert algebra and derive some
of its most basic properties. In doing so, we rely heavily on the Graves-Cayley
octonions but also on rudiments from the theory of real Jordan algebras, which
will be developed here from scratch.

5.1 The standard subalgebras of O. Throughout this section, we fix a posi-
tive integer n and, as in 3.1, we write D for one of the four unital subalgebras
R,C,H,O of O. We also put d := dimR(D). As explained more fully in 3.1, the
algebra D inherits its unit element, norm, trace, and conjugation from O via re-
striction. We identify the base fieldR canonically insideD viaR = R1D = R1O.
Note by (1.6.7) that only the elements of R remain fixed under the conjugation
of D.

5.2 Hermitian matrices over D. We denote by Matn(D) the real vector space
of n-by-n matrices with entries in D. It becomes a real algebra under ordinary
matrix multiplication, with identity element given by 1n, the n-by-n identity
matrix. This algebra is associative for D = R,C,H, but highly non-associative
for D = O. One checks easily that the map

Matn(D) −→ Matn(D), x 7−→ x̄T, (1)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

5 The euclidean Albert algebra 29

is an involution, i.e., it is R-linear, gives the identity when applied twice, and
satisfies the relations

xyT
= ȳT x̄T (x, y ∈ Matn(D)). (2)

We speak of the conjugate transpose involution in this context and denote by

Hern(D) :=
{
x ∈ Matn(D) | x = x̄T} (3)

the set of elements in Matn(D) that are hermitian in the sense that they remain
fixed under the conjugate transpose involution. Note by the conventions of 5.1
that the diagonal entries of x ∈ Hern(D) are all scalars, and so Hern(D) ⊆
Matn(D) is a real subspace of dimension

dimR
(
Hern(D)

)
= n +

n(n − 1)
2

d. (4)

The ordinary matrix units ei j, 1 ≤ i, j ≤ n, of Matn(D) canonically induce
primitive hermitian matrices in Hern(D) according to the rules

u[ jl] := ue jl + ūel j (u ∈ D, 1 ≤ j, l ≤ n, j , l). (5)

5.3 The symmetric matrix product. The conjugate transpose involution by
(5.2.2) does not preserve multiplication and hence the subspace Hern(D) ⊆
Matn(D) is not a subalgebra. In order to remedy this deficiency, we pass from
ordinary matrix multiplication to the symmetric matrix product

x • y :=
1
2

(xy + yx) (x, y ∈ Matn(D)). (1)

The ensuing real algebra, denoted by Matn(D)+, continues to be unital, with
identity element 1n, is obviously commutative, but fails to be associative even
if D is.

On the positive side, the conjugate transpose involution, again by (5.2.2),
does preserve multiplication of Matn(D)+, allowing us to conclude that Hern(D)
becomes a unital commutative real algebra under the symmetric matrix prod-
uct and is, in fact, a unital subalgebra of Matn(D)+. Note that, thanks to the fac-
tor 1

2 on the right-hand side of (1), the squarings of Matn(D) and of Matn(D)+

in the sense of 1.2 coincide and via restriction induce the squaring of Hern(D).
The algebra Her1(D) is none other than R itself. The algebra Her2(D) is a

Jordan algebra (Exc. 5.16). It belongs to a class of Jordan algebras that will
later be referred to as “Jordan algebras of pointed quadratic modules” or “Jor-
dan algebras of Clifford type” as defined in 29.12, see Cor. 37.3 below. The
next case leads us to the heart of the present volume.
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5.4 The case n = 3. The formalism described in 5.2, 5.3 will become par-
ticularly important for n = 3. The unital subalgebra Her3(D) ⊆ Mat3(D)+ by
(5.2.4) has dimension

dimR
(

Her3(D)
)
= 3(d + 1) (1)

and consists of the elements

x =


α1 u3 ū2

ū3 α2 u1

u2 ū1 α3,

 =∑(
αieii + ui[ jl]

)
(αi ∈ R, ui ∈ D, 1 ≤ i ≤ 3), (2)

where the sum on the very right is extended over all cyclic permutations (i jl)
of (123). As will be seen in due course, the structure of this algebra becomes
extremely delicate for D = O.

5.5 Enter the euclidean Albert algebra. The real algebra

Her3(O)

of 3-by-3 hermitian matrices with entries in the Graves-Cayley octonions un-
der the symmetric matrix product is called the euclidean Albert algebra1. It is
commutative, contains an identity element and by (5.4.1) has dimension 27.

In order to obtain a proper understanding of the algebras Her3(D), in partic-
ular of the euclidean Albert algebra, it will be crucial to connect them with the
theory of Jordan algebras. We will do so in the remainder of this section.

5.6 Real and euclidean Jordan algebras. By a real Jordan algebra we mean
a real algebra J (the term “real” being understood if there is no danger of
confusion) satisfying the following identities, for all x, y ∈ J.

xy = yx (commutative law), (1)

x(x2y) = x2(xy) (Jordan identity). (2)

A real Jordan algebra J is said to be euclidean if, for all positive integers m,
the equation

∑m
r=1 x2

r = 0 has only the trivial solution in J:

∀x1, . . . , xm ∈ J :
( m∑

r=1

x2
r = 0 =⇒ x1 = · · · = xm = 0

)
. (3)

5.7 Special and exceptional real Jordan algebras. (a) Standard examples of
real Jordan algebras are easy to construct: let A be an associative real algebra

1 The prefix “euclidean” will be explained in 5.6 below.
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with multiplication (x, y) 7→ xy. Then it is readily checked that, in analogy to
(5.3.1), the symmetric product

x • y :=
1
2

(xy + yx) (1)

converts A into a Jordan algebra, which we denote by A+. It follows that every
subalgebra of A+, which may or may not be one of A, is a Jordan algebra.
Jordan algebras that are isomorphic to a subalgebra of A+, for some associative
algebra A, are said to be special, while non-special Jordan algebras are called
exceptional.

(b) The real algebras D = R,C,H are all associative. Hence so is Matn(D),
and we deduce from 5.3 that Hern(D) is a special Jordan algebra. By contrast,
the preceding argument breaks down for D = O since O is not associative. In
fact, while Her3(O) continues to be a Jordan algebra, as a delicate argument
in Theorem 5.10 below will show, it will be an exceptional one (Albert [3]).
Moreover, Hern(O) for n > 3 is not even a Jordan algebra anymore (Exc. 5.16).

(c) Our principal aim in the present section will be to show in a unified fash-
ion that Her3(D), for any D, including D = O, is a euclidean Jordan algebra,
thereby justifying the terminology of 5.5. We do so not by following Albert’s
original approach [3] but by adopting an idea of Springer [267], according to
which some fundamental properties of ordinary 3-by-3 matrices over a field
survive in the algebra Her3(D).

5.8 Norm, trace and adjoint of Her3(D). As in (5.4.2), the elements of J :=
Her3(D) will be written systematically as

x =
∑(

αieii + ui[ jl]
)
, y =

∑(
βieii + vi[ jl]

)
, (1)

where αi, βi ∈ R, ui, vi ∈ D for 1 ≤ i ≤ 3, and unadorned summations will
always be taken over the cyclic permutations (i jl) of (123). Then we define the
norm N := NJ : J → R, the trace T := TJ : J → R and the adjoint ♯ : J → J,
x 7→ x♯, by the formulas

N(x) := α1α2α3 −
∑

αinD(ui) + tD(u1u2u3), (2)

T (x) :=
∑

αi, (3)

x♯ :=
∑((

α jαl − nD(ui)
)
eii +

(
− αiui + u jul

)
[ jl]

)
. (4)

By Exc. 1.18 (b), the final term on the right of (2) is unambiguous. Moreover,
the norm N is a cubic form, i.e., after choosing a basis of Her3(D) as a real
vector space, N is represented by a homogeneous polynomial of degree 3 in
d variables. Similarly, the trace T is a linear form, while the adjoint is a real
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quadratic map in the sense of 1.3. In particular, the expression x × y := (x +
y)♯ − x♯ − y♯ is (symmetric) bilinear in x, y. More precisely,

x × y =
∑((

α jβl + β jαl − nD(ui, vi)
)
eii (5)

+
(
− αivi − βiui + u jvl + v jul

)
[ jl]

)
.

Finally, we put

S (x) := T (x♯) =
∑(

α jαl − nD(ui)
)

(6)

and note that S := S J : J → R is a quadratic form with bilinearization given
by

S (x, y) := DS (x, y) = T (x × y) =
∑(

α jβl + β jαl − nD(ui, vi)
)
. (7)

5.9 Fundamental identities. (a) For finite-dimensional real vector spaces V,W,
equipped with the natural topology, a non-empty open subset U ⊆ V and a
smooth map F : U → W (e.g., a polynomial map), we write DF(u)(x) for the
directional derivative of F at u ∈ U in the direction x ∈ V . Thus DF(u)(x) ∈ W
agrees with the factor of t ∈ R, |t| sufficiently small, in the Taylor expan-
sion of F(u + tx). For example, given a quadratic map Q : V → W, we have
DQ(u)(x) = DQ(u, x) for u, x ∈ J, where the right-hand side is to be under-
stood in the sense of 1.3.

(b) For arbitrary elements

x =
∑(

αieii + ui[ jl]
)
, y =

∑(
βieii + vi[ jl]

)
(1)

and z of J := Her3(D), with αi, βi ∈ R, ui, vi ∈ D, 1 ≤ i ≤ 3, we denote by

x3 := x • x2 =
1
2

(xx2 + x2x) (2)

the cube, i.e., the third power, of x in J (which in general is not the same as its
cube in Mat3(D), see Exc. 36.11, (2)) and claim that the identities in 5a hold.
Verifying them is either straightforward or part of Exc. 5.15 below.

5.10 Theorem. Her3(D) is a unital euclidean Jordan algebra.

Proof We know from 5.3 that the algebra J := Her3(D) is unital and commu-
tative, so our first aim must be to establish the Jordan identity (5.6.2). To this
end, we combine (5a.9) with (5a.5), (5a.7) and obtain

x2 • y = 2T (x)x • y + T (y)x2 − 2x • (x • y) − S (x)y (1)

−
(
T (x)T (y) − T (x • y)

)
x +

(
T (x2 • y) − T (x)T (x • y) + S (x)T (y)

)
13.
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x2 =
∑((

α2
i + nD(u j) + nD(ul)

)
eii +

(
(α j + αl)ui + u jul

)
[ jl]

)
(1)

x • y =
∑((

αiβi +
1
2

nD(u j, v j) +
1
2

nD(ul, vl)
)
eii (2)

+
1
2
(
(α j + αl)vi + (β j + βl)ui + u jvl + v jul

)
[ jl]

)
T (x • y) =

∑(
αiβi + nD(ui, vi)

)
(3)

T
(
(x • y) • z

)
= T

(
x • (y • z)

)
(4)

S (x, y) = T (x)T (y) − T (x • y) (5)

x♯ = x2 − T (x)x + S (x)13 (6)

DN(x)(y) = T (x♯ • y) = T (x2 • y) − T (x)T (x • y) + S (x)T (y) (7)

x3 = T (x)x2 − S (x)x + N(x)13 (8)

x2 • y = 2T (x)x • y + T (y)x2 − S (x)y (9)

− S (x, y)x + DN(x)(y)13 − 2x • (x • y)

Table of Identities 5a Identities for elements x, y, z ∈ Her3(D).

Multiplying this equation by x, we conclude

x • (x2 • y) = 2T (x)x • (x • y) + T (y)x3 − 2x •
(
x • (x • y)

)
(2)

− S (x)x • y −
(
T (x)T (y) − T (x • y)

)
x2

+
(
T (x2 • y) − T (x)T (x • y) + S (x)T (y)

)
x.

On the other hand, replacing y by x • y in (1) and applying (5a.4), we deduce

x2 • (x • y) = 2T (x)x • (x • y) + T (x • y)x2 − 2x •
(
x • (x • y)

)
− S (x)x • y −

(
T (x)T (x • y) − T

(
x • (x • y)

))
x

+
(
T
(
x2 • (x • y)

)
− T (x)T

(
x • (x • y)

)
+ S (x)T (x • y)

)
13

= 2T (x)x • (x • y) + T (x • y)x2 − 2x •
(
x • (x • y)

)
− S (x)x • y −

(
T (x)T (x • y) − T (x2 • y)

)
x

+
(
T (x3 • y) − T (x)T (x2 • y) + S (x)T (x • y)

)
13

Subtracting this from (2) and applying (5a.8) twice now yields

x • (x2 • y) − x2 • (x • y) = T (y)x3 − T (x)T (y)x2 + S (x)T (y)x

− T
((

x3 − T (x)x2 + S (x)x
)
• y

)
13

= T (y)
(
x3 − T (x)x2 + S (x)x − N(x)13

)
= 0,
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and the Jordan identity holds. Thus J is a real Jordan algebra. To establish that
it is euclidean is now anti-climactic: let m be a positive integer, xr =

∑
(αireii +

uir[ jl]) ∈ J with αir ∈ R, uir ∈ D for 1 ≤ r ≤ m, 1 ≤ i ≤ 3, and suppose
∑

r x2
r =

0. Since some of the diagonal entries on the right-hand side of (5a.1) are strictly
positive unless x = 0, we conclude x1 = · · · = xm = 0, as claimed. □

5.11 Cubic euclidean Jordan matrix algebras. The algebras Her3(D) are
called cubic euclidean Jordan matrix algebras. This terminology is justified
by Theorem 5.10 combined with (5a.8).

5.12 Corollary. Let x ∈ Her3(D). Then

R[x] := R13 + Rx + Rx2 ⊆ Her3(D)

is a unital commutative associative subalgebra. In particular, Her3(D) is power-
associative.

Proof Since x • x2 = x3 by (5a.2), we have x • R[x] ⊆ R[x] by (5a.8). Now
the Jordan identity yields

(x2)2 = x2 • (x • x) = x • (x • x2) ∈ x • (x • R[x]) ⊆ R[x]. (1)

Thus R[x] ⊆ J := Her3(D) is a unital subalgebra. While commutativity is
inherited from J, associativity may be checked on the spanning set 13, x, x2

of R[x] as a real vector space, where it is either obvious or a consequence of
(1), resp. the Jordan identity. The final assertion follows immediately from the
definition 3.3. □

5.13 The minimum polynomial. (a) As in 3.3, we denote by µx ∈ R[t] the
minimum polynomial of x in the finite-dimensional unital power-associative
real algebra J := Her3(D). From (5a.8) we deduce

µx = t3 − T (x)t2 + S (x)t − N(x) ⇐⇒ 13 ∧ x ∧ x2 , 0 in
∧3

(J). (1)

Note that since J is power-associative (Cor. 5.12) and euclidean (Thm. 5.10),
it contains no nilpotent elements other than zero.

5.14 Corollary. The minimum polynomial of x ∈ Her3(D) splits into distinct
linear factors over R. We have

1 ≤ m := deg(µx) = dimR
(
R[x]

)
≤ 3,

and there exists a basis (cr)1≤r≤m of R[x] as a real vector space that up to order



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

5 The euclidean Albert algebra 35

is uniquely determined by the conditions

cr • cs = δrscr (1 ≤ r, s ≤ m) and
m∑

r=1

cr = 13. (1)

Proof Write µ for the product of the distinct irreducible factors of µx. Then
µx divides µn for some positive integer n, which implies µ(x)n = 0. But J :=
Her3(D) does not contain non-zero nilpotent elements (5.13). Hence µ(x) = 0,
and we conclude that µx = µ has only simple irreducible factors over R. Sup-
pose one of these has degree 2. Then C, by the Chinese Remainder Theorem
[271, Tag 00DT], becomes a (possibly non-unital) subalgebra of R[x]. It is eu-
clidean because J is, contradicting the equation 12 + i2 = 0 in C. Thus µx splits
into distinct linear factors, and applying the Chinese Remainder Theorem again
yields quantities cr, 1 ≤ r ≤ m, with the desired properties. It remains to prove
uniqueness up to order. Let (dr) be another basis of R[x] satisfying (1) after
the obvious notational adjustments. Then, with indices always varying over
{1, 2, 3}, we have dr =

∑
s αrscs for some u := (αrs) ∈ GL3(R), and d2

r = dr

yields αrs ∈ {0, 1}. On the other hand,
∑

r dr = 13 amounts to
∑

r αrs = 1.
Hence, given s, there is a unique index π(s) such that αrs = δrπ(s). Assuming
π(s) = π(s′) for some s , s′ would therefore imply the contradiction that two
distinct columns of u ∈ GL3(R) are presented by the same vector in R3. Thus
π is a permutation of {1, . . . ,m} and cr = dπ(r) for all r. □

Exercises
5.15. Verify the identities in 5a on page 33.

5.16. Show for a positive integer n that Hern(O) under the symmetric matrix prod-
uct is a Jordan algebra if and only if n ≤ 3. (Hint: Prove by repeated linearization,
equivalently, by repeatedly taking directional derivatives, that a real Jordan algebra J
satisfies the fully linearized Jordan identity u((vw)x)+v((wu)x)+w((uv)x) = (uv)(wx)+
(vw)(ux) + (wu)(vx) for all u, v,w, x ∈ J.)

5.17. Invertibility in Her3(D). Let x ∈ J := Her3(D) and denote by L0
x : R[x] → R[x]

the linear map given by L0
xy = x • y for all y ∈ R[x]. We say x is invertible in J if it is

invertible in the unital commutative associative subalgebra R[x] ⊆ J. Prove:

(a) If 13 ∧ x ∧ x2 , 0 in
∧3(J), then

µx = det
(
t1R[x] − L0

x), N(x) = det(L0
x), T (x) = tr(L0

x).

(b) N(u • v) = N(u)N(v) for all u, v ∈ R[x] but not for all u, v ∈ J.
(c) x is invertible in J if and only if N(x) , 0. In this case,

N(x−1) = N(x)−1 and x−1 = N(x)−1 x♯.

(d) x♯♯ = N(x)x (adjoint identity) and N(x♯) = N(x)2.

https://stacks.math.columbia.edu/tag/00DT
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(Hint: For (b) and (d), use Zariski density arguments such as [29, §IV.2.3, Thm. 2].)

5.18. Automorphisms of Her3(D). Prove with J := Her3(D) that a linear bijection
φ : J → J is an automorphism of J if and only if it preserves units and norms: φ(13) =
13, N ◦ φ = N. Conclude for 0 , u ∈ D that φ : J → J defined by

φ
(∑(

αieii + ui[ jl]
))

:=
∑

αieii + (u−1u1)[23] + (u2u−1)[31] + (uu3u)[12]

for αi ∈ R, ui ∈ D, 1 ≤ i ≤ 3, is an automorphism of J if and only if nD(u) = 1.

6 Z-structures of unital real Jordan algebras

Extending the notion of a Z-structure from the subalgebras D = R,C,H,O
of the Graves-Cayley octonions to real Jordan algebras, most notably the cubic
euclidean Jordan matrix algebras Her3(D), turns out to be a remarkably delicate
task. In particular, the idea of copying verbatim the formal definition 3.6 (d) in
the Jordan setting, leading to the notion of a linear Z-structure in the process,
is practically useless since, as will be seen in due course, linear Z-structures
are marred by a number of serious deficiencies, the lack of natural examples
being one of the most notorious.

In order to overcome this difficulty, we take up an idea of Knebusch [155]
by defining what we call quadratic Z-structures of finite-dimensional unital
real Jordan algebras. In contradistinction to their linear counterpart, quadratic
Z-structures are based not on the bilinear product xy but on the cubic operation
Uxy provided by the U-operator (see 6.4 below) of the ambient Jordan alge-
bra. This not only yields an abundant variety of natural examples but also a
first glimpse at how Jordan algebras should be treated over commutative rings
in which 1

2 is not available: through McCrimmon’s theory [181] of quadratic
Jordan algebras.

Throughout this section, we let J be a finite-dimensional unital real Jordan
algebra. As before, D stands for any of the unital subalgebras R,C,H,O of O.
We begin by naively rephrasing the definition of a Z-structure, with a slight
terminological twist, in the Jordan setting.

6.1 Linear Z-structures. By a linear Z-structure of J we mean a lattice Λ ⊆ J
which is unital in the sense that 1J ∈ Λ and which is closed under multiplica-
tion: xy ∈ Λ for all x, y ∈ Λ.

One is tempted to regard the preceding definition as a very natural one be-
cause, for instance, any linear Z-structure in J may canonically be regarded
as a Jordan algebra over the integers in its own right. And yet it is marred by
serious deficiencies which already come to the fore when trying to construct
examples.
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6.2 Examples: the Jordan algebras D+. By definition (5.7) or by Exc. 6.13
below, J := D+ is a special unital real Jordan algebra, and it would be perfectly
natural to expect any Z-structure of D to be a linear one of J. But this, though
valid in some isolated cases (see Exc. 6.14 below) is not true in general. In
fact, it fails to be valid in the following important examples.

(a) (Knebusch [155, p. 175]) Let D := H and M := Hur(H) ⊆ H be the Z-
structure of Hurwitz quaternions. Then i,h ∈ M by Thm. 4.2, while (1.6.12)
and (4.1.2) yield

i • h =
1
2

(ih + hi) =
1
2
(
tH(i)h + tH(h)i − nH(i,h)1H

)
=

1
2

(−1H + i),

which by Exc. 4.8 does not belong to M. Thus Hur(H) ⊆ H+ is not a linear
Z-structure.

(b) Similarly, let D := O and M := DiCoE(O) ⊆ O be the Z-structure of
Dickson-Coxeter octonions relative to a Cartan-Shouten basis E = (ui)0≤i≤7 of
O. Then u1,p ∈ M by Thm. 4.5, while (1.6.12) and (4.4.8) yield

u1 • p =
1
2

(u1p + pu1) =
1
2
(
tO(u1)p + tO(p)u1 − nO(u1,p)1O

)
=

1
2

(−1O + u1) ∈ H.

If this were an element of M, then (4.5.1) would imply u1•p ∈ DiCoE(O)∩H =
Ga(H), a contradiction. Thus u1 • p < M, and we conclude that DiCoE(O) is
not a linear Z-structure of O+.

6.3 Examples: cubic euclidean Jordan matrix algebras. Again it would be
perfectly natural to expect any Z-structure of D giving rise, via 3-by-3 hermi-
tian matrices, to a linear Z-structure of J := Her3(D). But this never holds.
Indeed, let M be a Z-structure of D. Then M is stable under conjugation, so

Λ := Her3(M) := {x ∈ Mat3(M) | x = x̄T}

makes sense and is a unital lattice in J. However, Λ fails to be closed un-
der multiplication since, e.g., 1[23] and 1[31] both belong to Λ while 1[23] •
1[31] = 1

2 [12] obviously does not. One could consider the linear Z-subalgebra
of J generated by Λ but computations similar to the previous one show that
this is not a Z-lattice.

In view of the deficiencies highlighted in the preceding examples, we will
abandon linear Z-structures of real Jordan algebras and replace them by quad-
ratic ones, which are based on the following concept.
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6.4 The U-operator. For x ∈ J, the linear map

Ux : J −→ J, y 7−→ Uxy := 2x(xy) − x2y, (1)

is called the U-operator of x. The map

U : J −→ End(J), x 7−→ Ux (2)

is called the U-operator of J. Note that the U-operator of J is a quadratic map
whose bilinearization yields the Jordan triple product

{xyz} := Ux,zy = (Ux+z − Ux − Uz)y = 2
(
x(zy) + z(xy) − (xz)y

)
(3)

for x, y, z ∈ J. The U-operator is of the utmost importance for a deeper un-
derstanding of Jordan algebras. Its fundamental algebraic properties will be
addressed in 27.10–27.12 and §29 below. For the time being, it will be enough
to observe a few elementary facts assembled in Exercises 6.12, 6.13.

6.5 Quadratic Z-structures (cf. Knebusch [155, p. 175]). By a quadratic Z-
structure of J we mean a unital latticeΛ ⊆ J such that Uxy ∈ Λ for all x, y ∈ Λ.
This implies that Λ is closed under the Jordan triple product (6.4.3) and, in
particular, 2xy = {xy1J} ∈ Λ for all x, y ∈ Λ. However, while an inspection of
(6.4.1) shows that linear Z-structures are always quadratic ones, the converse
does not hold, as may be seen from the following examples.

6.6 Examples. Let M be a Z-structure of D. Then 1D+ = 1D ∈ M, and
Exc. 6.13 yields Uxy = xyx ∈ M for all x, y ∈ M. Thus M is a quadratic
Z-structure of D+; as such it will be denoted by M+. Now it follows from 6.2
that both Hur(H)+ and DiCoE(O)+ are quadratic Z-structures of H+ and O+,
respectively, but not linear ones.

We have observed in 6.3 that

Λ := Her3(M) = {x ∈ Mat3(M) | x = x̄T}

is never a linear Z-structure of J := Her3(D). But we claim that it is always a
quadratic one. Indeed, by Cor. 3.9, trace and norm of D take on integral values
on M. Hence, given

x =
∑

(αieii + ui[ jl]), y =
∑

(βieii + vi[ jl]) ∈ Λ,

we have αi, βi ∈ M ∩ R = Z by Exc. 3.19, ui, vi ∈ M for 1 ≤ i ≤ 3, and (5a.3),
(5.8.4) yield T (x • y) ∈ Z, x♯ ∈ Λ. Linearizing and applying Exc. 6.12 (b), we
therefore obtain Uxy = T (x • y)x − x♯ × y ∈ Λ, and the proof is complete.

Our next aim will be to show that, in analogy to Corollary 3.9, the linear
form T , the quadratic form S , and the cubic form N of J := Her3(D) all take
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on integral values on any quadratic Z-structure of J. Actually, we will be able
to establish this result under slightly less restrictive conditions. The following
lemma paves the way.

6.7 Lemma. Let Λ ⊆ J := Her3(D) be a unital lattice such that QΛ ⊆ J is a
subalgebra over Q. Then T (x), S (x),N(x) ∈ Q for all x ∈ QΛ.

Proof From Prop. 3.8 we deduce µx := µRx = µ
Q
x ∈ Q[t], so m := deg(µx) is

at most 3. If m = 3, then (5.13.1) implies the assertion. At the other extreme,
if m = 1, then x = α1J for some α ∈ Q, which again implies the assertion. We
are left with the case m = 2, so µx = t2 − α1t + α2 for some α1, α2 ∈ Q, and a
short computation gives

x3 = (α2
1 − α2)x − α1α213.

Similarly, invoking (5a.8), we obtain

x3 =
(
α1T (x) − S (x)

)
x −

(
α2T (x) − N(x)

)
13,

and comparing coefficients, we conclude

α1T (x) − S (x), α2T (x) − N(x) ∈ Q. (1)

On the other hand, by Zariski density, we can find elements y ∈ QΛ and α ∈ Q×

such that

deg(µRy ) = deg(µQy ) = deg(µRαx+y) = deg(µQαx+y) = 3.

This implies T (y) ∈ Q and αT (x) + T (y) = T (αx + y) ∈ Q, hence T (x) ∈ Q.
But now (1) yields S (x),N(x) ∈ Q as well. □

6.8 Remark. Let B be a Q-subspace of J that is closed under squaring. Then B
is a Q-subalgebra since xy = 1

2 ((x + y)2 − x2 − y2) ∈ B for all x, y ∈ B.

6.9 Proposition. Let Λ ⊆ J := Her3(D) be a lattice that is stable under taking
powers x 7→ xn for n ∈ N. Then every x ∈ Λ is integral and T (x), S (x),N(x) ∈
Z.

Proof For x ∈ Λ we have 1J = x0 ∈ Λ (so Λ is unital) and x2 ∈ Λ. This
property carries over to QΛ which, by Remark 6.8, is a unital Q-subalgebra of
J. Given x ∈ Λ, Lemma 6.7 therefore implies T (x), S (x),N(x) ∈ Q. Moreover,
Λ being stable under powers, Z[x] ⊆ Λ is an additive subgroup which, along
with Λ, is finitely generated. Thus Prop. 3.5 and 3.8 show that x is integral and
µx := µRx = µ

Q
x ∈ Z[t]. Since the remaining assertions of the proposition will

follow, either for obvious reasons or from 5.13 and Exc. 3.19, if m := deg(µx) ∈
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{1, 3}, we may assume m = 2. Then Corollary 5.14 yields non-zero elements
c1, c2 ∈ R[x] and scalars α1, α2 ∈ R such that

c1 + c2 = 13, c2
1 = c1, c2

2 = c2, c1 • c2 = 0, (1)

x = α1c1 + α2c2. (2)

Note that R[x] ⊆ J is a unital commutative associative subalgebra and write R
for the integral closure of Z in R[x] (Bourbaki [27, V, §1, Def. 3]). From what
we have just seen we deduce x ∈ R, while (1) implies cr ∈ R for r = 1, 2.
Hence αrcr = xcr ∈ R by (1), (2), and we conclude that αr ∈ R is integral. On
the other hand, Exc. 6.15 below implies, or allows us to assume,

N(c1) = N(c2) = 0, T (c1) = 2, S (c1) = 1, T (c2) = 1, S (c2) = 0, (3)

which by (5a.6) implies

c♯1 = c1 − 2c1 + 13 = c2, c♯2 = c2 − c2 = 0. (4)

Combining (3), (4) with (5a.5) and Exc. 6.16, it follows that the rational num-
bers

T (x) = 2α1 + α2,

S (x) = α2
1 + α1α2S (c1, c2) = α2

1 + α1α2
(
T (c1)T (c2) − T (c1 • c2)

)
= α2

1 + 2α1α2,

N(x) = α3
1N(c1) + α2

1α2T (c♯1 • c2) + α1α
2
2T (c1 • c♯2) + α3

2N(c2) = α2
1α2

are all integral, hence belong to Z. □

Our next objective will be to derive a useful criterion for a unital lattice in J
to be a quadratic Z-structure. Before doing so, we need a lemma.

6.10 Lemma. Let X ⊆ Q be closed under squaring (i.e., ξ ∈ X ⇒ ξ2 ∈ X) and
suppose the additive subgroup of Q generated by X is finitely generated. Then
X ⊆ Z.

Proof Let dξ > 0 be the exact denominator of ξ ∈ X. By hypothesis, {dξ | ξ ∈
X} is a finite set of positive integers. Pick η ∈ X such that dη is maximal. Then
d2
η is the exact denominator of η2 ∈ X, which implies d2

η ≤ dη by maximality,
hence dη = 1 and therefore dξ = 1 for all ξ ∈ X. Thus X ⊆ Z. □

6.11 Theorem (cf. Racine [243, Prop. IV.1, p. 102]). For a unital lattice Λ ⊆
J := Her3(D) the following conditions are equivalent.

(i) Λ is a quadratic Z-structure in J.
(ii) x2 ∈ Λ for all x ∈ Λ.
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(iii) x♯ ∈ Λ for all x ∈ Λ.

Proof (i)⇒ (ii). Let x ∈ Λ. Then (6.4.1) shows x2 = Ux13 ∈ Λ.
Before we can deal with the remaining implications, it will be important to

note that

N(Λ) generates a finitely generated additive subgroup of R. (1)

In order to see this, let (e1, . . . , en) be an R-basis of J associated with Λ. Since
N(Λ) by Exc. 6.16 is contained in the additive subgroup of R generated by
the quantities N(ei) (1 ≤ i ≤ n), T (e♯i , e j) (1 ≤ i, j ≤ n, i , j), T (ei × e j, el)
(1 ≤ i < j < l ≤ n), it generates a finitely generated additive subgroup of R on
its own, as claimed. We also note

N(13 ± x) = 1 ± T (x) + S (x) ± N(x) (2)

for all x ∈ J.
(ii) ⇒ (iii). Since Λ is closed under squaring, so is QΛ, which therefore

is a rational subalgebra of J (Remark 6.8). Now Lemma 6.7 implies T (x),
S (x), N(x) ∈ Q for all x ∈ Λ. On the other hand, Exc. 5.17 (b) and (1) imply
that X := N(Λ) satisfies the hypotheses of Lemma 6.10. Hence N(Λ) ⊆ Z.
Combining (5a.5) with (2) for x ∈ Λ, we therefore conclude

T (x)2 − T (x2) = S (x, x) = 2S (x) = N(13 + x) + N(13 − x) − 2 ∈ Z. (3)

But from (2) we also deduce 2T (x) = N(13 + x) − N(13 − x) − 2N(x) ∈ Z,
which combined with (3) shows that X := Z + T (Λ) satisfies the conditions of
Lemma 6.10. Thus T (x) ∈ Z for all x ∈ Λ, and (2) gives S (x) ∈ Z. Now (5a.6)
shows x♯ ∈ Λ and we have (iii).

(iii) ⇒ (i). Since Λ is stable under the adjoint map, so is QΛ. For 0 , x ∈
QΛ, we apply Exc. 5.17 (d) and obtain N(x)x = x♯♯ ∈ QΛ. Extending x to a
Q-basis of QΛ yields an R-basis of J (Lemma 3.7), and we conclude N(x) ∈
Q. Now Exc. 5.17 (b) and (1) show that X := N(Λ) satisfies the hypotheses
of Lemma 6.10. Thus N(Λ) ⊆ Z. On the other hand, by (5a.6) linearized,
(iii) implies T (x)13 − x = 13 × x ∈ Λ, hence T (x)13 ∈ Λ and then T (x)3 =

N(T (x)13) ∈ Z. Hence T (x) ∈ Q is integral, which implies T (x) ∈ Z, S (x) =
T (x♯) ∈ Z. Now (5a.5) shows T (x • y) ∈ Z for all x, y ∈ Λ, and from (6.4.1)
combined with Exc. 6.12 (b) we conclude Uxy = T (x • y)x − x♯ × y ∈ Λ. Thus
Λ ⊆ J is a quadratic Z-structure. □

Exercises
6.12. Properties of the U-operator. Let J be a real Jordan algebra. Prove:
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(a) If J is a subalgebra of A+ for some associative real algebra A, then Uxy = xyx
for all x, y ∈ J in terms of the associative product (x, y) 7→ xy of A.

(b) If J = Her3(D), then
Uxy = T (x • y)x − x♯ × y

for all x, y ∈ J.

6.13. Show that a linear map between commutative real algebras is a homomorphism
if and only if it preserves squares. Conclude that the algebra O+ of Exc. 2.9 is a unital
special real Jordan algebra such that Uxy = xyx for all x, y ∈ O. Is O+ euclidean?

6.14. Let (ei)0≤i≤n be an orthonormal basis of D as a euclidean real vector space such
that e0 = 1D. Prove that

Λ :=
n∑

i=1

Zei

is a linear Z-structure of the special real Jordan algebra D+ (cf. Exc. 6.13). Conclude
that the Gaussian integers Ga(D) form a linear Z-structure of D+, denoted by Ga(D)+.

6.15. Idempotents. Let c ∈ J := Her3(D) be an idempotent in the sense that c2 = c, and
assume 0 , c , 13. Prove N(c) = 0 and either T (c) = 1, S (c) = 0 or T (c) = 2, S (c) = 1.

6.16. Prove
N(x + y) = N(x) + T (x♯, y) + T (x, y♯) + N(y)

for all x, y ∈ J := Her3(D).
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II

Foundations

Our main purpose in this chapter will be to introduce a number of important
concepts and terminological prerequisites in a degree of generality that will
be required in the subsequent development of the book. Throughout we let k
be an arbitrary commutative ring. All k-modules are supposed to be unital left
k-modules. Unadorned tensor products are always to be taken over k.

The possibility of k = {0} being the zero ring is expressly allowed. The only
module over k = {0} is the zero module M = {0}.

7 The language of non-associative algebras

In this section, we give a quick introduction to the language of non-associative
algebras. Without striving for completeness or maximum generality, we con-
fine ourselves to what is indispensable for the subsequent development.

7.1 The concept of a non-associative algebra. A non-associative algebra or
just an algebra over k (or a k-algebra for short) is a k-module A together with
a bilinear map A × A → A, called the multiplication (or product) of A and
usually indicated by juxtaposition: (x, y) 7→ xy. Thus k-algebras satisfy both
distributive laws and are compatible with scalar multiplication but may fail to
be associative or commutative or to contain a unit element. Nevertheless, the
standard vocabulary of ring theory (ideals, homomorphisms, quotients, direct
products, . . . ) easily extends to this more general setting and will be used here
mostly without further comment. To mention just three examples, a subalgebra
of A is a submodule closed under multiplication, a homomorphism h : A → B
of k-algebras is a linear map preserving products: h(xy) = h(x)h(y) for all
x, y ∈ A, and ideals in A are always two-sided ideals: I ⊆ A is an ideal if and
only if xy, yx ∈ I for all x ∈ I, y ∈ A. Examples of k-algebras for k = R or
k = Z have been discussed in the preceding chapter.

For the rest of this section we fix an algebra A over k.

7.2 Left and right multiplication. For x ∈ A, the linear map

Lx : A −→ A, y 7−→ Lxy := xy,

43
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is called the left multiplication operator by x in A. Similarly, the right multi-
plication operator by x in A will be denoted by

Rx : A −→ A, y 7−→ Rxy := yx .

The linear map

L : A −→ Endk(A), x 7−→ Lx, (resp. R : A −→ Endk(A), x 7−→ Rx)

is called the left (resp. right) multiplication of A.

7.3 Generators. For arbitrary subsets X,Y ⊆ A, we write XY as in 1.2 for
the additive subgroup of A spanned by all products xy, x ∈ X, y ∈ Y . Similar
conventions apply to other multi-linear mappings in place of the product of A.
We abbreviate X2 := XX. A submodule B ⊆ A is a subalgebra if and only if
B2 ⊆ B.

Let X ⊆ A be an arbitrary subset. Then the smallest subalgebra of A contain-
ing X is called the subalgebra generated by X. Roughly speaking, it consists
of all linear combinations of finite products, bracketed arbitrarily, of elements
in X. To make this a bit more precise, we introduce the following definition.

7.4 Monomials over a subset of an algebra. For a subset X ⊆ A, we define
subsets Monm(X) ⊆ A, m ∈ Z, m > 0, recursively by setting Mon1(X) = X
and by requiring that Monm(X), m ∈ Z, m > 1, consist of all products yz,
y ∈ Monn(X), z ∈ Monp(X), n, p ∈ Z, n, p > 0, n + p = m. The elements of

Mon(X) :=
⋃

m∈Z,m>0

Monm(X)

are called monomials over X. With these definitions it is clear that the subalge-
bra of A generated by X agrees with k Mon(X), i.e., with the submodule of A
spanned by the monomials over X.

7.5 Associators and commutators. The trilinear map

A × A × A −→ A, (x, y, z) 7−→ [x, y, z] := (xy)z − x(yz),

is called the associator of A, which we have described in Exc. 1.16 for the real
algebra of Graves-Cayley octonions. Similarly, the bilinear map

A × A −→ A, (x, y) 7−→ [x, y] := xy − yx

is called the commutator of A. It is straightforward to check that they satisfy
the relations

[xy, z] − x[y, z] − [x, z]y = [x, y, z] − [x, z, y] + [z, x, y] , (1)

[xy, z,w] − [x, yz,w] + [x, y, zw] = x[y, z,w] + [x, y, z]w (2)
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for all x, y, z,w ∈ A. Note that the commutator is alternating, so [x, x] = 0 for
all x ∈ A, while the associator in general is not. This gives rise to the important
concept of an alternative algebra that we encountered already in the study of
Graves-Cayley octonions (1.7) and that will be discussed more systematically
in Chap. III.

7.6 Commutative and associative algebras. The k-algebra A is commutative
if it satisfies the commutative law xy = yx, equivalently, if its commutator
is the zero map. Similarly, A is associative if it satisfies the associative law
(xy)z = x(yz), equivalently, if its associator is the zero map. Note that A is
commutative if and only if its left and right multiplications are the same. Also,
the following conditions are equivalent.

(i) A is associative.
(ii) The left multiplication L : A→ Endk(A) is an algebra homomorphism:

Lxy = LxLy for all x, y ∈ A.
(iii) The right multiplication R : A → Endk(A) is an algebra anti-homo-

morphism: Rxy = RyRx for all x, y ∈ A.

7.7 Powers. We define the powers with base x ∈ A and exponent n ∈ Z, n > 0,
recursively by the rule

x1 = x, xn+1 = xxn

and write k1[x] =
∑

n≥1 kxn for the submodule of A spanned by all powers of
x with positive integral exponents. It consists of all “polynomials” in x with
coefficients in k and zero constant term. A is said to be power-associative if
xmxn = xm+n for all x ∈ A and all m, n ∈ Z, m, n > 0. This is equivalent to
k1[x] ⊆ A, x ∈ A, being a commutative associative subalgebra; in fact, it is
then the subalgebra of A generated by x.

7.8 Idempotents. An element c ∈ A is called an idempotent if c2 = c. In
particular, we count 0 as an idempotent. Two idempotents c, d ∈ A are said to
be orthogonal if cd = dc = 0; in this case, c + d is also an idempotent. By an
orthogonal system of idempotents in A we mean a family (ci)i∈I consisting of
mutually orthogonal idempotents: cic j = δi jci for all i, j ∈ I.

7.9 Associative bilinear and linear forms. A bilinear form σ : A × A → k
is said to be associative if it is symmetric and satisfies the relation σ(xy, z) =
σ(x, yz) for all x, y, z ∈ A. If in this case I ⊆ A is an ideal, then so is I⊥ = {x ∈
A | σ(x, I) = {0}}, the orthogonal complement of I relative to σ. Every linear
form t : A→ k gives a bilinear form σt : A × A→ k via σt(x, y) := t(xy) for all
x, y ∈ A. We say that t is associative if σt is, equivalently, if t vanishes on all
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commutators and associators of A. For example, it follows immediately from
Exc. 1.18 (b) that the trace form of the Graves-Cayley octonions is associative,
even though the Graves-Cayley octonions themselves are not.

7.10 Structure constants. Generalizing the set-up described in 1.2, suppose
A is free as a k-module, with basis (ei)i∈I . Then there exists a unique family
(γi jl)i, j,l∈I of scalars in k such that, for all j, l ∈ I,

γi jl = 0 (for almost all i ∈ I), (1)

e jel =
∑
i∈I

γi jlei. (2)

The γi jl, i, j, l ∈ I, are called the structure constants of A relative to the basis
(ei). Conversely, let M be a free k-module with basis (ei)i∈I and γi jl a family of
scalars in k satisfying (1) for all j, l ∈ I, then there is a unique algebra structure
A on M making the γi jl the structure constants of A relative to (ei): just define
the multiplication of A on the basis vectors by (2) and extend it bilinearly to all
of M.

We conclude this section by quoting without proof an observation of Vas-
concelos from the theory of modules that turns out to be useful in our study of
non-associative algebras. Proofs may be found in Vasconcelos [287, Prop. 1.2],
Knus-Ojanguren [158, I, Cor. 2.4], or the Stacks project [271, Tag 05G8].

7.11 Proposition. Any surjective k-linear map from a finitely generated k-
module onto itself is bijective. □

Exercises
7.12. Let A, B be k-algebras and f : A → B a k-linear map such that, for all x, y ∈ A,
we have f (xy) = ± f (x) f (y). Show that f or − f is a homomorphism from A to B.

7.13. The nil radical (Behrens [22]). Let A be a k-algebra. An element x ∈ A is said
to be nilpotent if 0 ∈ Mon({x}) is a monomial over x (7.4). This concept of nilpotency
is the usual one for associative or, more generally, for power-associative algebras. A is
said to be a nil algebra if it consists entirely of nilpotent elements, ditto for a nil ideal.
Prove that, for any ideal I ⊆ A, A is a nil algebra if and only if I is a nil ideal and A/I
is a nil algebra. Conclude that the sum of all nil ideals in A is a nil ideal, called the nil
radical of A and denoted by Nil(A). Finally show Nil(k)A ⊆ Nil(A).

7.14. Lifting idempotents. Let A be a power-associative k-algebra.

(a) Suppose x ∈ A satisfies a monic polynomial with invertible least coefficient, i.e.,
there exist integers n > d > 0, and scalars αd, . . . , αn−1 ∈ k with αd ∈ k× and αd xd+ · · ·+
αn−1 xn−1 + xn = 0. Given r ∈ Z, r > 0, write kr[x] for the k-submodule of A spanned
by the powers xn, n ∈ Z, n ≥ r. Then show that there is a unique element c ∈ kd[x]
satisfying cxd = xd. Conclude that c ∈ A is an idempotent. (Hint: Apply Prop. 7.11.)

https://stacks.math.columbia.edu/tag/05G8
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(b) Let φ : A → A′ be a surjective homomorphism of power-associative algebras over
k and suppose Ker(φ) ⊆ A is a nil ideal (Exc. 7.13). Conclude from (a) that every
idempotent c′ ∈ A′ can be lifted to A, i.e., there exists an idempotent c ∈ A satisfying
φ(c) = c′.

Remark. If k = F is a field, then (a) says for any element x ∈ A which is not nilpo-
tent and has F1[x] finite-dimensional over F that there exists a non-zero idempotent in
F1[x] (Albert [9, §II.6, Thm. 8], Braun-Koecher [36, I, Lemma 3.2], Jacobson [136, III,
Lemma 7.1]).

8 Unital algebras

Let A be a k-algebra.

8.1 The unit element. As usual, e ∈ A is said to be a unit (or identity) element
of A if ex = xe = x for all x ∈ A. A unit element may not exist, but if it does
it is unique and called the unit element of A, written as 1A. In this case, A is
said to be unital. A unital subalgebra of a unital algebra is a subalgebra con-
taining the unit element. If A is unital, the unital subalgebra of A generated by
X ⊆ A is defined as the smallest unital subalgebra of A containing X. A unital
homomorphism of unital algebras is a homomorphism of algebras preserving
unit elements.

8.2 Powers and idempotents revisited. Suppose A is unital.

(a) For x ∈ A, we define x0 := 1A and, combining with 7.7, obtain powers xn

for all n ∈ N. The submodule of A spanned by these powers will be denoted by
k[x], so we have k[x] = k1A + k1[x]. If A is power-associative, then k[x] ⊆ A is
a unital commutative associative subalgebra and, in fact, agrees with the unital
subalgebra of A generated by x.

(b) An orthogonal system Ω = (ci)i∈I of idempotents in A as defined in 7.8
is said to be complete if ci = 0 for almost all i ∈ I and

∑
i∈I ci = 1A. Any

orthogonal system Ω = (ci)i∈I of idempotents in A having ci = 0 for almost
all i ∈ I can be enlarged to a complete one: with an additional index î < I and
Î := {î} ∪ I put Ω̂ := (ci)i∈Î where cî := 1A −

∑
i∈I ci.

8.3 The multiplication algebra. The unital subalgebra of Endk(A) generated
by all left and right multiplication operators in A is called the multiplication al-
gebra of A and will be denoted by Mult(A). We may view A as a (left) Mult(A)-
module in a natural way. The Mult(A)-submodules of A are precisely its ideals.

8.4 The centre. Let A be unital. An element a ∈ A is said to be central if
[a, x] = [a, x, y] = [x, a, y] = [x, y, a] = 0 for all x, y ∈ A. The totality of central
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elements in A, written as Cent(A), is called the centre of A. By (7.5.1), (7.5.2),
Cent(A) is a unital commutative associative subalgebra of A. To illustrate why
this is a useful idea, note that for a ∈ Cent(A) and x, y ∈ A, we have (ay)x =
a(yx) and x(ay) = x(ya) = (xy)a = a(xy). It follows that, for every ideal a of
Cent(A), aA is an ideal of A.

The assignment α 7→ α1A gives a unital homomorphism from k to Cent(A).
If this homomorphism is an isomorphism, A is said to be central. By restricting
the product of A to Cent(A) × A, we obtain a scalar multiplication on A by
elements of the centre, that converts A into a central algebra over Cent(A),
denoted by Acent and called the centralization of A.

8.5 The nucleus. Slightly less important than the centre but still useful is the
nucleus of a unital k-algebra A, defined by

Nuc(A) :=
{
a ∈ A | [a, A, A] = [A, a, A] = [A, A, a] = {0}

}
.

Evidently, Cent(A) ⊆ Nuc(A). Following (7.5.2), the nucleus is a unital ass-
ociative subalgebra of A, but will fail in general to be commutative. A subalge-
bra B ⊆ A is said to be nuclear if it is unital (as a subalgebra) and is contained
in the nucleus of A.

8.6 Simplicity and division algebras. A is said to be simple if it has non-
trivial multiplication — so A2 , {0} — and {0} and A are the only ideals
of A. Examples are fields or, more generally, division algebras, where A is
called a division algebra if it is non-zero and, for all u, v ∈ A, u , 0, the
equations ux = v, yu = v can be solved uniquely in A, equivalently, the left
and right multiplication operators Lu,Ru : A → A for 0 , u ∈ A are both
bijective. Division algebras have no zero divisors: if A is a division algebra
and x, y ∈ A satisfy xy = 0, then x = 0 or y = 0. Examples of division algebras
are provided by arbitrary field extensions but also, for k = R, by the Graves-
Cayley octonions (1.8) and the Hamiltonian quaternions (1.12). Note that an
algebra A over k with non-trivial multiplication is simple if and only if it is an
irreducible Mult(A)-module.

8.7 Matrices. For n ∈ Z, n > 0, we write Matn(A) for the k-module of n-by-n
matrices over A; it becomes a k-algebra under ordinary matrix multiplication.
Moreover, if A is unital, then so is Matn(A), with identity element given by the
n-by-n unit matrix 1n = (δi j1A)1≤i, j≤n in terms of the Kronecker-delta, and the
usual matrix units ei j, 1 ≤ i, j ≤ n, make sense in Matn(A): the (i, j)-th entry of
ei j is 1, while all other entries are 0. More generally, in obvious notation,

Matn(A) =
n⊕

i, j=1

Aei j
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as a direct sum of k-modules (where each summand on the right identifies
canonically with A as a k-module), and the expressions aei j, a ∈ A, 1 ≤ i, j ≤ n,
satisfy the multiplication rules

(aei j)(belm) = δ jl(ab)eim (a, b ∈ A, 1 ≤ i, j, l,m ≤ n). (1)

8.8 Proposition. Let n ∈ Z, n > 0, and suppose A is unital. Then the assign-
ment a 7→ Matn(a) gives an inclusion preserving bijection from the set of ideals
in A to the set of ideals in Matn(A).

Proof It suffices to show that any ideal in Matn(A) has the form Matn(a) for
some ideal a in A, so let I ⊆ Matn(A) be an ideal and put a := {a ∈ A | ae11 ∈ I}.
From (8.7.1) we deduce

(ab)e11 = (ae11)(be11), ae1 j = (ae11)e1 j,

ae j1 = e j1(ae11), and aei j = ei1(ae1 j)

for a, b ∈ A, 1 ≤ i, j ≤ n, which implies that a ⊆ A is an ideal satisfying
Matn(a) ⊆ I. Conversely, let x =

∑
i j ai jei j ∈ I, ai j ∈ A. For 1 ≤ l,m ≤ n,

the matrix alme11 =
∑

i, j(e1l(ai jei j))em1 = (e1lx)em1 is contained in I, forcing
alm ∈ a, hence x ∈ Matn(a), and the proposition is proved. □

8.9 Corollary. Let A be unital and n a positive integer. Then Matn(A) is simple
if and only if A is. □

Exercises
8.10. Ideals of finite direct products. Let (A j)1≤ j≤n be a finite family of unital k-algebras.
Show that the ideals of the direct product A = A1 × · · · × An (under the componentwise
multiplication) are precisely of the form I1 × · · · × In where I j are ideals of A j for
1 ≤ j ≤ n. Does this conclusion also hold if the A j, 1 ≤ j ≤ n, are not assumed to be
unital? Conclude that the decomposition of a unital algebra into the direct product of
finitely many simple ideals, if at all possible, is unique up to order.

8.11. Algebraic elements in power-associative algebras. Let A be a unital power-ass-
ociative algebra over a field F. An element x ∈ A is said to be algebraic (over F) if the
subalgebra F[x] ⊆ A is finite-dimensional. In this case, generalizing the terminology
introduced in 3.3, the unique monic polynomial of least degree in F[t] killing x is called
the minimum polynomial of x (over F) and is denoted by µx; note that µx generates the
ideal of all polynomials in F[t] killing x. We say that x is split algebraic (over F)
if it is algebraic and its minimum polynomial decomposes into linear factors over F.
The algebra A is called algebraic (resp. split algebraic) if every element of A has this
property.

Now let x be a split algebraic element of A and write

µx =

r∏
i=1

(t − αi)ni (1)
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with positive integers r, n1, . . . , nr and α1, . . . , αr ∈ F distinct. Then prove:

(a) Setting µi := µx
(t−αi)ni ∈ F[t] for 1 ≤ i ≤ r, there are polynomials f1, . . . , fr ∈ F[t]

such that
∑r

i=1 µi fi = 1. Conclude that (c1, . . . , cr) with ci := µi(x) fi(x) for
1 ≤ i ≤ r is a complete orthogonal system of idempotents in F[x], and that
there exists an element v ∈ F[x] satisfying

x =
r∑

i=1

αici + v, vn = 0 (n := max1≤i≤r ni). (2)

(b) c ∈ F[x] is an idempotent if and only if there exists a subset I ⊆ {1, . . . , r} such
that c = cI :=

∑
i∈I ci.

(c) The following conditions are equivalent.
(i) Nil(F[x]) = {0}.
(ii) n1 = · · · = nr = 1.
(iii) x =

∑r
i=1 αici.

In this case, x is called split semi-simple.
(d) x is invertible in F[x] if and only if αi , 0 for all i = 1, . . . , r.
(e) Assume char(F) , 2 and that all αi, 1 ≤ i ≤ r, are non-zero squares in F. Then

there exists a y ∈ F[x] such that y2 = x. (Hint: Reduce to the case α1 = · · · =
αr = 1.)

Remark. In the special case where A = Matd(F), the elements characterized in (c) are
also called diagonizable.

8.12. Central idempotents and direct sums of ideals. Let A be a unital k-algebra. Idem-
potents of A belonging to the centre are said to be central. Show for a positive integer
n that the assignment

(e j)1≤ j≤n 7−→ (Ae j)1≤ j≤n

yields a bijection from the set of complete orthogonal systems of n central idempotents
in A onto the set of decompositions of A into the direct sum of n complementary ideals.

8.13. Primitive idempotents. Let R be a commutative associative algebra of finite di-
mension over a field F. Note for an idempotent c ∈ R that Rc = {x ∈ R | cx = x} ⊆ R is
a subalgebra containing c as its identity element.

(a) Prove that the following conditions are equivalent.
(i) c is primitive, i.e., c , 0 and c cannot be decomposed into the sum of two

non-zero orthogonal idempotents.
(ii) c is the only non-zero idempotent in Rc.
(iii) c , 0 and the elements of Rc are either nilpotent or invertible (in Rc).

(b) Show that every idempotent in R splits into an orthogonal sum of primitive idem-
potents.

(c) Deduce from (a), (b) that R is isomorphic to the direct product of finite algebraic
field extensions of F provided it contains no nilpotent elements other than zero.

8.14. Assume k is noetherian and let R be a unital commutative associative k-algebra
containing an infinite orthogonal system of non-zero idempotents. Prove that R is not
finitely generated as a k-algebra.
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8.15. Nucleus and centre of matrix algebras. Let A be a unital k-algebra and n a positive
integer. Show

Nuc
(
Matn(A)

)
= Matn

(
Nuc(A)

)
, Cent

(
Matn(A)

)
= Cent(A)1n.

8.16. Let F be an algebraically closed field. Show that every finite-dimensional non-
associative division algebra over F is isomorphic to F.

9 Scalar extensions

Scalar extensions belong to the most useful techniques in the study of mod-
ules and non-associative algebras over commutative rings. In this section, we
briefly recall the main ingredients of this technique, remind the reader of some
standard facts about projective modules and give a few applications to scalar
extensions of simple algebras.

Throughout we let k be an arbitrary commutative ring.

9.1 The category k-alg. We denote by k-alg the category of unital commuta-
tive associative k-algebras. The objects of this category are commutative ass-
ociative k-algebras containing an identity element, while its morphisms are
k-algebra homomorphisms taking 1 into 1. In this language, the category of
commutative rings is the same as Z-alg. Note that an object of k-alg is basi-
cally nothing else than a commutative ring R, i.e., an object of Z-alg, together
with a ring homomorphism k → R, called the unit homomorphism of R ∈ k-alg.
The ring k together with its identity morphism is an initial object in k-alg, and
the zero ring is the terminal object.

9.2 Scalar extensions of modules. We write k-mod for the category of k-
modules, its objects being (left) k-modules and its morphisms being k-linear
maps. For M ∈ k-mod and R ∈ k-alg, the k-module M ⊗ R may be converted
into an R-module by the scalar multiplication

s(x ⊗ r) = x ⊗ (rs) (x ∈ M, r, s ∈ R). (1)

This R-module, denoted by MR, will be called the scalar extension or base
change of M from k to R. If f : M → N is a k-linear map between k-modules,
then

fR := f ⊗ 1R : MR −→ NR, x ⊗ r 7−→ f (x) ⊗ r (2)

is an R-linear map between R-modules, called the base change or scalar exten-
sion of f from k to R. Summing up, we thus obtain a functor from k-mod to
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R-mod. We also have a natural map

can := canM := canM,R : M −→ MR, x 7−→ xR := x ⊗ 1R, (3)

which is k-linear but in general neither injective nor surjective. For any k-linear
map f : M → N, its R-linear extension fR : MR → NR is the unique R-linear
map making the diagram

M
f
//

can
��

N

can
��

MR fR
// NR

(4)

commutative. Moreover, given an R-module M′ and a k-linear map g : M →

M′, there is a unique R-linear map g′ : MR → M′ such that g′ ◦ canM = g,
namely the one given by

g′(x ⊗ r) = rg(x) (x ∈ M, r ∈ R). (5)

9.3 Reduction modulo an ideal. Let M be a k-module and a ⊆ k an ideal. If
we write α 7→ ᾱ (resp. x 7→ x̄) for the canonical map from k to k̄ := k/a (resp.,
from M to M̄ := M/aM), then M̄ becomes a k̄-module under the well-defined
natural action

(ᾱ, x̄) 7−→ αx (α ∈ k, x ∈ M)

from k̄ × M̄ to M̄. We have k̄ ∈ k-alg and a natural identification Mk̄ = M̄ as
k̄-modules such that

x ⊗ ᾱ = αx (1)

for x ∈ M and α ∈ k.

9.4 Iterated scalar extensions. Iterated scalar extensions collapse to simple
ones: for R ∈ k-alg, we have R-alg ⊆ k-alg canonically as a faithful subcate-
gory (though not a full one) and, given a k-module M, any S ∈ R-alg yields a
natural identification (MR)S = MS as S -modules via

(x ⊗ r) ⊗R s = x ⊗ (rs), x ⊗ s = (x ⊗ 1R) ⊗R s = xR ⊗R s (1)

for all x ∈ M, r ∈ R, s ∈ S . This identification is functorial in M, so we have
(xR)S = xS for all x ∈ M and (φR)S = φS for all k-linear maps φ : M → N of
k-modules M,N. Moreover, the unit homomorphism ϑ : R → S , r 7→ r · 1S , is
a morphism in k-alg (even in R-alg) such that

(1M ⊗ ϑ)(x) = xS (2)
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for all x ∈ MR. Hence 1M ⊗ ϑ = canMR,S .

9.5 Localizations. Particularly important instances of scalar extensions are
provided by localizations at prime ideals. Here are some of the relevant facts.
Unless explicitly saying otherwise, we refer the reader to Bourbaki [27, II] for
details and further reading.

We denote by Spec(k) the prime spectrum of k, i.e., the totality of prime
ideals in k, endowed with the Zariski topology. Recall that a basis for this
topology is provided by the principal open sets

D( f ) := {p ∈ Spec(k) | f < p} ⊆ Spec(k) ( f ∈ k). (1)

We also put

V(Z) := {p ∈ Spec(k) | Z ⊆ p} (Z ⊆ k), (2)

V( f ) := V({ f }) = Spec(k) \ D( f ) for f ∈ k and have V(Z) = V(kZ) for Z ⊆ k.
The open (resp. closed) subsets of Spec(k) relative to the Zariski topology are
called Zariski-open (resp. Zariski-closed).

Let ϑ : k → k′ be a homomorphism of commutative rings, i.e., a morphism
in Z-alg. Then

Spec(ϑ) : Spec(k′)→ Spec(k), p
′ 7→ ϑ−1(p′), (3)

is a well-defined continuous map. In this way, Spec becomes a contra-variant
functor from the category of commutative rings to the category of topological
spaces.

The localization of k at a prime ideal p ⊆ k will be denoted by kp; it is a
local ring, with maximal ideal denoted by pp. The corresponding residue field,
written as k(p) = kp/pp, agrees with the quotient field of k/p. Now let M be a
k-module. We write Mp := M ⊗ kp (resp. M(p) := M ⊗ k(p) = Mp ⊗kp k(p)) for
the base change of M from k to kp (resp. to k(p)), and obtain natural maps

canp := canM,kp : M −→ Mp, x 7−→ xp := xkp , (4)

can(p) := canM,k(p) : M → M(p), x 7−→ x(p) := xk(p). (5)

Moreover, for any k-linear map φ : M → N of k-modules M,N, we put φp :=
φkp : Mp → Np and φ(p) := φk(p) : M(p)→ N(p).

Given a ring homomorphism ϑ : k → k′ as above, let p′ ∈ Spec(k′) and put
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p := Spec(ϑ)(p′) = ϑ−1(p′). Then we obtain a commutative diagram

k ϑ //

canp

��
can(p)

''

k′

canp′

��
can(p′)

ww

kp
ϑ′ //

ϱ(p)

��

k′
p′

ϱ(p′)

��
k(p)

ϑ̄

// k′(p′),

(6)

where ϑ′ : kp → k′
p′

is the local homomorphism canonically induced by ϑ and
ϱ(p) : kp → k(p) is the canonical projection, ditto for ϱ(p′). Hence ϑ′ deter-
mines canonically a field homomorphism ϑ̄ : k(p)→ k(p′), making the preced-
ing diagram commutative and k′(p′) a field extension of k(p). Now let M be a
k-module, regard k′ (resp. k′

p′
) as an element of k-alg (resp. kp-alg) by means

of ϑ (resp. ϑ′) and put M′ := Mk′ as a k′-module. Then (9.4.1) yields natural
identifications

M′p′ = Mp ⊗kp k′p′ (7)

as k′
p′

-modules that are functorial in M. Similarly,

M′(p′) = M(p) ⊗k(p) k′(p′) (8)

as vector spaces over k′(p′).

9.6 Principal open sets as spectra. For f ∈ k, we denote by

k f := {α/ f n | α ∈ k, n ∈ N} (1)

the ring of fractions associated with the multiplicative subset { f n | n ∈ N} ⊆ k
and by

can f : k −→ k f , α 7−→ α/1, (2)

the canonical homomorphism, making k f a k-algebra. The continuous map

Spec(can f ) : Spec(k f ) −→ Spec(k)

induces canonically a homeomorphism

Φ f : Spec(k f )
∼
−→ D( f ) ⊆ Spec(k)

such that

Φ f (q) = {α ∈ k | α/1 ∈ q} (q ∈ Spec(k f )), (3)

Φ−1
f (p) = p f := {α/ f n | α ∈ k, n ∈ N} (p ∈ D( f )). (4)
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Moreover, for g ∈ k, n ∈ N, the principal open set D(g/ f n) ⊆ Spec(k f ) satisfies

Φ f
(
D(g/ f n)

)
= D( f ) ∩ D(g) = D( f g). (5)

Finally, for a k-linear map φ : M → N of k-modules M,N, we denote by φ f :=
φk f : Mk f =: M f → N f := Nk f its k f -linear extension.

9.7 Principal open sets of idempotents. Let ε ∈ k be an idempotent and M a
k-module. We put ε+ := ε, ε− := 1− ε, k± = ε±k, M± := ε±M = k±M and have
k = k+ × k− as a direct product of ideals, M = M+ × M− as a direct product of
submodules. The projections

π± : k −→ k±, α 7−→ α± := ε±α, (1)

make k± elements of k-alg. Similarly, we have the projections M → M±, x 7→
x± := ε±x, and obtain natural identifications

Mk± = M ⊗ k± = M± (2)

as k±-modules such that

x ⊗ α± = α±x = α±x± (α± ∈ k±, x ∈ M). (3)

Moreover, any k-linear map φ : M → N of k-modules M,N induces k±-linear
maps φ± : M± → N± via restriction and φ± = φk± is the base change of φ from
k to k±.

There is a unique morphism π+ε : kε → k+ in k-alg that makes the diagram

k
π+ //

canε
��

k+

kε,

�

π+ε

88

(4)

commutative and is actually an isomorphism. By 9.6, therefore,

Spec(π+) : Spec(k+)→ Spec(k)

induces canonically a homeomorphism Spec(k+)
∼
→ D(ε) ⊆ Spec(k). Note that

Spec(π+)(p+) = p+ × k− ∈ D(ε) (5)

for all p+ ∈ Spec(k+).

9.8 Projective modules. Recall that a k-module M is projective if it is a direct
summand of a free k-module. This property is stable under base change, i.e., if
M is projective as a k-module, then MR = M ⊗ R is a projective R-module, for
all R ∈ k-alg. A key result is Kaplansky’s Theorem [271, Tag 0593]: If k is a
local ring, then every projective k-module is free.

https://stacks.math.columbia.edu/tag/0593
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Let us use this result to define a notion of rank. When k is not the zero ring,
km � kn if and only if m = n [271, Tag 0FJ7]. We define the rank of the
free module km, denoted rk(km), to be m. Note that this agrees with the notion
of dimension of a vector space in case k is a field. For a free module M that
is not finitely generated, we write simply rk(M) := ∞, and do not bother to
distinguish among infinite cardinals. When k is the zero ring, km � kn for all
m, n and we do not define the notion of rank in this case. For a projective k-
module M, by Kaplansky Mp is free for every prime ideal p ∈ Spec(k), and in
this way we obtain a function

Spec(k) −→ N ∪ {∞}, p 7−→ rkp(M) := rkkp (Mp) = dimk(p)
(
M(p)

)
.

We call rkp(M) the rank of M at p ∈ Spec(k).
For a projective k-module M and r ∈ N, we say M has rank r if k is not

the zero ring and rkp(M) = r for all p ∈ Spec(k). This condition forces M to
be finitely generated [288, Prop. 1.3]. If M is projective but not necessarily
finitely generated, the preceding terminology makes sense and will be used
also for r = ∞. Finally, a projective k-module is said to have finite constant
rank if it has rank r, for some r ∈ N. When we speak of the rank of a module,
implicitly such a statement includes an assumption that k , 0.

We have by [271, Tag 00NX] or [27, II.5, Thm. 1] and [28, II.2, Cor. 1 of
Prop. 4] that the following conditions are equivalent:

(i) M is finitely generated projective.
(ii) M is a direct summand of a free k-module of finite rank.
(iii) M is finitely generated and for all p ∈ Spec(k), the kp-module Mp

is free, and the rank function of M is locally constant relative to the
Zariski topology.

(iv) There exists a finite family ( fi)i∈I of elements in k generating k as an
ideal such that, for all i ∈ I, the k fi -module M fi is free of finite rank.

For the case where we know that M is projective, we have the following
criterion.

9.9 Lemma. A projective k-module M is finitely generated if and only if Mp is
finitely generated for every p ∈ Spec(k) and the rank function of M is locally
constant in the Zariski topology.

Proof We first prove “if”. For each p ∈ Spec(k) there is some fp ∈ k \
p such that the rank function is a finite constant on D( fp), which we de-
note by rp. Since Spec(k) = ∪D( fp) and Spec(k) is quasi-compact [27, II.4,
Prop. 12], there exists a finite list p1, . . . , pn of prime ideals such that Spec(k) =

https://stacks.math.columbia.edu/tag/0FJ7
https://stacks.math.columbia.edu/tag/00NX
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∪n
i=1D( fpi ). In particular, the rank function has upper bound max{rp1 , . . . , rpn },

a finite number, so M is finitely generated by [288, Prop. 1.4].
Conversely, if M is generated by r elements, then so is Mp for every prime

p, whence rkp(M) ≤ r. Property (iii) above completes the proof. □

9.10 Remark. We offer, without details, the following two interesting examples
as cases where the hypotheses of the above results do not apply.

(i) Let M ⊂ Q be the set of rational numbers of the form a/b such that a,
b are integers and b is not divisible by the square of any prime, viewed
as a Z-module. For every prime number p, Mp is free of rank 1, but M
is neither finitely generated nor projective.

(ii) Let F be a field and take k to be the ring
∏

i∈N F. (The space Spec(k)
is identified with the Stone-Čech compactification ofN.) The k-module
⊕i∈NF is projective and its rank at every p ∈ Spec(k) is 0 or 1. However,
it is not finitely generated.

9.11 The dual module. If M is a k-module, then so is M∗ := Homk(M, k),
called the dual (module) of M. For example, in case M = kn, the map

M → M∗

y 7→ (x 7→ yTx)

is an isomorphism [28, §II.2.6, Prop. 11]. It follows that the dual of a finitely
generated projective module is also a finitely generated projective module.

If f : M → N is a morphism in k-mod, then so is f ∗ : N∗ → M∗, y∗ 7→ y∗◦ f .
In this way, we obtain a contravariant additive functor ∗ : k-mod → k-mod,
called the duality functor of k-mod.

9.12 Line bundles. A line bundle over k is defined as a projective k-module of
rank 1. This means that the following equivalent conditions are fulfilled.

(i) L is a finitely generated k-module and, for all p ∈ Spec(k), the kp-
module Lp is free of rank 1.

(ii) There are finitely many elements f1, . . . , fm ∈ k such that
∑

k fi = k
and, for each i = 1, . . . ,m, the k fi -module L fi is free of rank 1.

For line bundles L, L′ over k, we recall the following elementary but funda-
mental facts.

(a) L ⊗ L′ and the dual module L∗ = Homk(L, k) are line bundles over k.
(b) Pic(k) := {[L] | L is a line bundle over k}, where [L] stands for the iso-

morphism class of L, is an abelian group under the operation [L][L′] :=
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[L ⊗ L′], with unit element and inverse of [L] given by [k] and [L∗],
respectively. Pic(k) is called the Picard group of k.

(c) For R ∈ k-alg, LR = L ⊗ R is a line bundle over R and L 7→ LR gives
a group homomorphism Pic(k)→ Pic(R). Thus we obtain a (covariant)
functor Pic from k-alg to abelian groups.

(d) If φ : L→ L′ is an epimorphism, then it is, in fact, an isomorphism.

9.13 Unimodular elements. Fixing a k-module M, we write (y∗, x) 7→ ⟨y∗, x⟩
for the canonical pairing M∗ × M → k. Given x ∈ M,

⟨M∗, x⟩ := {⟨y∗, x⟩ | y∗ ∈ M∗} (1)

is an ideal in k. We say x is unimodular if kx ⊆ M is a free submodule (of
rank 1) and a direct summand of M at the same time. This obviously happens
if and only if ⟨y∗, x⟩ = 1 for some y∗ ∈ M∗, i.e., ⟨M∗, x⟩ = k; in this case, the
k-module kx has (x) as a basis.

For example, an element x in the free module kn is unimodular if and only if
there is a y ∈ kn such that yTx = 1k, if and only if the coordinates of x generate
the unit ideal k.

Note that for an element x of a projective (hence free) module M over a
local ring k to be unimodular it is necessary and sufficient that it can be ex-
tended to a basis of M. Indeed, if x is unimodular, choose any submodule N
of M complementary to kx. Then N is free, and x together with any basis of
N gives a basis of M extending x. Conversely, given any basis of M extending
x, then kx is free, and the remaining basis vectors generate a submodule of M
complementary to kx.

9.14 A notational ambiguity. Let M be a k-module, x∗ ∈ M∗ and R ∈ k-alg.
Then the symbol x∗R := (x∗)R can be interpreted in two ways: on the one hand,
as x∗R = x∗ ⊗ 1R via (9.2.3), which belongs to (M∗)R, on the other as x∗R =
x∗ ⊗ 1R : MR → kR = R via (9.2.2), which belongs to (MR)∗. In general, these
interpretations lead to completely different objects, but, as the following result
shows, in an important special case they may be identified under a canonical
isomorphism. In fact, this isomorphism survives as a homomorphism in full
generality as follows:

For a k-module M and any R ∈ k-alg as above, the assignment x∗ 7→ x∗ ⊗ 1R

determines a k-linear map M∗ → (MR)∗, which by (9.2.5) gives rise to an R-
linear map φ : (M∗)R → (MR)∗ satisfying φ(x∗⊗ r) = r(x∗⊗1R) for all x∗ ∈ M∗,
r ∈ R.

9.15 Lemma. Let M be a finitely generated projective k-module and R ∈ k-alg.
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Then the natural map

φ : (M∗)R
∼
−→ (MR)∗, x∗ ⊗ r 7−→ r(x∗ ⊗ 1R)

is an isomorphism of R-modules. Identifying (M∗)R = (MR)∗ =: M∗R by means
of this isomorphism, we have ⟨x∗, x⟩R = ⟨x∗R, xR⟩ for all x ∈ M, x∗ ∈ M∗, in
other words, the canonical pairing M∗R × MR → R is the R-bilinear extension
of the canonical pairing M∗ × M → k.

Proof We must show that φ is bijective. Since φ is additive in M, we may
assume that M is free of finite rank, with basis (ei)1≤i≤n. Let (e∗i )1≤i≤n be the
corresponding dual basis of M∗. Then (eiR), (e∗iR) are R-bases of MR, (M∗)R,
respectively, while the family (e∗i ⊗ 1R) of elements of (MR)∗ is dual to (eiR),
hence forms the corresponding dual basis of (MR)∗. But φ(e∗i ⊗ 1R) = e∗i ⊗ 1R

for 1 ≤ i ≤ n, forcing φ to be an isomorphism. Finally, using φ to identify
(M∗)R = (MR)∗ and letting x ∈ M, x∗ ∈ M∗, we conclude ⟨x∗R, xR⟩ = ⟨x∗ ⊗
1R, xR⟩ = ⟨x∗ ⊗ 1R, x ⊗ 1R⟩ = ⟨x∗, x⟩ ⊗ 1R = ⟨x∗, x⟩R. □

9.16 Lemma (Loos [174, 0.3]). Assume M is a finitely generated projective
k-module and let x ∈ M. For each prime ideal p of k, x(p) = 0 if and only if
⟨M∗, x⟩ ⊆ p.

Proof M(p) being a vector space over k(p), we have x(p) = 0 if and only
if ⟨y∗, x(p)⟩ = 0 for all y∗ ∈ M(p)∗. Identifying M(p)∗ = M∗(p) by means of
Lemma 9.15, we therefore obtain

x(p) = 0⇐⇒ ⟨y∗(p), x(p)⟩ = 0 for all y∗ ∈ M∗

⇐⇒ ⟨y∗, x⟩(p) = 0 for all y∗ ∈ M∗

⇐⇒ ⟨y∗, x⟩ ∈ p for all y∗ ∈ M∗.

That is, ⟨M∗, x⟩ ⊆ p. □

9.17 Lemma. Consider the following conditions, for a k-module M and x ∈
M.

(i) x is unimodular.
(ii) xR , 0 for all non-zero R ∈ k-alg.
(iii) xK , 0 for all fields K ∈ k-alg.
(iv) x(p) , 0 for all p ∈ Spec(k).

Then the implications

(i) =⇒ (ii)⇐⇒ (iii)⇐⇒ (iv)

hold. If M is finitely generated projective, then all four conditions are equiva-
lent.
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Proof The implications (i)⇒ (ii)⇒ (iii)⇒ (iv) are obvious. If M is finitely
generated projective and (iv) holds, then by Lemma 9.16 ⟨M∗, x⟩ is an ideal of
k not contained in any prime ideal, so it is all of k and (i) holds. It remains to
prove (iv)⇒ (iii)⇒ (ii)

(iv)⇒ (iii). If K ∈ k-alg is a field, then the kernel of the unit morphism k →
K is a prime ideal p ⊆ k, making K a field containing k(p), and xK = x(p)K , 0
by (iv).

(iii) ⇒ (ii). Let {0} , R ∈ k-alg and m ⊆ R be a maximal ideal. Then
K := R/m ∈ k-alg is a field and (xR)K = xK , 0 by (iv), forcing xR , 0. □

9.18 Tensor products of algebras. Given k-algebras A, B, the k-module A⊗ B
is again a k-algebra under the multiplication

(x1 ⊗ y1)(x2 ⊗ y2) = (x1x2) ⊗ (y1y2) (xi ∈ A, yi ∈ B, i = 1, 2). (1)

Moreover, if A and B are both unital, so is A ⊗ B, with unit element 1A⊗B =

1A ⊗ 1B. For example, given any unital k-algebra A and a positive integer n, we
have a natural identification Matn(k)⊗A = Matn(A) such that x⊗a = xa = (ξi ja)
for x = (ξi j) ∈ Matn(k), a ∈ A.

Now let A be a k-algebra and R ∈ k-alg. Then the R-module structure of
AR (9.2) is compatible with the k-algebra structure of A ⊗ R as defined in (1).
In other words, AR is canonically an R-algebra, and the observations made in
9.2–9.13 carry over mutatis mutandis from modules to algebras. In particular,
the assignment A 7→ AR gives a functor from k-algebras to R-algebras.

We now give applications of the preceding set-up to simple algebras.

9.19 Proposition. Let A be a unital k-algebra. Then the right multiplication
of A induces an isomorphism

R : Cent(A)
∼
−→ EndMult(A)(A)

of k-algebras.

Proof For a ∈ Cent(A), Ra clearly belongs to EndMult(A)(A), so we obtain a
unital homomorphism R : Cent(A) → EndMult(A)(A), which is obviously injec-
tive. To show that it is also surjective, let d ∈ EndMult(A)(A) act on A from the
right by juxtaposition. Then (xy)d = x(yd) = (xd)y for all x, y ∈ A. Putting
y = 1A, we conclude d = Ra, where a := 1Ad. Hence the preceding relation is
equivalent to (xy)a = x(ya) = (xa)y, which in turn is easily seen to imply that
a belongs to the centre of A. □

9.20 Corollary. The centre of a unital simple algebra is a field.
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Proof Since Mult(A) acts irreducibly on A, it suffices to combine Proposi-
tion 9.19 with Schur’s lemma [142, p. 118]. □

For the remainder of this section, we use Prop. 9.19 to identify Cent(A) =
EndMult(A)(A) for any unital k-algebra A.

9.21 Corollary. Let A be a unital finite-dimensional algebra over a field F
and suppose A is simple. Then EndCent(A)(A) = Mult(A).

Proof Since Mult(A) acts faithfully and irreducibly on A, it is a primitive
Artinian F-algebra [142, Def. 4.1], hence simple [142, Thm. 4.2]. Moreover,
by Proposition 9.19, its centralizer in EndF(A) is Cent(A). Thus the assertion
follows from the double centralizer theorem [142, Thm. 4.10]. □

Algebras that are both central and simple are called central simple.

9.22 Corollary. A unital finite-dimensional algebra A over a field F is central
simple if and only if it is non-zero and Mult(A) = EndF(A).

Proof If A is central simple, the assertion follows from Cor. 9.21. Conversely,
suppose A , {0} and Mult(A) = EndF(A). Then A is simple, and Cor. 9.21
implies that Cent(A) belongs to the centre of EndF(A). Hence A is central. □

9.23 Corollary. For a unital finite-dimensional algebra A over a field F, the
following conditions are equivalent.

(i) A is central simple.
(ii) A ⊗ F′ is central simple for every field F′ ∈ F-alg.
(iii) A ⊗ F̄ is simple, where F̄ denotes the algebraic closure of F.

Proof (i) ⇒ (ii). Let F′ be an extension field of F and put A′ = A ⊗ F′

as an F′-algebra. After identifying EndF′ (A′) = EndF(A) ⊗ F′ canonically,
a moment’s reflection shows Mult(A′) = Mult(A) ⊗ F′. Hence the assertion
follows from Cor. 9.22.

The implication (ii)⇒ (iii) is obvious.
(iii) ⇒ (i). If I ⊆ A is a non-trivial ideal, then so is I ⊗ F̄ ⊆ A ⊗ F̄, a

contradiction. Hence A is simple. By Exc. 9.33 (a), Cent(A) ⊗ F̄ agrees with
the centre of A ⊗ F̄ and therefore is a finite algebraic field extension of F̄. As
such, it has degree 1, forcing Cent(A) = F1A, and A is central. □

Exercises
9.24. Centre and nucleus under base change. Show that the centre (resp. the nucleus)
of a unital k-algebra A in general does not commute with base change, even if one
assumes that the centre (resp. the nucleus) is free of finite rank and a direct summand
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of A as a k-module. (Hint: Let A be the unital Z-algebra given on a free Z-module of
rank 3 with basis 1A, x, y by the multiplication table x2 = 2 · 1A, xy = yx = y2 = 0 and
consider its base change to R := Z/2Z ∈ Z-alg.)

9.25. Let A be a nonassociative F-algebra for a field F and suppose the dimension of
A, as a vector space, is finite. Prove:

(a) If A has no zero divisors, then A is a division algebra in the sense of 8.6.
(b) If A is a division algebra, then so is AK for K = F(t) or F((t)).

9.26. Call a unital commutative associative k-algebra k′ with unit morphism ϑ : k → k′
a cover of k if the induced map Spec(ϑ) : Spec(k′) → Spec(k) is surjective. Prove: For
every field K ∈ k-alg and cover k′ of k, there are a field K′ ∈ k′-alg and a homomor-
phism K → K′ making the diagram

K // K′

k

OO

ϑ // k′

OO

commutative.

9.27. Fibers of prime spectra. Let φ : k → k′ be a homomorphism of commutative
rings, let p ∈ Spec(k) and view k′ as a k-algebra by means of φ. Consider the ring
homomorphism

can(p) = cank′ ,k(p) : k′ −→ k′(p) = k′ ⊗ k(p), α′ 7−→ can(p)(α′) = α′(p) = α′ ⊗ 1k(p)

and show that the continuous map

Spec
(
can(p)

)
: Spec

(
k′(p)

)
−→ Spec(k′)

induces canonically a homeomorphism

Spec
(
k′(p)

) ∼
−→ Spec(φ)−1(p),

where the right-hand side carries the topology induced by the Zariski topology of
Spec(k′).

9.28. Put X := Spec(k).

(a) Let ψ, χ : M → N be k-linear maps of k-modules and suppose M is finitely gener-
ated. Show that

U := {p ∈ X | ψp = χp}

is a Zariski-open subset of X.

(b) Let φ : A → B be a k-linear map of k-algebras and suppose A is finitely generated
as a k-module. Prove that

V := {p ∈ X | φp : Ap → Bp is an algebra homomorphism}

is a Zariski-open subset of X.

9.29. Idempotents and partitions. Consider X = Spec(k) under the Zariski topology as
in 9.5.
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(a) Let ε ∈ k be an idempotent. Prove

D(ε) = {p ∈ X | εp = 1p} = {p ∈ X | εp , 0} = V(1 − ε).

Conclude for an orthogonal system (εi)i∈I of idempotents in k satisfying εi = 0 for
almost all i ∈ I that

⋃
D(εi) = D(

∑
εi) and the union on the left is disjoint.

(b) Prove that the assignment (εi)i∈I 7→ (D(εi))i∈I yields a bijection from the set of
complete orthogonal systems of idempotents in k in the sense of 8.2 (b) onto the set
of decompositions of X into the disjoint union of open subsets almost all of which are
empty. (Hint: To prove surjectivity, you may either argue with the structure sheaf of
the geometric (= locally ringed) space attached to k (Grothendieck [107, Chap. 1, §1],
Demazure-Gabriel [61, I, §1, no. 1,2, particularly Prop. 2.6], Hartshorne [116, II, §2])
or imitate the proof of Bourbaki [27, II.4, Prop. 15], but watch out in the latter case for
a sticky point in the argument.)

9.30. Suppose M and N are projective k-modules, M is finitely generated, and f : M →
N is a k-linear map. Prove: f is an isomorphism if the induced map Mm → Nm is
surjective and rkm(M) = rkm(N) for every maximal ideal m of k.

9.31. Rank decomposition. Let M be a finitely generated projective k-module. Prove:

(a) The set

Rk(M) := {rkp(M) | p ∈ Spec(k)}

is finite.
(b) There exists a unique complete orthogonal system (εi)i∈N of idempotents in k

such that, with the induced decompositions

k =
∏
i∈N

ki, ki = kεi (i ∈ N), (1)

M =
∏
i∈N

Mi, Mi = M ⊗ ki (i ∈ N) (2)

as direct product of ideals (resp. of additive subgroups), the ki-modules Mi are
finitely generated projective of rank i, for all i ∈ N having ki , {0}. Show
further that εi = 0 for all i ∈ N \ Rk(M).

Remark. Equation (2) is called the rank decomposition of M. It remains virtually un-
changed by ignoring the components belonging to some or all indices i ∈ N \ Rk(M).
Note also that, if M carries an algebra structure, (2) is a direct product of ideals.

9.32. Residually simple algebras. (Cf. Knus [157, III, (5.1.8)]) Let A, A′ be unital k-
algebras that are finitely generated projective of the same rank r ∈ N as k-modules.
Suppose A is residually simple, so A(p) is a simple algebra over the field k(p), for
all p ∈ Spec(k). Prove that every unital algebra homomorphism from A to A′ is an
isomorphism.

9.33. Groups of antomorphisms1. By an algebra with a group of antomorphisms over
k we mean a pair (A,G) consisting of a k-algebra A and a group G of automorphisms
or anti-automorphisms of A. An ideal of (A,G) is an ideal of A which is stabilized by

1 This is not a misprint.
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every element of G. We say that (A,G) is simple if A2 , {0} and there are no ideals of
(A,G) other than {0} and A. If A contains an identity element, in which case we also say
that (A,G) is unital, we define the centre of (A,G) as the set of elements in the centre
of A that remain fixed under G:

Cent(A,G) = {a ∈ Cent(A) | g(a) = a for all g ∈ G}.

If the natural map from k to Cent(A,G) is an isomorphism of k-algebras, then (A,G) is
said to be central. Unital algebras with a group of antomorphisms which are both central
and simple are called central simple. By the multiplication algebra of (A,G), written
as Mult(A,G), we mean the unital subalgebra of Endk(A) generated by G and all left
and right multiplication operators affected by arbitrary elements of A. Base change of
algebras with a group of antomorphisms is defined canonically. Note that ordinary k-
algebras are algebras with a group of antomorphisms in a natural way, as are algebras
with involution.

Now let F be a field and (A,G) an F-algebra with a group of antomorphisms. Then
prove:

(a) Cent((A,G) ⊗ R) = (Cent(A,G)) ⊗ R as R-algebras, for any R ∈ F-alg.

(b) The right multiplication of A induces an isomorphism

R : Cent(A,G)
∼
−→ EndMult(A,G)(A)

of F-algebras.

(c) The centre of a unital simple algebra with a group of antomorphisms is a field.

(d) If (A,G) is finite-dimensional, then EndCent(A,G)(A) = Mult(A,G), and for (A,G) to
be central simple it is necessary and sufficient that A , {0} and Mult(A,G) = EndF(A).

9.34. Central simplicity of algebras with groups of antomorphisms. Let (A,G) be a
finite-dimensional unital algebra with a group of antomorphisms over a field F. Show
that the following conditions are equivalent.

(i) (A,G) is central simple.
(ii) Every base field extension of (A,G) is central simple.
(iii) (A,G) ⊗ F̄ is simple, where F̄ denotes the algebraic closure of k.

9.35. Tensor products of algebras with groups of antomorphisms. Let (A,G), (A′,G′)
be unital algebras with a group of antomorphisms over a field F and suppose (i) A
is commutative or G′ ⊆ Aut(A′), and (ii) A′ is commutative or G ⊆ Aut(A). Define
(A,G)⊗ (A′,G′) = (A⊗A′,G⊗G′), where G⊗G′ is supposed to consist of all g⊗g′, g ∈
G, g′ ∈ G′ having the same parity in the sense that they are both either automorphisms
or anti-automorphisms of A, A′, respectively. Show that if (A,G) is central simple and
(A′,G′) is simple, then (A,G) ⊗ (A′,G′) is simple.

10 Involutions

Involutions of associative algebras are a profound concept with important con-
nections to other branches of algebra and arithmetic. An in-depth account of
this concept over fields may be found in Knus-Merkurjev-Rost-Tignol [160].
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Over arbitrary commutative rings, the reader may consult Knus [157, III, §8]
for useful results on the subject. In the present section, elementary properties of
involutions will be studied for unital non-associative algebras over an arbitrary
commutative ring k.

10.1 Algebras with involution. An involution of a unital k-algebra B is a k-
linear map τ : B→ B satisfying the following conditions.

(i) τ is involutorial, i.e., τ2 = 1B.
(ii) τ is an anti-homomorphism, i.e., τ(xy) = τ(y)τ(x) for all x, y ∈ B.

In particular, τ is bijective, hence by (ii) may be viewed as an isomorphism
τ : B → Bop of k-algebras, where the opposite algebra Bop lives on the same
k-module as B under the new multiplication x · y := yx for x, y ∈ B. Examples
of involutions are provided by the conjugation of the Graves-Cayley octonions
or the Hamiltonian quaternions (Exc. 1.18 (a)) and by the map x 7→ x̄T on
matrices over those algebras as in 5.2.

10.2 Homomorphisms, base change and ideals of algebras with involution.
By a k-algebra with involution we mean a pair (B, τ) consisting of a unital k-
algebra B and an involution τ of B. A homomorphism h : (B, τ) → (B′, τ′) of
k-algebras with involution is a unital homomorphism h : B→ B′ of k-algebras
that respects the involutions, i.e., τ′ ◦ h = h ◦ τ. In this way, we obtain the
category of k-algebras with involution. If (B, τ) is a k-algebra with involution,
then (B, τ)R := (BR, τR) for R ∈ k-alg is an R-algebra with involution, called
the scalar extension or base change of (B, τ) from k to R. By an ideal of (B, τ)
we mean an ideal I ⊆ B that is stabilized by τ: τ(I) = I. In this case, (B, τ)/I :=
(B̄, τ̄), with B̄ := B/I and τ̄ : B̄→ B̄ being the k-linear map canonically induced
by τ, is a k-algebra with involution making the canonical projection B → B̄ a
homomorphism (B, τ)→ (B̄, τ̄) of k-algebras with involution.

10.3 The centre of an algebra with involution. If (B, τ) is a k-algebra with
involution, then τ stabilizes the centre of B and via restriction yields an invo-
lution of Cent(B), i.e., an automorphism of period 2. We call

Cent(B, τ) := {a ∈ Cent(B) | τ(a) = a}

the centre of (B, τ). It is a unital (and commutative and associative) subalgebra
of Cent(B).

10.4 Simplicity and the exchange involution. Let (B, τ) be a k-algebra with
involution. We say that (B, τ) is simple (as an algebra with involution) if B , {0}
and there are no ideals of (B, τ) other than {0} and B. If B is simple, so obvi-
ously is (B, τ). The converse, however, does not hold. To see this, we consider
the following class of examples.
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Let A be a unital k-algebra. Then a straightforward verification shows that
the map

εA : A × Aop −→ A × Aop, (x, y) 7−→ εA
(
(x, y)

)
:= (y, x),

is an involution, called the exchange involution (or switch) of A × Aop.

10.5 Proposition. Let (B, τ) be a k-algebra with involution. For (B, τ) to be
simple as an algebra with involution it is necessary and sufficient that B be
simple or there exist a simple unital k-algebra A such that (B, τ) � (A×Aop, εA).

Proof By Exc. 8.10, the condition is clearly sufficient. Conversely, suppose
(B, τ) is simple but B is not. Let {0} , I ⊂ B be any proper ideal of B. Then
I+τ(I), I∩τ(I) are both ideals of (B, τ), the former being different from {0}, the
latter being different from B. Since (B, τ) is simple, we conclude B = I ⊕ τ(I)
as a direct sum of ideals. Regarding A = I as a unital k-algebra in its own right,
any non-zero ideal J of A is a proper ideal of B, so by what we have just shown,
B = J ⊕ τ(J), which implies J = A, and A is simple. One now checks easily
that the map

(A × Aop, εA)
∼
−→ (B, τ), (x, y) 7−→ x + τ(y),

is an isomorphism of algebras with involution. □

10.6 Symmetric and skew elements. Let (B, τ) be a k-algebra with involution.
Following the notational conventions of [160, I, §2], we put

H(B, τ) := Sym(B, τ) := {x ∈ B | τ(x) = x}, (1)

Symd(B, τ) := {y + τ(y) | y ∈ B}, (2)

Skew(B, τ) := {x ∈ B | τ(x) = −x}, (3)

Alt(B, τ) := {y − τ(y) | y ∈ B}, (4)

which are all submodules of B, the first one among these containing the iden-
tity of B. The elements of Sym(B, τ) (resp. Skew(B, τ)) are called τ-symmetric
(resp. τ-skew). We always have

Symd(B, τ) ⊆ Sym(B, τ) and Alt(B, τ) ⊆ Skew(B, τ).

Moreover, if 2 is invertible in k, then Sym(B, τ) = Symd(B, τ), Skew(B, τ) =
Alt(B, τ), and B = Sym(B, τ) ⊕ Skew(B, τ) as a direct sum of submodules. At
the other extreme, if 2 = 0 in k, then Sym(B, τ) = Skew(B, τ) and Symd(B, τ) =
Alt(B, τ).

10.7 The conjugate transpose involution. Let B be a unital k-algebra and
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τ : B→ B, x 7→ x̄, an involution of B. Given n ∈ Z, n > 0, it is readily checked
that the map

Matn(τ) : Matn(B) −→ Matn(B), x 7−→ x̄T,

that sends an n-by-n matrix over B into its conjugate transpose, is an involution
of Matn(B), called the conjugate transpose involution induced by τ. We put

Matn(B, τ) :=
(
Matn(B),Matn(τ)

)
, Symn(B, τ) := Sym

(
Matn(B),Matn(τ)

)
.

In the special case B = k, τ = 1k, we obtain

τort : Matn(k) −→ Matn(k), S 7−→ τ(S ) := S T,

called the split orthogonal involution of degree n over k. We put

Symn(k) := Symn(k, 1k) = {S ∈ Matn(k) | S = S T}, (1)

Skewn(k) := Skew
(
Matn(k), τort

)
= {S ∈ Matn(k) | S T = −S }. (2)

In particular, Symn(k) is a free k-module of rank 1
2 n(n + 1).

10.8 Twisting involutions. Let (B, τ) be a k-algebra with involution and q ∈
Nuc(B)× an invertible element of the unital associative subalgebra Nuc(B) ⊆ B
(8.5). Then the map B→ B, x 7→ q−1xq is an unambiguously defined automor-
phism, forcing

τq : B −→ B, x 7−→ τq(x) := q−1τ(x)q, (1)

to be an anti-automorphism of B. Moreover τq is an involution provided τ(q) =
±q, in which case we sometimes call τq the q-twist of τ

10.9 Alternating matrices. For n ∈ Z, n > 0, a matrix S ∈ Matn(k) is said to be
alternating if it satisfies one (hence all) of the following equivalent conditions.

(i) S is skew-symmetric and its diagonal entries are zero.
(ii) S = T − T T for some T ∈ Matn(k).
(iii) xTS x = 0 for all x ∈ kn.

The submodule of Matn(k) consisting of all alternating n-by-n matrices over k
will be denoted by Altn(k). By 10.7 and (10.6.4), we obviously have Altn(k) =
Alt(Matn(k), τort), which is a free k-module of rank n(n−1)

2 .

10.10 The split symplectic involution. Let n be a positive integer.

(a) We begin by viewing the elements of Mat2n(k) as 2-by-2 blocks of n-by-n
matrices over k, put

I := In :=
(

0 1n

−1n 0

)
∈ GL2n(k) (1)
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and have

I2 = −12n, I−1 = IT = −I. (2)

Hence we may form the I-twist (10.8) of the split orthogonal involution of
degree 2n over k (10.7), which we call the split symplectic involution of degree
n over k, denoted by

τspl : Mat2n(k) −→ Mat2n(k), (3)

S 7−→ τspl(S ) := I−1S TI = IS TI−1 = IS TIT.

A verification shows

τspl(
(
a b
c d

)
) =

(
dT −bT

−cT aT

)
(4)

for a, b, c, d ∈ Matn(k), and we conclude

Sym
(
Mat2n(k), τspl

)
=

{ (a b
c aT

)
| a ∈ Matn(k), b, c ∈ Skewn(k)

}
. (5)

On the other hand, combining 10.9 (ii) with (10.6.4) and (4), we deduce that

Sympn(k) := Symd
(
Mat2n(k), τspl

)
=

{ (a b
c aT

)
| a ∈ Matn(k), b, c ∈ Altn(k)

}
(6)

is a free k-module of rank 2n2 − n.

(b) In (a), the case n = 1 is particularly interesting. We therefore work out
the details in full. The associative k-algebra Mat2(k) comes equipped with the
orthogonal involution τort : Mat2(k)→ Mat2(k), x 7→ xT, of 10.7, which in turn
can be twisted by the alternating invertible matrix

j :=
(

0 1
−1 0

)
∈ Alt2(k) ∩ GL2(k) (7)

satisfying j2 = −12. The involution that ensues,

ι := τ j
ort : Mat2(k) −→ Mat2(k), x 7−→ x̄ := j−1xT j, (8)

is the symplectic involution of degree 1 or of Mat2(k). From (4) we deduce(
α β

γ δ

)
=

(
δ −β

−γ α

)
(9)

for α, β, γ, δ ∈ k. In particular, we obtain

x + x̄ = tr(x)12 (x ∈ Mat2(k)), (10)
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and (6) yields

Symp1(k) := Symd
(
Mat2(k), ι

)
= k · 12. (11)

(c) Now let n again be arbitrary. Viewing (a) through the lens of (b), we regard
the elements of Mat2n(k) as n-by-n blocks of 2-by-2 matrices, so we have a
natural identification Mat2n(k) = Matn(B), B := Mat2(k), as k-algebras. With
j :=

(
0 1
−1 0

)
as in (7), we consider the alternating invertible matrix

J := diag( j, . . . , j) ∈ Matn(B) (12)

and then form the J-twist (10.8) of the split orthogonal involution of degree 2n
over k (10.7), which up to conjugation by a permutation matrix identifies with
the split symplectic involution of degree n over k as in (a) (cf. Exc. 10.11 for
an elaborate argument). Hence we may write

τspl : Mat2n(k) = Matn(B) −→ Matn(B) = Mat2n(k),

X 7−→ τspl(X) = J−1XTJ. (13)

On the other hand, consider the symplectic involution ι of B as in (8). One
checks that τspl is just the conjugate transpose involution Matn(ι) in the sense
of 10.7, so we have

τspl(X) = X̄T (X ∈ Matn(B)) (14)

and conclude that

Sym
(
Mat2n(k), τspl

)
= {X ∈ Matn(B) | X = X̄T} (15)

is the set of ι-hermitian n-by-n matrices with entries in B. Moreover, from
(10) (or (11)) we deduce that Sympn(k) consists of all ι-hermitian matrices in
Matn(B) whose diagonal entries belong to k · 12:

Sympn(k) = {X = (xi j) ∈ Matn(B) | X = X̄T, xii ∈ k · 12 (1 ≤ i ≤ n)}. (16)

Exercises
10.11. Let m be a positive integer and write ei j, 1 ≤ i, j ≤ m, for the matrix units of
Matm(k).

(a) For π ∈ Sm (the symmetric group on m letters), define the permutation matrix

Pπ :=
m∑

i=1

eπ(i),i

and show that the assignment π 7→ Pπ gives a group monomorphism from Sm to the
orthogonal group of degree m over k.
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(b) Now suppose m = 2n is even. Conclude from (a) that, in the notation of 10.10, the
assignment S 7→ PπS PT

π , where π ∈ S2n is given by π(i) = 2i − 1, π(i + n) = 2i for
1 ≤ i ≤ n, defines an isomorphism(

Mat2n(k), τspl
) ∼
−→

(
Mat2n(k), τJ

ort
)

of algebras with involution.

11 Quadratic maps

In this section, we collect a few elementary facts about quadratic maps that in
this generality are somewhat hard to find in the literature. For a brief appear-
ance of this concept over the reals, see 1.3.

11.1 The concept of a quadratic map. Let M,N be k-modules. A map Q : M →
N is said to be quadratic if it satisfies the following two conditions.

(i) Q is homogeneous of degree 2: Q(αx) = α2Q(x) for all α ∈ k and all
x ∈ M.

(ii) The map

DQ : M × M −→ N, (x, y) 7−→ (DQ)(x, y) := Q(x + y) − Q(x) − Q(y)

is (symmetric) bilinear.

We sometimes call DQ the bilinearization or polar map belonging to Q. Con-
ditions (i), (ii) imply (DQ)(x, x) = 2Q(x) for all x ∈ M, so the quadratic map
Q may be recovered from its polar map DQ if 2 ∈ k× but not in general. At
the other extreme, if 2 = 0 in k, then DQ is alternating. In the general set-up,
we often relax the notation and simply write Q(x, y) instead of (DQ)(x, y) for
x, y ∈ M if there is no danger of confusion. Quadratic forms are quadratic
maps taking values in the base ring, hence arise in the special case N = k.
The polar map of a quadratic form is of course called its polar form. Exam-
ples are provided by the positive definite real quadratic forms of 3.1 and, more
specifically, by the norm of the Graves-Cayley octonions (1.6).

Elementary manipulations of quadratic maps, like scalar multiples, compo-
sition with linear maps and direct sums, are defined in the obvious manner; we
omit the details. Less obvious are scalar extensions, which we address here in
a slightly more general set-up. We begin with two preparations.

11.2 Tensor products of bilinear maps. If b : M×M → N and b′ : M′×M′ →
N′ are bilinear maps between k-modules, then so is

b⊗b′ : (M⊗M′)× (M⊗M′)→ N⊗N′, (x⊗ x′, y⊗y′) 7−→ b(x, y)⊗b′(x′, y′).



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

11 Quadratic maps 71

The same simple-minded approach does not work for quadratic maps, see
Milnor-Husemoller [197, p. 111] for comments.

11.3 Radicals of bilinear and quadratic maps. Let M,N be k-modules and
b : M × M → N a symmetric or skew-symmetric bilinear map. Then the sub-
module

Rad(b) := {x ∈ M | b(x, y) = 0 for all y ∈ M} ⊆ M (1)

is called the radical of b. Now suppose we are given a k-module M1 and a
surjective linear map π : M → M1 such that Ker(π) ⊆ Rad(b). Then b fac-
tors uniquely through π × π to a symmetric or skew-symmetric bilinear map
b1 : M1 × M1 → N satisfying Rad(b1) = Rad(b)/Ker(π).

Along similar lines, let Q : M → N be a quadratic map. Then

Rad(Q) := {x ∈ Rad(DQ) | Q(x) = 0} (2)

= {x ∈ M | Q(x) = (DQ)(x, y) = 0 for all y ∈ M}

is a submodule of M, called the radical of Q. If, for M1, π as above, we as-
sume Ker(π) ⊆ Rad(Q), then Q factors uniquely through π to a quadratic map
Q1 : M1 → N (well) defined by Q1(π(x)) := Q(x) for x ∈ M. Moreover,
Rad(Q1) = Rad(Q)/Ker(π) and D(Q1) = (DQ)1.

11.4 Proposition. Let M,N,V,W be k-modules, Q : M → N a quadratic map
and b : V × V → W a symmetric bilinear map. Then there exists a unique
quadratic map

Q ⊗ b : M ⊗ V −→ N ⊗W

such that

(Q ⊗ b)(x ⊗ v) = Q(x) ⊗ b(v, v) (x ∈ M, v ∈ V), (1)

D(Q ⊗ b) = (DQ) ⊗ b. (2)

Proof Uniqueness is clear, so we only have to show existence. We first con-
sider the case that the k-module M is free, with basis (ei)i∈I where we may
assume the index set I to be totally ordered. Then every element z ∈ M⊗V can
be written uniquely as z =

∑
i ei ⊗ vi, vi ∈ V , and setting

(Q ⊗ b)(z) :=
∑

i

Q(ei) ⊗ b(vi, vi) +
∑
i< j

Q(ei, e j) ⊗ b(vi, v j),

we obtain a quadratic map which, since b is symmetric, has the desired prop-
erties. Now let M be arbitrary. Then there exists a short exact sequence

0 // L i // F π // M // 0
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of k-modules, where F is free. Since the functor −′ := −⊗V is right exact [28,
II.3, Prop. 5], we obtain an induced exact sequence

L′ i′ // F′ π′ // M′ // 0,

and the special case just treated yields a quadratic map Q̂ := (Q◦π)⊗b : F′ →
N ⊗W satisfying (1), (2). Let z =

∑
u j ⊗ v j ∈ L′, u j ∈ L, v j ∈ V , and x ∈ F,

v ∈ V . Then

Q̂
(
i′(z)

)
=

(
(Q ◦ π) ⊗ b

)(
i′(

∑
u j ⊗ v j)

)
=

(
(Q ◦ π) ⊗ b

)
(
∑

i(u j) ⊗ v j)

=
∑

(Q ◦ π ◦ i)(u j) ⊗ b(v j, v j) +
∑
j<l

(Q ◦ π ◦ i)(u j, ul) ⊗ b(v j, vl) = 0,

and

Q̂
(
i′(z), x ⊗ v

)
=

(
(Q ◦ π) ⊗ b

)
(
∑

i(u j) ⊗ v j, x ⊗ v)

=
∑

(Q ◦ π ◦ i)(u j, x) ⊗ b(v j, v) = 0,

hence i′(z) ∈ Rad(Q̂). We have thus shown Ker(π′) = Im(i′) ⊆ Rad(Q̂), and
11.3 yields a quadratic map Q⊗b : M′ → N⊗W such that (Q◦π)⊗b = (Q⊗b)◦π′

and D((Q ◦ π) ⊗ b) = [D(Q ⊗ b)] ◦ (π′ × π′). Hence (1), (2) hold for Q ⊗ b. □

11.5 Corollary. Let Q : M → N be a k-quadratic map of k-modules and R ∈
k-alg. Then there exists a unique R-quadratic map QR := Q ⊗ R : MR → NR of
R-modules making a commutative diagram

M
Q //

can
��

N

can
��

MR QR

// NR.

(1)

In particular, D(QR) = (DQ)R is the R-bilinear extension of DQ. We call QR

the scalar extension or base change of Q from k to R.

Proof Applying Prop. 11.4 to Q and the symmetric k-bilinear map b : R×R→
R given by the multiplication of R, we obtain a k-quadratic map QR : MR →

NR, which is in fact a quadratic map over R satisfying the condition of the
corollary. □

We now proceed to list a few elementary properties of bilinear and quadratic
forms.

11.6 Notation. Let M be a k-module. Then we write Bil(M) for the k-module
of bilinear forms on M. The submodules of Bil(M) consisting of all symmetric,
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skew-symmetric, alternating bilinear forms on M will be denoted respectively
by Sbil(M), Skil(M), Abil(M). Recall that a bilinear form σ : M × M → k is
alternating if σ(x, x) = 0 for all x ∈ M. We then have Abil(M) ⊆ Skil(M) with
equality if 2 ∈ k×. Finally, we write Quadk(M) := Quad(M) for the k-module
of quadratic forms on M. The assignment q 7→ Dq defines a linear map from
Quad(M) to Sbil(M).

11.7 Connecting matrices with bilinear and quadratic forms. Let n be a
positive integer. For S ∈ Matn(k), the map

⟨S ⟩ : kn × kn −→ k, (x, y) 7−→ ⟨S ⟩(x, y) := xTS y (1)

is a bilinear form on kn, and the assignment S 7→ ⟨S ⟩ gives a linear bijection
from Matn(k) onto Bil(kn) matching Symn(k), Skewn(k), Altn(k) respectively
with Sbil(kn), Skil(kn), Abil(kn). If S = diag(α1, . . . , αn) ∈ Matn(k) is a diag-
onal matrix, we put ⟨α1, . . . , αn⟩ := ⟨S ⟩ as a symmetric bilinear form on kn; it
sends

( 
ξ1
...

ξn

 ,

η1
...

ηn


)
∈ kn × kn to

n∑
i=1

αiξiηi.

On the other hand, the map

⟨S ⟩quad : kn −→ k, x 7−→ ⟨S ⟩quad(x) := xTS x (2)

is a quadratic form on kn such that D⟨S ⟩quad = ⟨S + S T⟩, and the assignment
S 7→ ⟨S ⟩quad gives rise to a short exact sequence

0 // Altn(k) // Matn(k) // Quad(kn) // 0 (3)

of k-modules (surjectivity follows from 11.8 below). Thus, roughly speak-
ing, quadratic forms on kn are basically the same as arbitrary n-by-n matrices
modulo alternating n-by-n matrices over k. Again, If S = diag(α1, . . . , αn) ∈
Matn(k) is a diagonal matrix, we put ⟨α1, . . . , αn⟩quad := ⟨S ⟩quad as a quadratic
form on kn; it sends 

ξ1
...

ξn

 ∈ kn to
n∑

i=1

αiξ
2
i .

11.8 Bilinear and quadratic forms on free modules. Let M be a free k-
module of finite rank n > 0 and (ei)1≤i≤n a basis of M over k. Given a bilinear
form σ : M × M → k, we call S := (σ(ei, e j))1≤i, j≤n ∈ Matn(k) the matrix of
σ with respect to the basis (ei), and identifying M = kn by means of this basis
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matches σ with the bilinear form ⟨S ⟩ on kn (11.7). On the other hand, given a
quadratic form q : M → k, we define a matrix S = (si j) ∈ Matn(k) by

si j :=


q(ei, e j) (1 ≤ i < j ≤ n),

q(ei) (1 ≤ i = j ≤ n),

0 (1 ≤ j < i ≤ n).

(1)

We call S the matrix of q with respect to the basis (ei) and, again, identifying
M = kn by means of this basis matches q with the quadratic form ⟨S ⟩quad on
kn.

11.9 Regularity of bilinear forms and generalizations. Let σ : M × M →

k be a symmetric or skew-symmetric bilinear form on a k-module M. For a
submodule N ⊆ M, the submodule

N⊥ := N⊥σ := {x ∈ M | σ(x, y) = 0 for all y ∈ N} ⊆ M (1)

is called the orthogonal complement of N in M. In particular, M⊥ = Rad(σ)
(11.3) is the kernel of the natural map

σ̃ : M −→ M∗, x 7−→ σ(x,−). (2)

The bilinear form σ is said to be regular if

(i) M is finitely generated projective as a k-module and
(ii) σ̃ : M

∼
→ M∗ is an isomorphism.

This implies Rad(σ) = {0} but not conversely. Since passing to the dual of a
finitely generated projective module is compatible with base change (Lemma
9.15), so is the property of a (skew-)symmetric bilinear form to be regular. If
M = kn is free of finite rank n and S ∈ Matn(k) is (skew-)symmetric, then
the (skew-)symmetric bilinear form ⟨S ⟩ : kn × kn → k is regular if and only if
S ∈ GLn(k).

11.10 Lemma. Let σ : M×M → k be a symmetric or skew-symmetric bilinear
form over k and suppose N ⊆ M is a submodule on which σ is regular. Then
M = N ⊕ N⊥.

Proof We writeσ′ for the restriction ofσ to N×N. Since N∩N⊥ = Rad(σ′) =
{0}, it remains to show M = N + N⊥, so let x ∈ M. Then σ(x,−) restricts to
a linear form on N, which by regularity of σ′ has the form σ′(u,−) for some
u ∈ N. Thus x − u ∈ N⊥, proving the claim. □

11.11 Regularity of quadratic forms and generalizations. A quadratic form
q : M → k is said to be non-degenerate if Rad(q) = {0}. Unfortunately, this
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property is not invariant under base change, even if we allow M to be finitely
generated projective. We therefore call q non-singular if M is projective, pos-
sibly of infinite rank, and the scalar extension qK is non-degenerate for all
fields K ∈ k-alg. Indeed, the property of a quadratic form to be non-singular
is clearly stable under base change. As a simple example, we note that the
one-dimensional quadratic form ⟨α⟩quad, α ∈ k×, is always non-singular but
becomes degenerate if 2 = 0 in k and k is not reduced, i.e., contains non-zero
nilpotent elements. See Exc. 11.37 and Exc. 25.34 for more on non-singular
quadratic forms.

A condition on quadratic forms even stronger than being non-singular is
provided by the concept of regularity: q is said to be regular if its induced
symmetric bilinear form Dq is regular, i.e., by 11.9, if M is finitely generated
projective and Dq determines an isomorphism from M onto its dual module
M∗ in the usual way. Note that regular quadratic forms are non-singular; for a
partial converse, see Exc. 11.39. If q is regular and 2 = 0 in k, then Dq is an
alternating regular bilinear form, forcing rkp(M) to be even for all p ∈ Spec(k),
in which case M is said to be of locally even rank. For a finitely generated free
module M = kn over any commutative ring k and S ∈ Matn(k), the quadratic
form ⟨S ⟩quad : kn → k is regular if and only if S + S T ∈ GLn(k). Trivially, the
unique quadratic form on the zero module is regular. In the special case where k
is a field, q is regular if and only if M is finite-dimensional and Rad(Dq) = {0}.

Finally, q is said to be weakly regular if for all u ∈ M, the relation q(u, v) = 0
for all v ∈ M implies u = 0. This is equivalent to Dq : M → M∗ being injective.
Note that weak regularity is not stable under base change, making this notion
distinctly less interesting than regularity.

11.12 Quadratic modules and spaces. It is sometimes linguistically conve-
nient to think of a quadratic form q : M → k as a quadratic module (M, q).
Given quadratic modules (M, q) and (M′, q′) over k, a k-linear map h : M → M′

satisfying q′ ◦ h = q is called a homomorphism h : (M, q) → (M′, q′). In this
way one obtains the category of quadratic modules over k. Isomorphisms be-
tween quadratic modules over k are called isometries. A quadratic module
(M, q) over k is said to be a quadratic space if q is regular. The zero mod-
ule is a quadratic space over every ring k. We write (M, q) ⊥ (M′, q′) for the
orthogonal sum of the quadratic modules (M, q), (M′, q′) defined on the direct
sum M ⊕ M′ by the quadratic form

q ⊥ q′ : M ⊕ M′ −→ k, (x, x′) 7−→ q(x) + q′(x′).

We sometimes use the alternate notation (M, q) ⊕ (M′, q′) := (M, q) ⊥ (M′, q′)
and q ⊕ q′ := q ⊥ q′.
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11.13 Example. For a k-module M, a quadratic form q : M → k and elements
α1, . . . , αn ∈ k (n ∈ Z, n > 0), the natural identification M ⊗ kn = Mn of
k-modules yields an identification

q ⊗ ⟨α1, . . . , αn⟩ = α1q ⊥ · · · ⊥ αnq

of quadratic forms.

11.14 Pointed quadratic modules. By a pointed quadratic module over k we
mean a triple (M, q, e) consisting of a quadratic module (M, q) and a distin-
guished element e ∈ M, called the base point, such that q(e) = 1. Homo-
morphisms of pointed quadratic modules are defined as homomorphism of the
underlying quadratic modules preserving base points in the obvious sense. We
speak of (M, q, e) as a pointed quadratic space (of rank r) if (M, q) is a quad-
ratic space (of rank r).

Let (M, q, e) be a pointed quadratic module over k. We call q its norm, the
linear form

t := (Dq)(e,−) : M −→ k, x 7−→ t(x) := q(e, x) (1)

its (linear) trace and the linear map

ι : M −→ M, x 7−→ x̄ := t(x)e − x, (2)

its conjugation. Obviously, the trace satisfies t(e) = 2, while the conjugation
has period 2 and preserves base point, norm and trace. In addition, the bilinear
trace of (M, q, e), for convenience denoted by the same symbol as the linear
one, is defined as the symmetric bilinear form

t : M × M −→ k, (x, y) 7−→ t(x, y) := q(x, ȳ) = t(x)t(y) − q(x, y). (3)

It satisfies t(x, e) = t(x) and is preserved by conjugation.
In the special case where 2 ∈ k×, the natural inclusion k ↪→ M given by

x 7→ xe has left inverse 1
2 t. Therefore M = ke ⊕ (Ker t) as a k-module, and this

direct sum is orthogonal with respect to q. In particular, q is determined by its
restriction to Ker t.

The following lemma is obvious but quite useful.

11.15 Lemma. Let (M, q, e) be a pointed quadratic module over k and suppose
there exists a bilinear form β : M × M → k, possibly not symmetric, such
that q(x) = β(x, x) for all x ∈ M (which holds automatically if 2 ∈ k× or
M is projective as a k-module by Exc. 11.36), then the base point e ∈ M is
unimodular.
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Proof The linear form λ := β(e,−) on M has λ(e) = β(e, e) = q(e) = 1. □

11.16 The naive discriminant. The multiplicative group k×2 of squares in k×

acts on the additive group k by multiplication from the right, allowing us to
form the quotient k/k×2. Now suppose we are given a quadratic module (M, q)
over k such that the underlying k-module M is free of finite rank. In analogy to
3.10–3.12 we let E = (e1, . . . , en) be any k-basis of M, put

Dq(E) :=
(
q(ei, e j)

)
1≤i, j≤n ∈ Matn(k) (1)

and have

Dq(ES ) = S TDq(E)S
(
S = (si j)1≤i, j≤n ∈ GLn(k)

)
, (2)

where ES = (e′1, . . . , e
′
n) is the k-basis of M defined by e′j :=

∑
i si jei for 1 ≤

j ≤ n. Hence the expression

disc
(
(M, q)

)
:= (−1)[ n

2 ] det
(
Dq(E)

)
mod k×2

is independent of the basis chosen and called the discriminant of (M, q). Since
Z×2 = {1}, this definition generalizes the one of the discriminant of an integral
quadratic lattice as given in 3.12. For a more sophisticated definition of the dis-
criminant that makes sense for arbitrary quadratic spaces, we refer the reader
to Knus [157, Chap. IV, §4].

11.17 Isotropic elements and hyperbolic pairs. Let (M, q) be a quadratic
module over k. Following [99, 1.8, p. 1297], an element u ∈ M is said to be
isotropic (relative to (M, q), or relative to q) if u is unimodular and q(u) = 0.
By a hyperbolic pair (of (M, q), or of q) we mean a pair (u, v) ∈ M2 such that
q(u) = q(v) = 0 and q(u, v) = 1. Consider the following conditions on u ∈ M.

(i) u is isotropic.
(ii) u can be extended to a hyperbolic pair: there exists v ∈ M making (u, v)

a hyperbolic pair.

Then (ii) implies (i), and if (M, q) is a quadratic space, both conditions are
equivalent. Indeed, the implication (ii)⇒ (i) being obvious, assume (M, q) is a
quadratic space and u ∈ M is isotropic. By definition, u is unimodular, so some
λ ∈ M∗ has λ(u) = 1. Since q is regular, there exists a unique w ∈ M such that
λ = q(−,w), and we conclude q(u,w) = 1. Now one checks that (u, v), where
v := −q(w)u + w, is a hyperbolic pair of (M, q), which completes the proof.

A quadratic module (M, q) (or q) will be called isotropic if M contains
an isotropic element relative to q. A submodule N ⊆ M is said to be totally
isotropic (relative to q) if it is a direct summand of M and satisfies q(N) = {0}.
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11.18 Hyperbolic spaces. Let M be a finitely generated projective k-module.
Then

hM : M∗ ⊕ M −→ k, (v∗, v) 7−→ hM
(
(v∗, v)

)
:= ⟨v∗, v⟩, (1)

is a regular quadratic form since M∗∗ identifies canonically with M and, in the
notation of (11.9.2),

(DhM)∼ : M∗ ⊕ M → M ⊕ M∗

is the switch (v∗, v) 7→ (v, v∗). We abuse notation slightly by writing hM also
for the quadratic space (M∗ ⊕ M,hM), and call this the hyperbolic space as-
sociated with M or simply a hyperbolic space. Observe that both M∗ and M
may be viewed canonically as totally isotropic submodules of M∗ ⊕M relative
to hM . The functor assigning to M its associated hyperbolic space is additive,
so for another finitely generated projective k-module N we obtain a natural
isomorphism

hM⊕N � hM ⊥ hN .

For L a line bundle in the sense of 9.12, hL will be referred to as a hyperbolic
plane, which is said to be split if L is free of rank 1. If M � kn is free of rank
n ∈ N, we speak of the split hyperbolic space of rank n.

11.19 Examples. (a) For every α ∈ k×, the map M∗ ⊕ M → M∗ ⊕ M defined
by (y∗, x) 7→ (y∗, αx) is an isomorphism of quadratic spaces hM ⊗ ⟨α⟩

∼
−→ hM .

(b) Taking E to be the standard basis of kn, the matrix Dhkn (E) from (11.16.1)
is (

0 1n
1n 0

)
,

so the naive discriminant of hkn is 1 mod k×2.

11.20 LG rings. There is a well-developed theory of quadratic spaces over a
field that can be found in books such as [204], [255], or [72]. Already in the
foundations of that theory, there are many results that hold over fields but do
not have clear analogs over an arbitrary base ring. To address this, we intro-
duce a class of rings known as LG rings, sometimes called “local-global rings”
(hence the LG) or “rings with many units”, which include all fields and where
some of the desirable results that hold for fields will continue to hold.

LG rings are defined as follows. For R ∈ k-alg, a polynomial f ∈ R[t1, . . . , tn]
represents an invertible element over R if there exist r1, . . . , rn ∈ R such that
f (r1, . . . , rn) ∈ R×. Given f ∈ k[t1, . . . , tn] and R ∈ k-alg, the homomorphism
k → R allows us to view f also as a polynomial in R[t1, . . . , tn], so we can
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speak about whether it represents an invertible element over R. If it does so
over k, then it does so over R for every R. We say that k is an LG ring if it has
the property that, for every n > 0 and f ∈ k[t1, . . . , tn], if f represents a an
invertible element over km for every maximal ideal m of k, then f represents
an invertible element over k. It would be equivalent to replace the local ring
km in the definition by its residue field k(m). Every field is trivially an LG ring,
because the unique maximal ideal is m = {0} and km = k. The zero ring is
trivially an LG ring.

In the following, Jac(k) denotes the Jacobson radical of k (Bourbaki [34, §6,
Def. 3]), the intersection of the maximal ideals of k.

11.21 Lemma. (i) A ring k is an LG ring if and only if k/ Jac(k) is an LG ring.

(ii) For rings k1, k2, the ring k1 × k2 is an LG ring if and only if k1 and k2 are
LG rings.

We leave the proof as an exercise.

11.22 Semi-local rings. A ring is said to be semi-local if its set of maximal
ideals is finite. It is equivalent (by Bourbaki [27, II.3, Prop. 16]) to require
that k/ Jac(k) is a finite direct product of fields. The lemma then gives: Every
semi-local ring is an LG ring.

11.23 Finite and integral k-algebras. An element r ∈ R for R ∈ k-alg is said
to be integral (over k) if there is a monic polynomial f ∈ k[t] such that, for f ϑ

the image of f in R[t], we have f ϑ(r) = 0. (This notion was previously defined
in the special case k = Z in 3.4.) The ring R is said to be integral (over k) if
every r ∈ R is integral. If k is an LG ring and R is integral over k, then R is also
an LG ring by [73, Cor. 2.3].

We say that R is a finite k-algebra if it is finitely generated as a k-module.
This is related to the previous property because a k-algebra R is finite if and
only if R is integral over k and is finitely generated as a k-algebra, see [27, V.1,
Prop. 16] or [271, Tag 02JJ]. As a corollary, we find: If k is an LG ring, then
every finite k-algebra is also LG.

Note that if R is an integral (e.g., finite) k-algebra that contains k, then it is a
cover of k in the sense of Exc. 9.26 [271, Tag 00GQ].

The papers [73] and [192] give more examples of rings that are LG, which
we mention for the purpose of illustrating that the class of LG rings is larger
than the class of semi-local rings. Specifically, LG rings include rings of di-
mension zero (i.e., rings where every prime ideal is maximal), the ring of all
algebraic integers, and the ring of all real algebraic integers. Exc. 11.42 pro-
vides examples of rings that are not LG.

https://stacks.math.columbia.edu/tag/02JJ
https://stacks.math.columbia.edu/tag/00GQ
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We proceed by collecting a few useful properties of LG rings, addressed to
projective modules and quadratic forms. The following is a key result, proved
in Estes-Guralnick [73, Thm. 2.10] and McDonald-Waterhouse [192, p. 457].

11.24 Proposition. Every finitely generated projective module of constant
rank over an LG ring is free. □

Since LG rings need not be connected (as in Lemma 11.21 (i)), the condition
on the rank function cannot be avoided.

11.25 Definition. It is a standard fact that for a finitely generated projective
k-module M, the following conditions are equivalent.

(i) MR , {0} for all non-zero R ∈ k-alg.
(ii) Mp , {0} for all prime ideals p ⊆ k.
(iii) Mm , {0} for all maximal ideals m ⊆ k.
(iv) MF , {0} for all fields F ∈ k-alg.

We leave the proof as an exercise. If these equivalent conditions hold, M is
said to have full support.

11.26 Lemma. Let k be an LG ring and (M, q) a quadratic space over k. Then
q represents an invertible element over k (i.e., q(m) ∈ k× for some m ∈ M) if
and only if M has full support.

Proof Recall from the definition of a quadratic space (11.11, 11.12) that M
is a finitely generated projective k-module. If m ∈ M satisfies q(m) ∈ k× and
F ∈ k-alg is a field, then qF(mF) = q(m)F ∈ F×, and we conclude MF , {0}.
Conversely, assume MF , {0} for all fields in F ∈ k-alg. Since this condition
is stable under base change, the rank decomposition (Exc. 9.31) allows us to
assume that M has constant rank. By Prop. 11.24, therefore, M is a free k-
module of finite rank n > 0, so by 11.8 the quadratic form q : M → k may
be viewed as a homogeneous polynomial q ∈ k[t1, . . . , tn] of degree 2. Since
(MF , qF) = (M, q)F is a quadratic space over F, the map qF : MF → F cannot
be identically zero, so the polynomial q represents an invertible element over
F, Since k is an LG ring, it represents an invertible element over k, as claimed.

□

The following result, known as Witt Cancellation, plays a key foundational
role in the theory of quadratic forms over a field. It also holds over LG rings.

11.27 Theorem (Witt cancellation). Suppose (M1, q1), (M2, q2), and (M′2, q
′
2)

are quadratic spaces over an LG ring k such that

(M1, q1) ⊥ (M2, q2) � (M1, q1) ⊥ (M′2, q
′
2).
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Then (M2, q2) � (M′2, q
′
2).

A proof of this can be found in [63, p. 38, II.6.4]. It is similar to the proof
for semi-local rings from [18, Cor. III.4.3]. See Exc. 22.28 for an example of a
ring k where Witt cancellation fails.

Exercises
11.28. Associative linear forms and unitality. Let A be a k-algebra. Show that A is
unital provided it admits an associative linear form whose corresponding (symmetric)
bilinear form is regular.

11.29. Let σ be a bilinear form on a k-module M. For m1, . . . ,mn ∈ M, define a ma-
trix S := (σ(mi,m j))1≤i, j≤n ∈ Matn(k). Prove: If det(S ) is not a zero divisor in k, then
m1, . . . ,mn are linearly independent.

11.30. A splitness criterion for hyperbolic planes. Let L be a line bundle over k. Show
that the following conditions are equivalent.

(i) The hyperbolic plane hL is split.
(ii) hL contains a hyperbolic pair.
(iii) L � k is free.

(Hint: To prove (ii)⇒ (iii), find a unimodular vector in L.)

11.31. Prove for the quadratic form q := ⟨1,−1⟩quad over k that the following conditions
are equivalent.

(i) q is a split hyperbolic plane.
(ii) q is regular.
(iii) 2 is invertible in k.

11.32. Let F be a field of characteristic different from 2. Verify: If a rank 2 quadratic
space (M, q) over F has discriminant 1 mod F×2, then (M, q) is a split hyperbolic plane.
Remark. The converse was already observed in 11.19. Also, a version of this statement
that holds with weaker hypotheses on F is provided in [157, §V.2].

11.33. Let h be the split hyperbolic plane over k and (e1, e2) a hyperbolic pair in h.
Show for u1, u2 ∈ h that the following conditions are equivalent.

(i) (u1, u2) is a hyperbolic pair in h.
(ii) There exists a decomposition k = k+ × k− of k as a direct product of ideals such

that in the induced decompositions

h = h+ × h−, e j = (e j+, e j−), u j = (u j+, u j−) ( j = 1, 2), (1)

where h± = hk± is the split hyperbolic plane over k± with the corresponding
hyperbolic pair (e1±, e2±) = (e1, e2)k± , the quantities u j± = (u j)k± ∈ h± ( j = 1, 2)
satisfy the relations

u1+ = γ+e1+, u2+ = γ
−1
+ e2+, (2)

u1− = γ−e2−, u2− = γ
−1
− e1− (3)
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for some γ± ∈ k×±.

11.34. Quadratic-linear maps. Let M,N, P be k-modules and suppose the map g : M ×
N → P is quadratic-linear (over k) in the sense that g(−, y) : M → P is k-quadratic
for all y ∈ N and, analogously, g(x,−) : N → P is k-linear for all x ∈ M. Show for all
R ∈ k-alg that there exists a unique quadratic-linear map gR : MR × NR → PR over R
rendering the diagram

M × N
g //

can

��

P

can

��
MR × NR gR

// PR.

(1)

commutative. We call gR the scalar extension or base change of g from k to R.

11.35. Multi-quadratic maps. For a positive integer n and k-modules M1, . . . ,Mn,M, a
map

F : M1 × · · · × Mn −→ M

is called k-multi-quadratic or k-n-quadratic if for all i = 1, . . . , n and for all u j ∈ M j,
1 ≤ j ≤ n, j , i,

Mi −→ M, ui 7−→ F(u1, . . . , ui−1, ui, ui+1, . . . , un)

is a quadratic map over k. Show for R ∈ k-alg and a k-n-quadratic map F : M1 × · · · ×

Mn → M that there exists a unique R-n-quadratic map FR : M1R × · · · × MnR → MR
rendering the diagram

M1 × · · · × Mn
F //

can

��

M

can

��
M1R × · · · × MnR FR

// MR.

(1)

commutative, where can: M1 × · · · × Mn → M1R × · · · × MnR is defined by

can(u1, . . . , un) := (u1R, . . . , unR)

for all ui ∈ Mi, 1 ≤ i ≤ n. Writing Quad(M1, . . . ,Mn; M) for the k-module of k-n-
quadratic maps from M1 × · · · × Mn to M, show further that the assignment F 7→ FR
defines a k-linear map from Quad(M1, . . . ,Mn; M) to Quad(M1R, . . . ,MnR; MR). We call
FR the R-n-quadratic extension of F.

11.36. Let Q : M → N be a quadratic map between k-modules M,N and suppose M
is projective. Show that there exists a bilinear map B : M × M → N, possibly not
symmetric, such that Q(x) = B(x, x) for all x ∈ M.

11.37. Non-singular quadratic forms over fields. Let q : V → F be a quadratic form
over a field F. Show that the following conditions are equivalent.

(i) q is non-singular.
(ii) q is non-degenerate and the radical of Dq has dimension at most 1 over F.
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(iii) For some algebraically closed field K ⊇ F, the quadratic form qK : VK → K
over K is non-degenerate.

(iv) For every algebraically closed field K ⊇ F, the quadratic form qK : VK → K
over K is non-degenerate.

Remarks. (1) In the exercise, when dim V is finite, condition (ii) can be rephrased as:
Exactly one of the following two conditions hold:

(a) char F = 2 and dim V is odd, in which case q = q0 ⊥ ⟨α⟩quad for some regular
quadratic from q0 and α ∈ F×.

(b) q is regular.

(2) Suppose (M, q) is a quadratic module over a ring k such that M is finitely gen-
erated projective of finite constant rank. Then (1) shows that our definition of “non-
singular” for q is the same as what is called “non-degenerate” in [53, §6.1 and Exercise
1.6.10] or “ordinary” in [60, §XII.1] or “semiregular” in [157, §IV.3] or [42, §2.6].

11.38. Let (V, q) be a quadratic space of dimension n over the field F. Following [72,
7.7], an element v ∈ V is called anisotropic (with respect to q) if q(v) , 0.

(a) If n ≥ 3, show that every element in V is the sum of at most two anisotropic
elements in V .

(b) Assume that (V, q) contains a hyperbolic subspace of dimension at least 6.
Show for anisotropic vectors x1, x2 ∈ V that q(x1, x2) , 0 or there exists an
anisotropic vector y ∈ V satisfying q(x1, y) , 0 , q(y, x2).

Can the extra conditions on (V, q) in (a), (b) be avoided?

11.39. Suppose Q = (M, q) is a quadratic module over a ring k such that M is finitely
generated projective and q is non-singular. Prove: If 2 ∈ k× or rk M is locally even, then
M is regular.

11.40. Let q : M → k be a quadratic form. Recall that Rad(Dq) ⊇ Rad(q).

(a) Show: If 2 is invertible in k, then Rad(Dq) = Rad(q).
(b) Suppose 2 = 0 in k and M′ := Rad(Dq)/Rad(q) is a free k-module of finite

rank. Verify that there are nonzero α1, . . . , αr ∈ k such that q|M′ is isomorphic
to ⟨α1, . . . , αr⟩quad and αik×2 , α jk×2 for i , j.

Remark. One might call the quadratic module (M′, q|M′ ) the anti-regular part of q.

11.41. Let Q := (M, q) be a quadratic module over k. The subgroup

O(Q) := O(M, q) := {η ∈ GL(M) | q ◦ η = q}

of GL(M) is called the orthogonal group of Q.

(i) Verify that O(Q) contains a normal subgroup R that is naturally isomorphic (as
a set) to Homk-mod(M/Rad(q),Rad(q)).

(ii) q induces a quadratic form q on M/Rad(q) by setting q(m + r) = q(m) for
m ∈ M and r ∈ Rad(q), and we put Q := (M/Rad(q), q) for the corresponding
quadratic module. Prove that restriction defines a well-defined injective homo-
morphism ϕ : O(Q)/R→ GL(Rad(q)) × O(Q).
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(iii) Prove: If M is an internal direct sum Rad(q)⊕M′ for some submodule M′, then
the map ϕ defined in (ii) is an isomorphism.

11.42. Examples of rings that are not LG. Show that the following rings k are not LG:
(a) k = Z. (b) k = R[t], polynomials in one variable over a ring R, when R is an integral
domain.

12 Polynomial laws

The differential calculus for polynomial (or rational) maps between finite-
dimensional vector spaces, as explained in Braun-Koecher [36] or Jacobson
[136], for example, belongs to the most useful techniques from the toolbox
of elementary non-associative algebra. It elevates the linearization procedures
that we have encountered so far, and that will become much more involved
in subsequent portions of the book (see, e.g., the identities in 29.2 below), to
a new level of systematic conciseness. While it works most smoothly over
infinite base fields, it can be slightly adjusted to work over finite ones as
well. There is also a variant due to McCrimmon [182] that allows infinite-
dimensional vector spaces.

Extending this formalism to arbitrary modules over arbitrary commutative
rings, however, requires a radically new approach. The one adopted in the
present volume, due to Roby [249], is based on the concept of a polynomial
law. In the present section, we explore this concept in detail and show, in partic-
ular, how the differential calculus for polynomial maps over infinite fields can
be naturally extended to this more general setting. For a different approach, see
Faulkner [76].

Throughout, we let k be an arbitrary commutative ring and M,N,M1, . . . ,Mn

(n ∈ Z, n > 0) be arbitrary k-modules.

12.1 Reminder: polynomial maps. For the time being, let V,W be finite-
dimensional vector spaces over an infinite field F and (vi)1≤i≤m, (w j)1≤ j≤n be
bases of V,W, respectively, over F. By a polynomial map from V to W we
mean a set map f : V → W such that there exist polynomials p1, . . . , pn ∈

F[t1, . . . , tm] satisfying the equations

f (
m∑

i=1

αivi) =
n∑

j=1

p j(α1, . . . , αm)w j (α1, . . . , αm ∈ F). (1)

Since F is infinite, (1) determines the polynomials p j, 1 ≤ j ≤ n, uniquely.
Moreover, the concept of a polynomial map is obviously independent of the
bases chosen. In the special case W = F, we speak of a polynomial function
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on V . The totality of all polynomial functions on V forms a unital commuta-
tive associative F-algebra, denoted by F[V] and canonically isomorphic to the
polynomial ring F[t1, . . . , tm] over F.

Returning to our polynomial map f : V → W as above, we generalize (1) by
defining a family of set maps fR : VR → WR, one for each R ∈ F-alg, given by

fR(
m∑

i=1

riviR) :=
n∑

j=1

p j(r1, . . . , rm)w jR (r1, . . . , rm ∈ R). (2)

The key property of this family may be expressed by a coherence condition,
saying that its constituents fR vary functorially with R ∈ k-alg: every morphism
φ : R→ S in k-alg yields a commutative diagram

VR
fR //

1V⊗φ

��

WR

1W⊗φ

��
VS fS

// WS .

(3)

as shown. This coherence condition will now be isolated in the formal defini-
tion of a polynomial law.

12.2 The concept of a polynomial law. With the k-module M we associate a
(covariant) functor Ma : k-alg→ set (where set stands for the category of sets)
by setting Ma(R) = MR as sets for R ∈ k-alg and Ma(φ) = 1M ⊗ φ : MR → MS

as set maps for morphisms φ : R → S in k-alg; here 1M stands for the identity
map on M. Analogously, we obtain the functor Na : k-alg → set associated
with the k-module N. We then define a polynomial law f from M to N (over k)
as a natural transformation f : Ma → Na. In explicit terms, this means that, for
all R ∈ k-alg, we are given set maps fR : MR → NR varying functorially with
R, so whenever φ : R → S is a unital homomorphism of unital commutative
associative k-algebras, the diagram

MR
fR //

1M⊗φ

��

NR

1N⊗φ

��
MS fS

// NS .

(1)

commutes. A polynomial law from M to N will be symbolized by f : M → N,
in spite of the fact that it is not a map from M to N in the usual sense. But
it induces one, namely fk : M → N, which, however, does not determine f
uniquely. If φ : R → S is a morphism in k-alg, then S belongs to R-alg via φ,
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and identifying (MR)S = MS , (NR)S = NS canonically by means of (9.4.1), we
conclude from (9.4.2) that (1) is equivalent to

fR(x)S = fS (xS ) (x ∈ MR). (2)

The totality of polynomial laws from M to N will be denoted by Pol(M,N),
or by Polk(M,N) to indicate dependence on k. (Bourbaki aficionados please
note that this notion of polynomial laws aligns with the one considered in
the exercises of §IV.5 of [29] and need not agree with the objects denoted
Polk(M,N) in the §IV.5.10 of the main text of that book.) It is a k-module in a
natural way, the sum of f , g ∈ Pol(M,N) being given by ( f + g)R = fR + gR for
all R ∈ k-alg, ditto for scalar multiplication. The multiplication of polynomial
laws M → N by scalar polynomial laws M → k is defined analogously. In par-
ticular, Pol(M, k) is a unital commutative associative k-algebra. If f : M → N
and g : N → P are polynomial laws over k, so obviously is g◦ f : M → P, given
by (g◦ f )R = gR ◦ fR,R ∈ k-alg. Every polynomial law f : M → N over k gives
rise to its scalar extension or base change f ⊗R : MR → NR, a polynomial law
over R determined by the condition ( f ⊗ R)S := fS for all S ∈ R-alg ⊆ k-alg,
where (MR)S = MS , (NR)S = NS are canonically identified as before. We often
write fR, or simply f , for f ⊗ R if there is no danger of confusion.

12.3 Example: the characteristic polynomial of a matrix. The determinant
of an n-by-n matrix is a polynomial law det : Matn(k) → k. Similarly, for t an
indeterminate, sending a matrix x to its characteristic polynomial det(t ·1− x) ∈
k[t] is a polynomial law Matn(k) → k[t]. The same reasoning applies to show
that each of the coefficients of the characteristic polynomial, such as the trace
(the coefficient of −tn−1), also defines a polynomial law Matn(k)→ k.

Before we can proceed, we require a rather obvious but still useful observa-
tion.

12.4 Unimodular free base change. Let R ∈ k-alg and assume that 1R can
be extended to basis (ti)i∈I of R as a k-module. Since tensor products com-
mute with direct sums, the natural map M → MR, for any k-module M, is an
embedding, and identifying M ⊆ MR canonically, we conclude

MR =
⊕

i∈I

(tiM) (1)

as a direct sum of k-modules. Moreover, any linear map f : M → N between k-
modules M,N may be recovered from its R-linear extension fR : MR → NR via
restriction, and it follows that the assignment f 7→ fR defines an injection from
Homk(M,N) to HomR(MR,NR). We identify Homk(M,N) ⊆ HomR(MR,NR)
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accordingly and claim that the R-linear map⊕
i∈I

(
ti Homk(M,N)

)
= Homk(M,N)R −→ HomR(MR,NR)

extending the inclusion Homk(M,N) ↪→ HomR(MR,NR) is injective. Indeed,
given a family ( fi) of elements in Homk(M,N) with finite support, the map in
question, thanks to the preceding identifications, sends

∑
ti fi =

∑
( fi ⊗ ti) to∑

ti fiR =
∑

ti fi, and if this is zero, then so is
∑

ti fi(x) for all x ∈ M, which
by (1) implies fi = 0 for all i and proves the assertion. Summing up we have
shown that after the appropriate identifications, the following inclusions hold:

Homk(M,N) ⊆ Homk(M,N)R =
⊕

i∈I

(
ti Homk(M,N)

)
⊆ HomR(MR,NR). (2)

Moreover, the elements of Homk(M,N)R act on MR according to the rule

(ti f )(t jx) = tit j f (x) ( f ∈ Homk(M,N), i, j ∈ I, x ∈ M) (3)

since (ti f )(t jx) = (ti fR)(x ⊗ t j) = ti fR(x ⊗ t j) = ti( f (x) ⊗ t j) = f (x) ⊗ (tit j) =
tit j f (x).

12.5 Convention: multi-indices. For R ∈ k-alg it is often convenient to use
the multi-index notation rν := rν1

1 · · · r
νn
n , where r = (r1, . . . , rn) ∈ Rn and

ν = (ν1, . . . , νn) ∈ Nn are sequences of length n ≥ 1 in R,N, respectively. Also,
we put |ν| :=

∑n
i=1 νi.

For example, given a finite chain T = (t1, . . . , tn) of indeterminates, the
elements of the polynomial algebra k[T] = k[t1, . . . , tn] may be written as∑
ν∈Nn ανTν, where (αν)ν∈Nn is a family of finite support in k. Moreover, ob-

serving the identifications of 12.4, we obtain

Mk[T] =
⊕
ν∈Nn

(TνM) (1)

as a direct sum of k-modules. For a polynomial law f : M → N over k, these
identifications (replacing k by R and f by f ⊗ R) yield

fR[T](x) = fR(x) (R ∈ k-alg, x ∈ MR) (2)

since fR[T](x) = ( f⊗R)R[T](xR[T]) = ( f⊗R)R(x)R[T] = fR(x) by 12.2, particularly
by (12.2.2). Similarly, given a positive integer q and writing k[ε] for the free
k-algebra on a single generator ε, subject to the relation εq = 0 (so k[ε] =
k[t1]/(tq

1), ε = t1 + (tq
1)), we have

Mk[ε] =

q−1⊕
j=0

(ε jM). (3)
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12.6 A standard identification. For all R ∈ k-alg, we will systematically adopt
the canonical identification

(M1 × · · · × Mn)R = M1R × · · · × MnR

as R-modules such that

(v1, . . . , vn) ⊗ r = (v1 ⊗ r, . . . , vn ⊗ r), (1)

(v1 ⊗ r1, . . . , vn ⊗ rn) =
n∑

i=1

(0, . . . , 0, vi, 0, · · · , 0) ⊗ ri

for all vi ∈ M, ri ∈ R, 1 ≤ i ≤ n. Given a morphism φ : R → S in k-alg, this
identification implies

(1M1 ⊗ φ) × · · · × (1Mn ⊗ φ) = 1M1×···×Mn ⊗ φ. (2)

12.7 Homogeneous polynomial laws. A polynomial law f : M → N is said to
be homogeneous of degree d ∈ N if fR(rx) = rd fR(x) for all R ∈ k-alg, r ∈ R,
x ∈ MR. More generally, a polynomial law f : M1 × · · · ×Mn → N is said to be
multi-homogeneous of multi-degree d = (d1, . . . , dn) ∈ Nn if

fR(r1x1, . . . , rnxn) = rd1
1 · · · r

dn
n fR(x1, . . . , xn)

for all R ∈ k-alg, ri ∈ R, xi ∈ MiR, i = 1, . . . , n. Here and in the sequel, we
always identify (M1 × · · · × Mn)R = M1R × · · · × MnR canonically by means
of (12.6.1). Thanks to Exc. 12.33, multi-homogeneous (resp. homogeneous)
polynomial laws of multi-degree 1̂ = (1, . . . , 1) (resp. of degree 2) identify
canonically with multi-linear (resp. quadratic) maps in the usual sense (resp.
in the sense of 11.1). Notice also that a multi-homogeneous polynomial law
of multi-degree d ∈ Nn is homogeneous of degree |d|. Scalar homogeneous
polynomial laws are called forms. We speak of linear, quadratic, cubic, quartic,
... forms instead of forms of degree d = 1, 2, 3, 4, . . . .

12.8 Local finiteness. A family ( fi)i∈I of polynomial laws fi : M → N (i ∈ I)
is said to be locally finite if, for all R ∈ k-alg and all x ∈ MR, the family
( fiR(x))i∈I of elements in NR has finite support. In this case, we obtain a well-
defined polynomial law ∑

i∈I

fi : M −→ N

over k by setting

(
∑
i∈I

fi)R(x) :=
∑
i∈I

fiR(x) (R ∈ k-alg, x ∈ MR).

Note that this definition mutatis mutandis makes sense also if each fi, i ∈ I, is
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merely assumed to be a family of set maps fiR : MR → NR, R ∈ k-alg, which
may or may not vary functorially with R.

12.9 Theorem. Let f : M → N be a polynomial law over k and n a positive
integer. Then there exists a unique locally finite family of polynomial laws

Πν f : Mn −→ N (ν ∈ Nn)

such that

fR(
n∑

i=1

rixi) =
∑
ν∈Nn

rν(Πν f )R(x) (1)

for all R ∈ k-alg, r = (r1, . . . , rn) ∈ Rn, x = (x1, . . . , xn) ∈ (MR)n. In particular,

fR[T](
n∑

i=1

tixi) =
∑
ν∈Nn

Tν(Πν f )R(x), (2)

and this condition alone determines the family (Πν f )ν∈Nn uniquely.

Proof We begin by showing uniqueness, so suppose (Πν f )ν∈Nn is a family of
the desired kind. Replacing R by R[T] and ri by ti but keeping xi ∈ MR for
1 ≤ i ≤ n in (1), the identification (12.5.1) implies

fR[T](
n∑

i=1

tixi) =
∑
ν∈Nn

Tν(Πν f )R[T](x),

where the right-hand side by (12.5.2) agrees with the one of (2). Hence (2)
holds, and in view of (12.5.1) again, (2) determines the quantities (Πν f )R(x) ∈
NR uniquely. Thus the family (Πν f )ν∈Nn is unique. In order to establish its ex-
istence, we let R ∈ k-alg and x = (x1, . . . , xn) ∈ Mn

R. Then fR[T](
∑n

i=1 tixi) ∈
NR[T], and (12.5.1) yields a unique family ((Πν f )R(x))ν∈Nn of elements in NR

having finite support such that (2) holds. We have thus obtained a locally finite
family

(Πν f )ν∈Nn =
((

(Πν f )R
)
R∈k-alg

)
ν∈Nn

of set maps (Πν f )R : Mn
R → NR, ν ∈ Nn, R ∈ k-alg, satisfying (2).

Next we show (1), so let R ∈ k-alg, r = (r1, . . . , rn) ∈ Rn, x = (x1, . . . , xn) ∈
Mn

R and φ : R[T] → R the R-algebra homomorphism having ti 7→ ri for 1 ≤
i ≤ n. Using the identification (9.4.1), we conclude (1M ⊗ φ)(Tνy) = rνy for
ν ∈ Nn, y ∈ Mn

R, ditto for N in place of M. Hence (12.2.1) and (2) imply

fR(
n∑

i=1

rixi) = fR ◦ (1M ⊗ φ)(
n∑

i=1

tixi) = (1N ⊗ φ) ◦ fR[T](
n∑

i=1

tixi)

=
∑
ν∈Nn

(1N ⊗ φ)
(
Tν(Πν f )R(x)

)
=

∑
ν∈Nn

rν(Πν f )R(x),
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which completes the proof of (1). It remains to show that the (Πν f )R, ν ∈ Nn

vary functorially with R ∈ k-alg, so let φ : R → S be any morphism in k-alg
and ψ : R[T] → S [T] its natural extension fixing ti for 1 ≤ i ≤ n. One checks
(1M ⊗ ψ)(Tνy) = Tν(1M ⊗ φ)(y) for ν ∈ Nn, y ∈ MR, ditto for N in place of M,
and (12.6.2) yields (1M ⊗ φ)n = 1Mn ⊗ φ. Hence∑
ν∈Nn

Tν(1N ⊗ φ) ◦ (Πν f )R(x) = (1N ⊗ ψ)
( ∑
ν∈Nn

Tν(Πν f )R(x)
)

= (1N ⊗ ψ) ◦ fR[T](
n∑

i=1

tixi)

= fS [T] ◦ (1M ⊗ ψ)(
n∑

i=1

tixi)

= fS [T]
( n∑

i=1

ti(1M ⊗ φ)(xi)
)

=
∑
ν∈Nn

Tν(Πν f )S
(
(1M ⊗ φ)(x1), . . . , (1M ⊗ φ)(xn)

)
=

∑
ν∈Nn

Tν((Πν f )S ◦ (1Mn ⊗ φ)
)
(x),

and comparing coefficients, the assertion follows. □

12.10 Linearizations. The polynomial laws Πν f for ν ∈ Nn, n ∈ Z, n > 0 as
constructed in Thm. 12.9 are called the linearizations or polarizations of the
polynomial law f : M → N over k. We list a few elementary properties.

(a) For ν ∈ Nn, the polynomial law Πν f : Mn → N is multi-homogeneous of
multi-degree ν. Indeed, replacing xi by rixi (ri ∈ R, 1 ≤ i ≤ n) on the left-hand
side of (12.9.2) amounts to the same as carrying out the substitution ti 7→ riti

(1 ≤ i ≤ n). Hence the assertion follows from (12.9.1), (12.5.2).

(b) Writing π.ν := (νπ−1(1), . . . , νπ−1(n)) for ν = (ν1, . . . , νn) ∈ Nn and π ∈ Sn,
we have

(Πν f )R(xπ(1), . . . , xπ(n)) = (Ππ.ν f )R(x1, . . . , xn) (1)

for all R ∈ k-alg, x1, . . . , xn ∈ MR, which follows immediately from the fact
that the left-hand side of (12.9.2) remains unaffected by any permutation of the
summands.

(c) If f is homogeneous of degree d ∈ N, then Πν f = 0 for all ν ∈ Nn, n ∈ Z,
n > 0, unless |ν| = d. In order to see this, let s be a new variable, replace ti by
sti for 1 ≤ i ≤ n in (12.9.2) and compare coefficients of s|ν|.
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In particular, assume d > 0, let n = d and ν := 1̂ := (1, . . . , 1) ∈ Nd. Then
(a) shows that Π1̂ f : Md → N is multi-homogeneous of multi-degree 1̂, i.e.,
it is a multi-linear map (Exc. 12.33 (a)), while we conclude from (b) that it is
totally symmetric. Putting x1 = · · · = xd =: y ∈ MR in (12.9.2) and comparing
coefficients of t1 · · · td in

( d∑
i1,...,in=1

ti1 · · · tin
)
fR(y) = (

d∑
i=1

ti)d fR(y) =
∑
ν∈Nd

Tν(Πν f )R(y, . . . , y),

we conclude

(Π1̂ f )R(y, . . . , y) = d! fR(y) (2)

for all R ∈ k-alg, y ∈ MR. We call Π1̂ f the total linearization of f .

12.11 Corollary. Let T = (ti)i≥0 be a countably infinite family of indetermi-
nates and f : M → N a polynomial law over k. Then the following conditions
are equivalent.

(i) f = 0 as a polynomial law over k.
(ii) (Πν f )k = 0 as a set map Mn → N, for all n ∈ Z, n > 0, and all ν ∈ Nn.
(iii) fk[T] = 0 as a set map Mk[T] → Nk[T].

Proof (i) ⇔ (ii). The implication from left to right is obvious. Conversely,
suppose (Πν f )k = 0 for all n ∈ Z, n > 0, ν ∈ Nn. We must show fR = 0 for
all R ∈ k-alg. Every x ∈ MR can be written as x =

∑n
i=1 riviR for some n ∈ Z,

n > 0, r = (r1, . . . , rn) ∈ Rn, v = (v1, . . . , vn) ∈ Mn. From (12.9.1) and (12.2.2)
we therefore deduce

fR(x) =
∑
ν∈Nn

rν(Πν f )R(vR) =
∑
ν∈Nn

rν(Πν f )k(v)R = 0,

as desired.
(i)⇔ (iii). Again the implications from left to right is obvious. Conversely,

assume fk[T] = 0 as a set map and let R ∈ k-alg. We must show fR(x) = 0
for all x ∈ MR. Write x =

∑n
i=0 xi ⊗ ri, xi ∈ M, ri ∈ R for 0 ≤ i ≤ n. Let

φ : k[T] → R be the unique morphism in k-alg sending ti to ri for 0 ≤ i ≤ n
and to 0 for i > n. Then (12.2.1) implies fR(x) = fR ◦ (1M ⊗ φ)(

∑n
i=0 xi ⊗ ti) =

(1N ⊗ φ) ◦ fk[T](
∑n

i=0 xi ⊗ ti) = 0, as claimed. □

12.12 Corollary. Assume the k-modules M and N are free of finite rank,
with bases (v1, . . . , vm) and (w1, . . . ,wn), respectively. A family of set maps
fR : MR → NR, R ∈ k-alg, is a polynomial law over k if and only if there exist
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polynomials p1, . . . , pn ∈ k[t1, . . . , tm] such that

fR(
m∑

i=1

riviR) =
n∑

j=1

p j(r1, . . . , rm)w jR (1)

for all R ∈ k-alg, r1, . . . , rm ∈ R.

Proof If such polynomials exist, it is readily checked that the fR vary func-
torially with R ∈ k-alg, hence give rise to a polynomial law f : M → N.
Conversely, let f : M → N be a polynomial law over k. For R ∈ k-alg and
r = (r1, . . . , rm) ∈ Rm, we put v := (v1, . . . , vm) and apply (12.9.1) to conclude

fR(
m∑

i=1

riviR) =
∑
ν∈Nm

rν(Πν f )R(vR) =
∑
ν∈Nm

rν(Πν f )k(v)R.

Here (Πν f )k(v) ∈ N, ν ∈ Nm, may be written as

(Πν f )k(v) =
n∑

j=1

β jνw j

with unique coefficients β jν ∈ k, 1 ≤ j ≤ n. Since the family (Πν f )ν∈Nm is
locally finite, we can form the polynomials

p j :=
∑
ν∈Nm

β jνTν ∈ k[T] (T := (t1, . . . , tm), 1 ≤ j ≤ n)

which obviously satisfy (1). □

12.13 Corollary. Let V,W be finite-dimensional vector spaces over an infinite
field F. Then the assignment f 7→ fF defines a linear bijection from PolF(V,W)
onto the vector space of polynomial maps from V to W. For bases (v1, . . . , vm),
(w1, . . . ,wn) of V,W, respectively, over F, the inverse of this bijection assigns
to every polynomial map f : V → W the polynomial law given by the family of
set maps fR : VR → WR, R ∈ k-alg, as defined in (12.1.2).

Proof This follows from Cor. 12.12 combined with 12.1. □

12.14 Binary linearizations. It is sometimes useful to rewrite the formalism
of Thm. 12.9 for n = 2, so let f : M → N be any polynomial law over k. With
independent variables s, t, we then apply (12.9.2) and obtain

fR[s,t](sx + ty) =
∑

m≥0,n≥0

smtn(Π(m,n) f )R(x, y) (1)

for all R ∈ k-alg, x, y ∈ MR, and (12.10.1) yields

(Π(m,n) f )R(x, y) = (Π(n,m) f )R(y, x). (2)
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If f is homogeneous of degree d ∈ N, we obtain Π(m,n) f = 0 for m, n ≥ 0
unless m + n = d (12.10 (c)), so (1) collapses to

fR[s,t](sx + ty) =
d∑

n=0

sd−ntn(Π(d−n,n) f )R(x, y)

for all R ∈ k-alg, x, y ∈ MR.

12.15 Total derivatives. Let f : M → N be any polynomial law over k. By
Thm. 12.9, the family (Π(m,n) f )m,n≥0 of polynomial laws M×M → N is locally
finite, allowing us to define, for all n ∈ N, a polynomial law

Dn f :=
∑
m≥0

Π(m,n) f : M × M −→ N, (1)

called the n-th (total) derivative of f . By 12.10 (a), it is homogeneous of degree
n in the second variable, i.e.,

(Dn f )R(x, ry) = rn(Dn f )R(x, y). (R ∈ k-alg, r ∈ R, x, y ∈ MR)

In particular, Exc. 12.30 and (12.9.1) imply

(D0 f )R(x, y) =
∑
m≥0

(Π(m,0) f )R(x, y) =
∑
m≥0

(Πm f )R(x) = fR(x), (2)

hence D0 f = f ◦ π1 as polynomial laws over k, where π1 : M × M → M is the
projection onto the first factor. Moreover, abbreviating D f := D1 f ,

(D f )R(x) : MR −→ NR, y 7−→ (D f )R(x)(y) := (D f )R(x, y),

by Exc. 12.33 (a) is an R-linear map for all x ∈ MR,R ∈ k-alg. Similarly,

(D2 f )R(x) : MR −→ NR, y 7−→ (D2 fR)(x, y),

is an R-quadratic map in the sense of 11.1. Specializing s 7→ 1 in (12.14.1), we
obtain the relation

fR[t](x + ty) =
∑
n≥0

tn(Dn f )R(x, y), (3)

called the Taylor expansion of f at x. For q ∈ Z, q > 0, it is sometimes conve-
nient to replace R[t] by the algebra R[ε], εq+1 = 0, and to apply (12.9.1). The
ensuing relation

fR[ε](x + εy) =
q∑

n=0

εn(Dn f )R(x, y) (4)
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determines the first q derivatives of f uniquely. In particular, for q = 1, R[ε] is
the algebra of dual numbers and

fR[ε](x + εy) = fR(x) + ε(D f )R(x, y). (5)

12.16 Total derivatives of homogeneous polynomial laws. Let f : M → N
be a homogeneous polynomial law of degree d ≥ 0 over k. By 12.10 (c), the
terms Π(m,n) f in the sum on the right of (12.15.1) vanish unless m + n = d.
Thus Dn f = 0 for n > d and

Dn f = Π(d−n,n) f (0 ≤ n ≤ d). (1)

Comparing this with (12.14.2), we conclude

(Dn f )R(x, y) = (Dd−n f )R(y, x) (R ∈ k-alg, 0 ≤ n ≤ d, x, y ∈ MR). (2)

We also obtain Euler’s differential equation

(D f )R(x, x) = d fR(x) (3)

by setting y = x in (12.15.5), which gives fR(x)+ε(D f )(x, x) = (1+ε)d fR(x) =
fR(x) + εd fR(x), as claimed.

12.17 Differential calculus. The standard rules of differentiation are valid for
arbitrary polynomial laws and will henceforth be used without further com-
ment. For convenience, we mention just a few examples.

Let f : M → N, g : N → P, fi : M → Ni (i = 1, 2) be polynomial laws
over k and suppose N1 × N2 → N is a k-bilinear map written multiplicatively.
Furthermore, let λ : M → N (resp. Q : M → N) be a linear (resp. quadratic)
map. Then, dropping the subscript “R” for simplicity (e.g., by writing f (x)
instead of fR(x), we have

(Dλ)(x, y) = λ(y), (1)

(DQ)(x, y) = Q(x, y), (2)

(D2Q)(x, y) = Q(y), (3)(
D(g ◦ f )

)
(x, y) = (Dg)

(
f (x), (D f )(x, y)

)
, (4)(

D(g ◦ λ)
)
(x, y) = (Dg)

(
λ(x), λ(y)

)
(5)(

D2(g ◦ f )
)
(x, y) = (Dg)

(
f (x), (D2 f )(x, y)

)
(6)

+ (D2g)
(
f (x), (D f )(x, y)

)
,(

D( f1 f2)
)
(x, y) = (D f1)(x, y) f2(x) + f1(x)(D f2)(x, y), (7)(

Dn( f1 f2)
)
(x, y) =

n∑
i=0

(Di f1)(x, y)(Dn−i f2)(x, y) (8)
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for all R ∈ k-alg, all x, y ∈ MR and all n ∈ N. Note that (4) (resp. (6)) is the
first (resp. second) order chain rule, while (7) (resp. (8)) is the first (resp. n-th)
order product rule of the differential calculus. Moreover, (5) by (1) is a special
case of (4).

12.18 Directional derivatives. Let y ∈ M. For any polynomial law f : M → N
over k, the rule

(∂y f )R(x) := (D f )R(x, yR) ∈ NR (R ∈ k-alg, x ∈ MR)

defines a new polynomial law ∂y f : M → N, called the derivative of f in the
direction y, and the map

∂y : Polk(M,N) −→ Polk(M,N)

is obviously k-linear.
Our next aim will be to show that the operators ∂y, y ∈ M, commute and that

their iterations relate to the total linearization of a homogeneous polynomial
law. To accomplish this, we need some preparation.

12.19 Lemma. Let f : M → N be a polynomial law over k. Then

(Dp f )R[T](
n∑

i=1

tixi, xn+1) =
∑
ν∈Nn

Tν(Π(ν,p) f )R(x1, . . . , xn, xn+1)

for all R ∈ k-alg, p, n ∈ N, n > 0, x1, . . . , xn, xn+1 ∈ MR.

Proof With an additional indeterminate tn+1, we apply (12.9.2) and obtain

fR[T,tn+1](
n+1∑
i=1

tixi) =
∑

ν∈Nn,p≥0

Tνtp
n+1(Π(ν,p) f )R(x1, . . . , xn, xn+1).

Invoking the Taylor expansion (12.15.3) and comparing coefficients of tp
n+1,

the lemma follows. □

12.20 Lemma. Let f : M → N be a polynomial law over k and y ∈ M. Then

(Πν∂y f )R(x1, . . . , xn) = (Π(ν,1) f )R(x1, . . . , xn, yR)

for all R ∈ k-alg, n ∈ Z, n > 0, ν ∈ Nn, x1, . . . , xn ∈ MR.

Proof Applying (12.9.2) to ∂y f , we obtain

(∂y f )R[T](
n∑

i=1

tixi) =
∑
ν∈Nn

Tν(Πν∂y f )R(x1, . . . , xn).
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On the other hand, treating the left-hand side according to the definition of ∂y

(12.18) and applying Lemma 12.19 for p = 1, we conclude

(∂y f )R[T](
n∑

i=1

tixi) =
∑
ν∈Nn

Tν(Π(ν,1) f )R(x1, . . . , xn, yR),

as desired. □

12.21 Proposition. Let f : M → N be a polynomial law over k, p ∈ N, and
y1, . . . , yp ∈ M. Then

(∂y1 · · · ∂yp f )R(x) =
∑
i≥0

(Π(i,1,...,1) f )R(x, y1R, . . . , ypR) (1)

for all R ∈ k-alg, x ∈ MR. In particular, the operators ∂y, y ∈ M, commute.

Proof To establish the first part, we argue by induction on p. For p = 0,
the assertion is just (12.9.1), while the induction step follows immediately
from Lemma 12.20. The second part now follows from the first for p = 2
and (12.10.1). □

12.22 Corollary. Let f : M → N be a homogeneous polynomial law of degree
d > 0. Then the total linearization of f relates to its directional derivatives by
the formula

(Π1̂ f )k(y1, . . . , yd−1, yd) = (∂y1 · · · ∂yd−1 f )k(yd) (1)

for all y1, . . . , yd−1, yd ∈ M. In particular, the right-hand side is totally sym-
metric in y1, . . . , yd.

Proof Since f is homogeneous of degree d, the right side of (12.21.1) col-
lapses to the single term (Π(d−p,1,...,1) f )R(x, y1R, . . . , ypR) by 12.10 (c), and (1)
follows for p = d − 1. The rest is clear. □

Our next aim in this section will be to show that a particularly simple and
useful Zariski density argument extends from the setting of finite-dimensional
vector spaces over infinite fields to arbitrary modules over commutative rings.
The key to this extension is the following concept, which is modeled after
standard notions in algebraic geometry (cf. Jantzen [146, 1.5], see also 24.16
below).

12.23 Subfunctors. Let A be a unital associative k-algebra, possibly not com-
mutative, and g : M → A a polynomial law over k. For R ∈ k-alg, we put

D(g)(R) := {x ∈ MR | gR(x) ∈ A×R},

where A×R on the right as usual stands for the group of invertible elements in
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AR. Clearly, D(g) is a subfunctor of Ma, i.e., D(g)(R) ⊆ Ma(R) = MR is a subset
for all R ∈ k-alg and (1M⊗φ)(D(g)(R)) ⊆ D(g)(S ) for all morphisms φ : R→ S
in k-alg.

12.24 Proposition ([95, Lemma 3.2]). Let A be a unital associative k-algebra
and g : M → A a polynomial law over k such that D(g)(k) , ∅. If f : M → N is
a homogeneous polynomial law over k that vanishes on D(g), i.e., fR|D(g)(R) = 0
for all R ∈ k-alg, then f = 0.

For most applications, this proposition is totally adequate. But sometimes
the following more detailed, but also more technical, version will be needed.

12.25 Lemma. With A and g as in Proposition 12.24, let f : M → N be a
homogeneous polynomial law over k and R ∈ k-alg such that fS |D(g)(S ) = 0
for all S ∈ R-alg ⊆ k-alg which are free of positive rank as R-modules. Then
fR = 0.

Proof After replacing g by g⊗R and f by f ⊗R if necessary, we may assume
R = k. Pick e ∈ D(g)(k), so e ∈ M satisfies u := gk(e) ∈ A×. Substituting
Lu−1 ◦ g for g, we may assume gk(e) = 1A. Now write d for the degree of f and
consider the k-algebra S := k[ε], εd+1 = 0, which is free as a k-module of rank
d + 1. Picking any x ∈ M and using the identifications of (12.5.3), the Taylor
expansion (12.15.4) implies that

gS (e + εx) = 1A +

d∑
n=1

εn(Dng)k(e, x)

is invertible in AS . Hence e + εx ∈ D(g)(S ) and, by hypothesis,

0 = fS (e + εx) =
d∑

n=0

εn(Dn f )k(e, x).

Comparing coefficients of εd, we conclude from (12.15.2), (12.16.2) that

fk(x) = (D0 f )k(x, e) = (Dd f )k(e, x) = 0. □

In our subsequent applications, it will sometimes be necessary to compose
polynomial laws with semi-linear maps. In order to explain the meaning of this
procedure, the set-up of the present section requires a few minor adjustments.

12.26 Tensor products of semi-linear maps. Let σ : K → K′ be a morphism
in k-alg and M′,N′ be K′-modules. Viewing K′ as a K-algebra by means of σ,
restriction of scalars converts M′ into a K-module, which we denote by K M′,
or simply by M′ if there is no danger of confusion; ditto for N′. Since the
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expression x′ ⊗K′ y′ ∈ M′ ⊗K′ N′, x′ ∈ M′, y′ ∈ N′, is, in particular, K-bilinear,
we obtain a natural K-linear, hence σ-semi-linear, map

canσ : K M′ ⊗K K N′ −→ M′ ⊗K′ N′, x′ ⊗K y′ 7−→ x′ ⊗K′ y′. (1)

Now suppose in addition that M,N are K-modules and φ : M → M′, ψ : N →
N′ areσ-semi-linear maps. These may be regarded as K-linear maps Kφ : M →
K M′, Kψ : N → K N′, and the composite

M ⊗K N
Kφ⊗K Kψ

// K M′ ⊗K K N′ canσ
// M′ ⊗K′ N′

gives rise to a σ-semi-linear map

φ ⊗σ ψ : M ⊗K N −→ M′ ⊗K′ N′, x ⊗K y 7−→ φ(x) ⊗K′ ψ(y), (2)

called the σ-semi-linear tensor product of φ and ψ.

12.27 Restriction of scalars. Let K ∈ k-alg. We wish to convert polyno-
mial laws over K into ones over k. To this end, let M,N be K-modules. As
in 12.26, we write k M for M viewed as a k-module. Similarly, every K-linear
map φ : M → N may be viewed as a k-linear map kφ : k M → kN. Now let
R ∈ k-alg. Then RK ∈ K-alg and, using associativity of the tensor product [28,
II.3, Prop. 8], we obtain a natural identification

MRK = M ⊗K (R ⊗ K) = M ⊗K (K ⊗ R) (1)

= (M ⊗K K) ⊗ R = M ⊗ R = (k M)R

of RK-modules such that

x ⊗ r = x ⊗K rK = x ⊗K (r ⊗ 1K), x ⊗K (r ⊗ a) = (ax) ⊗ r (2)

for all x ∈ M, r ∈ R, a ∈ K. Here the natural action of RK on MRK translates
into one on (k M)R via

(r ⊗ a)(x ⊗ r′) = (ax) ⊗ (rr′) (3)

for r, r′ ∈ R, a ∈ K, x ∈ M. If φ : M → N is a K-linear map, then (2) implies
(kφ)R = φRK . Similarly, if ϱ : R→ S is a morphism in k-alg, then ϱK : RK → S K

is one in K-alg, and we have 1k M ⊗ ϱ = 1M ⊗K ϱK . Given a polynomial law
f : M → N over K, we therefore conclude that k f : k M → kN defined by

(k f )R := fRK (4)

as a set map from (k M)R = MRK to (kN)R = NRK , for all R ∈ k-alg, is a
polynomial law over k. We say that k f arises from f by restriction of scalars
from K to k. As an example, any K-quadratic map Q : M → N may be viewed
canonically as a k-quadratic map kQ : k M → kN. Following Exc. 12.33 (b)
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below, we thus obtain polynomial laws Q̃ : M → N over K and k̃Q : k M → kN
over k that are both homogeneous of degree 2, and one checks that kQ̃ = k̃Q.
In other words, after the identification (1) we have

QRK = (kQ)R (5)

for all R ∈ k-alg.
Note for L ∈ K-alg ⊆ k-alg and a polynomial law g : P→ Q over L that

k(Kg) = kg, (6)

as polynomial laws over k, so iterated restrictions of scalars collapse to single
ones.

12.28 Semi-linear polynomial squares. Let σ : K → K′ be a morphism in
k-alg. By a σ-semi-linear polynomial square we mean a diagram of the form

M
φ
//

f
��

M′

f ′

��
N

ψ
// N′,

(1)

where f : M → N is a polynomial law over K, f ′ : M′ → N′ is one over
K′, and φ : M → M′, ψ : N → N′ are σ-semi-linear maps. Note that φ may
canonically be viewed as a k-linear map kφ : k M → k M′, ditto for ψ. We say
that (1) is commutative if the diagram

k M
kφ
//

k f

��

k M′

k f ′

��
kN

kψ
// kN′

(2)

of polynomial laws over k in the sense of 12.27 is commutative. We wish to
describe the meaning of this condition explicitly.

Let R ∈ k-alg and identify RK = KR (resp. RK′ = K′R) as K- (resp. K′-
)algebras and as R-algebras canonically. Then

σR := kσ ⊗ 1R : KR −→ K′R (3)

is a σ-semi-linear morphism in R-alg, and one checks that

(kφ)R = φ ⊗σ σR, (kψ)R = ψ ⊗σ σR, (4)

where the right-hand sides refer to the σ-semi-linear tensor product as defined
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in (12.26.2). Taking into account the identifications of 12.26, we therefore con-
clude that the σ-semi-linear polynomial square (1) (i.e., (2)) commutes if and
only if, for all R ∈ k-alg, the diagram

MKR φ⊗σσR

//

fKR

��

M′K′R
f ′
K′R

��
NKR ψ⊗σσR

// N′K′R

(5)

of set maps commutes. In particular, since

φ ⊗σ σ = φ, ψ ⊗σ σ = ψ, (6)

the special case R = k in (5) amounts to

M
φ
//

fK

��

M′

f ′K′
��

N
ψ
// N′

(7)

being commutative.
Let

k

��
k′

��   
K

σ
// K′

(8)

be a commutative diagram in k-alg. If (1) commutes as a σ-semi-linear poly-
nomial square, then so does

k′M
k′φ
//

k′ f

��

k′M′

k′ f ′

��
k′N

k′ψ
// k′N′

(9)

as a diagram of polynomial laws over k′ since by definition and (12.27.6), this
becomes true when restricting scalars still further to k, allowing us to apply
Exc. 12.45 below and to obtain the assertion.
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12.29 Example. Let σ : K → K′ be a morphism in k-alg and f : M → N a
polynomial law over k. We claim that the σ-semi-linear polynomial square

MK 1M⊗σ
//

f⊗K
��

MK′

f⊗K′

��
NK 1N⊗σ

// NK′

(1)

commutes. Indeed, by (12.28.5), this will follow once we have shown that the
diagram

(MK)KR (1M⊗σ)⊗σσR

//

( f⊗K)KR

��

(MK′ )K′R

( f⊗K′)K′R

��
(NK)KR (1N⊗σ)⊗σσR

// (NK′ )K′R

of set maps commutes, for all R ∈ k-alg. But after natural identifications, this
is the same as

MKR 1M⊗σR

//

fKR

��

MK′R

f ′
K′R

��
NKR

1N⊗σR // NK′R

,

which commutes since f is a polynomial law over k.
Let us consider the special case that σ : k → K is the unit homomorphism of

some K ∈ k-alg. For any k-module M, it follows that canM,K = 1M ⊗ σ : M →
MK is a σ-semi-linear map and, given a polynomial law f : M → N over k,
equation (1) takes on the form

M canM,K
//

f
��

MK

f⊗K
��

N canN,K
// NK .

(2)

Thus, by definition,

M
k(canM,K )

//

f

��

k(MK)

k( f⊗K)
��

N
k(canN,K )

// k(NK)

(3)

is a commutative diagram of polynomial laws over k.
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Exercises
12.30. Let f : M → N be a polynomial law over k, R ∈ k-alg, n, p be positive integers
and x ∈ Mn

R, y ∈ Mp
R. Prove for ν ∈ Nn that

(Π(ν,0,...,0) f )R(x, y) = (Πν f )R(x).

12.31 (Roby [249]). Let f : M → N be a polynomial law over k. Show that there is a
unique family ( fd)d≥0 of polynomial laws M → N over k such that the following condi-
tions hold: (i) the family ( fd)d≥0 is locally finite, (ii) f =

∑
fd, (iii) fd is homogeneous

of degree d for all d ≥ 0. Give an example where fd , 0 for all d ≥ 0.

12.32 (Roby [249]). Constant polynomial laws. Show that the homogeneous polyno-
mial laws M → N of degree 0 are precisely of the form ŵ,w ∈ N, where ŵR : MR → NR
for R ∈ k-alg is given by ŵR(x) := wR, x ∈ MR.

12.33 (Roby [249]). (a) Let µ : M1 × · · · × Mn → N be a multi-linear map. Show that
µ̃ : M1 × · · · × Mn → N given by µ̃R := µ ⊗ R (the R-multi-linear extension of µ)
for R ∈ k-alg is a multi-homogeneous polynomial law of multi-degree 1̂ = (1, . . . , 1).
Show that, conversely, every multi-homogeneous polynomial law M1 × · · · × Mn → N
of multi-degree 1̂ uniquely arises in this way.

(b) If Q : M → N is a quadratic map, show that Q̃ : M → N given by Q̃R := Q⊗R (the
base change of Q from k to R in the sense of 11.5) for R ∈ k-alg is a homogeneous poly-
nomial law of degree 2 over k. Show that, conversely, every homogeneous polynomial
law M → N of degree 2 over k uniquely arises in this way. Identifying quadratic maps
and homogeneous polynomial laws of degree 2 accordingly, prove that the total first
derivative DQ : M×M → N of Q as a polynomial law is the same as the bilinearization
of Q as quadratic map.

12.34 (Roby [249]). Let f : M → N be a polynomial law over k and p ∈ N.

(a) Show for n ∈ Z, n > p, ν1, . . . , νn ∈ N, x, x1, . . . , xp ∈ MR,R ∈ k-alg that

(Π(ν1 ,...,νp ,νp+1 ,...,νn) f )R(x1, . . . , xp, x, . . . , x)

=
(νp+1 + · · · + νn)!
νp+1! · · · νn!

(Π(ν1 ,...,νp ,νp+1+···+νn) f )R(x1, . . . , xp, x)

(b) Show for y ∈ M that ∂[p]
y f : M → N given by (∂[p]

y f )R(x) = (Dp f )R(x, yR) (R ∈
k-alg, x ∈ MR) is a polynomial law over k. Moreover, the map ∂

[p]
y : Polk(M,N) →

Polk(M,N) satisfies (∂y)p = p!∂[p]
y .

(c) Show that ∂[2]
y+z = ∂

[2]
y + ∂y∂z + ∂

[2]
z for y, z ∈ M.

12.35. Polynomial laws over infinite fields. Let K be an infinite field, V,W (possibly
infinite-dimensional) K-vector spaces and f : V → W a polynomial law over K.

(a) Show that if fK = 0 as a set map from V to W, then f = 0 as a polynomial law
over K.

(b) Conclude from (a) for a scalar polynomial law φ : V → K over K that if the
product polynomial law φ f : V → W defined by (φ f )R(x) := φR(x) fR(x) for
R ∈ K-alg and x ∈ VR is zero (as a polynomial law over K), then φ = 0 or
f = 0 (as polynomial laws over K).
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12.36. Let M,N be k-modules and suppose f : M → N is a polynomial law over k.

(a) Show that f = 0 (as a polynomial law over k) if and only if f ⊗ kp = 0 (as a
polynomial law over kp) for all p ∈ Spec(k).

(b) If f is homogeneous of degree d ∈ N, show that f = 0 (as a polynomial law
over k) if and only if fk = 0 (as a set map M → N) and Dp f = 0 (as a
polynomial law M × M → N) for 0 ≤ p ≤ ⌊ d

2 ⌋.

12.37 ([95, Lemma 3.1]). Let M be a finitely generated projective k-module, and sup-
pose f : M → N is a polynomial law such that fk(0) = 0. Prove: If m ∈ M has fk(m)
unimodular in N, then m is unimodular in M.

12.38. Let f be a form of degree d on a k-module M in the sense of 12.7. We say that
f represents zero if fk(m) = 0 for some nonzero m ∈ M. If moreover m can be chosen
to be unimodular, then we say that f is isotropic. (In case d = 2, f is a quadratic form,
and this definition of isotropic agrees with the one in 11.17.)

(a) Let R = k[t] or the power series ring k[[t]]. Prove: If f does not represent zero,
then fR does not represent zero on MR and, for every m ∈ MR, the lowest degree term
of fR(m) has degree divisible by d.
(The converse, “ f represents zero⇒ fR represents zero”, is trivial.)

(b) Suppose R ⊇ k is a localization (i.e., R = k[S −1] where S is a multiplicatively
closed subset of k containing no zero divisors) and M is a torsion-free module (meaning
that if xm = 0 for x ∈ k and m ∈ M, then x is a zero divisor or m = 0). Verify: f
represents zero on M if and only if fR represents zero on MR.

(c) Prove: If k is a principal ideal domain, M is a free module of finite rank, and f
represents zero, then f is isotropic.

12.39. Suppose R is a discrete valuation ring (DVR) with residue field k and uniformiz-
ing parameter π. (See for example [27, §VI.3.6] for background on discrete valuations
on fields.) Let fi be a form of degree d on a free finitely generated R-module Mi for
0 ≤ i < d. Verify: If the form f̄i on Mi ⊗R k induced from fi does not represent zero for
all i, then the form

∑d−1
i=0 π

i fi on M0 ⊕ M1 ⊕ · · · ⊕ Md−1 does not represent zero.
Remark. The case d = 2 is standard in the theory of quadratic forms, see for example
[72, Lemma 19.5].

12.40. Exotic cubic forms. Even when working over a field, homogeneous polynomial
laws of degree ≥ 3 are no longer determined by the set maps they induce over the base
ring. Examples for this phenomenon will be discussed in the present exercise.

(a) Let f : M → N be a homogeneous polynomial law of degree 3 over k. Simplify
notation by writing f (x) = fR(x) for R ∈ k-alg, x ∈ MR (ditto for other polynomial
laws), and put

f (x, y) := (D f )(x, y), f (x, y, z) := (Π(1,1,1) f )(x, y, z) (1)

for x, y, z ∈ MR. Then prove

f (x + ty) = f (x) + t f (x, y) + t2 f (y, x) + t3 f (y), (2)
f (x + y, z) = f (x, z) + f (x, y, z) + f (y, z), (3)

f (x, y, z) = f (x + y + z) − f (x + y) − f (y + z) − f (z + x) (4)
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+ f (x) + f (y) + f (z),

f (
n∑

i=1

ri xi) =
n∑

i=1

r3
i f (xi) +

∑
1≤i, j≤n,i, j

r2
i r j f (xi, x j) (5)

+
∑

1≤i< j<l≤n

rir jrl f (xi, x j, xl)

for all R ∈ k-alg, n ∈ Z, n > 0, a variable t and elements x, y, z, x1, . . . , xn ∈ MR,
r1, . . . , rn ∈ R.

(b) Let F be a field, n ∈ Z, n > 0, Fn n-dimensional column space over F with the
canonical basis (ei)1≤i≤n and g : Fn → F a cubic form. View Fn as a unital commuta-
tive associative F-algebra under the component-wise multiplication and prove that the
following conditions are equivalent.

(i) The set map gF : Fn → F is zero but g itself is not.
(ii) F � F2 consists of two elements,

gF(ei) = gF(x, x) = gF(x, y, z) = 0 (1 ≤ i ≤ n, x, y, z ∈ Fn), (6)

and there are x0, y0 ∈ Fn such that gF(x0, y0) , 0.
(iii) F � F2 consists of two elements and there exists a non-zero alternating matrix

S ∈ Matn(F) such that

gR(x) = xTS R x2

for all R ∈ F-alg and all x ∈ (Fn)R = Rn.

12.41 (Springer [267, p. 63]). Let F be a field and suppose f is a cubic form on an F-
vector space V . Prove: if f does not represent zero, neither does f ⊗K, for any quadratic
field extension K of F.

12.42. The third order chain rule. Let f : M → N, g : N → P be polynomial laws over
k. Given R ∈ k-alg and u, v,w ∈ NR, simplify notation as in 12.17 and write

(D2g)(u, v,w) := (D2g)(u, v + w) − (D2g)(u, v) − (D2g)(u,w) (1)

for the bilinearization of the quadratic map (D2g)(u,−) : NR → PR. Then prove(
D3(g ◦ f )

)
(x, y) = (Dg)

(
f (x), (D3 f )(x, y)

)
+ (D2g)

(
f (x), (D f )(x, y), (D2 f )(x, y)

)
+ (D3g)

(
f (x), (D f )(x, y)

)
for all x, y ∈ MR.

12.43. Cubic maps. In this exercise, we compare Faulkner’s approach [76] to homoge-
neous polynomial maps, for simplicity restricted here to the special case of degree 3,
with the formalism of polynomial laws.

(a) Show that the totality of polynomial laws over k can be canonically converted into a
category, denoted by k-polaw, and regard the homogeneous polynomial laws of degree
3 as a full subcategory, denoted by k3-holaw, of k-polaw.

Let M and N be k-modules. Following Faulkner [76], define a cubic map from M to
N over k as a pair ( f , g) of set maps f : M → N and g : M × M → N satisfying the
following conditions.
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(i) f is homogeneous of degree 3: f (αx) = α3 f (x) for all α ∈ k and all x ∈ M.
(ii) g is quadratic-linear over k in the sense of Exercise 11.34.
(iii) ( f , g) satisfies the expansion

f (x + y) = f (x) + g(x, y) + g(y, x) + f (y)

for all x, y ∈ M.
(iv) Euler’s differential equation holds:

g(x, x) = 3 f (x)

for all x ∈ M.

Cubic maps from M to N as above, symbolized by ( f , g) : M → N, form a k-module in
the obvious way. Now prove:

(b) If ( f , g) : M → N is a cubic map, then the assignment

(x, y, z) 7−→ g(x, y, z) := g(x + y, z) − g(x, z) − g(y, z) (1)

defines a trilinear map M × M × M → N which is totally symmetric. Moreover,

Rad( f , g) := {x ∈ M | ∀y ∈ M : f (x) = g(x, y) = g(y, x) = 0}, (2)

called the radical of ( f , g), is a submodule of M such that

g
(
Rad( f , g),M,M

)
= {0}, (3)

and for any linear surjection π : M → M1 of k-modules having Ker(π) ⊆ Rad( f , g),
there is a unique cubic map ( f1, g1) : M1 → N such that f1 ◦ π = f and g1 ◦ (π × π) = g.

(c) Generalize (iii) to the expansion

f (
n∑

i=1

αi xi) =
n∑

i=1

α3
i f (xi) +

∑
1≤i, j≤n,i, j

α2
i α jg(xi, x j) (4)

+
∑

1≤i< j<l≤n

αiα jαlg(xi, x j, xl)

for all n ∈ Z, n ≥ 1, αi ∈ k, xi ∈ M, 1 ≤ i ≤ n. Conclude for all R ∈ k-alg that there is a
unique cubic map ( f , g)R = ( fR, gR) : MR → NR over R making the diagrams

M
f
//

can

��

N

can

��

M × M g
//

can

��

N

can

��
MR fR

// NR, MR × NR gR
// NR

(5)

commutative. We call ( f , g)R the R-cubic extension of ( f , g).

(d) The totality of cubic maps between k-modules can be canonically converted into a
category, denoted by k-cumap. Furthermore, the assignment f 7→ ( fk, (D f )k) on objects
and the identity on morphisms yields a well-defined isomorphism of categories from
k3-holaw onto k-cumap, the inverse of that isomorphism on objects being denoted by
( f , g) 7→ f ∗ g.
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12.44. Let F : M → N be a homogeneous polynomial law of degree 3 over k and
suppose the k-module M is projective. Show that there exists a trilinear map T : M ×
M × M → N, in general not symmetric, such that F(x) = T (x, x, x) for all x ∈ MR,
R ∈ k-alg.

12.45. Let K ∈ k-alg and M,N be K-modules. Show that the k-linear map

PolK(M,N) −→ Polk(k M, kN), f 7−→ k f ,

induced by the restriction of scalars is injective.

12.46. Let M,N, P be K-modules and f : M → N, g : N → P be polynomial laws over
K. Then

(a) k(g ◦ f ) = (kg) ◦ (k f ).
(b) If f is homogeneous of degree d ∈ N, so is k f .
(c) k(Πν f ) = Πν(k f ) for all n ∈ N and all ν ∈ Nn.
(d) If ( fi)i∈I is a locally finite family of polynomial laws fi : M → N, i ∈ I, over K,

then (k fi)i∈I is a locally finite family of polynomial laws k fi : k M → kN over k
and

k(
∑
i∈I

fi) =
∑
i∈I

(k fi).

(e) Dn(k f ) = k(Dn f ) for all n ∈ N.
(f) ∂y(k f ) = k(∂y f ) as polynomial laws k M → kN over k, for all y ∈ M.

12.47. Let K ∈ k-alg, M be a k-module and N a K-module. Given a polynomial law
f : M → kN over k, show that there is a unique polynomial law g : MK → N over K
making a commutative diagram

M
f
//

k(canM,K )

��

kN

k(MK)

kg

<<

(1)

of polynomial laws over k.
Remark. We denote by k-pol the category of k-modules with polynomial laws over k
as morphisms. Given K ∈ k-alg, we obtain the (covariant) base change functor from
k-pol to K-pol which converts a polynomial law f : M → N of k-modules to its scalar
extension f ⊗ K : MK → NK . On the other hand, we have the (covariant) scalar re-
striction functor from K-pol to k-pol which converts a polynomial law g : P → Q of
K-modules to its scalar restriction kg : kP→ kQ. The preceding exercise shows that the
latter functor is left adjoint to the former.

12.48. Cubic maps and semi-linear polynomial squares. (a) Let K ∈ k-alg, M,N be K-
modules and ( f , g) : M → N a cubic map over K in the sense of Exercise 12.43. Viewing
f as a set map k f : k M → kN, x 7→ f (x), and g as a set map kg : k M × k M → kN,
(x, y) 7→ g(x, y), prove that the restriction of scalars, k( f , g) := (k f , kg) : k M → kN, is
a cubic map over k satisfying

k( f ∗ g) = (k f ) ∗ (kg). (1)
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(b) Let σ : K → K′ be a morphism in k-alg and M,N (resp. M′,N′) be K- (resp. K′-)
modules. Given cubic maps ( f , g) : M → N over K (resp. ( f ′, g′) : M′ → N′ over K′)
and σ-semi-linear maps φ : M → M′ (resp. ψ : N → N′), show that the σ-semi-linear
polynomial square

M
φ
//

f ∗g

��

M′

f ′∗g′

��
N

ψ
// N′

(2)

commutes in the sense of 12.28 if and only if so do the diagrams

M
φ
//

f

��

M′

f ′

��

M × M
φ×φ
//

g

��

M′ × M′

g′

��
N

ψ
// N′, N

ψ
// N′

(3)

of set maps.

12.49. Matching non-scalar polynomial laws with scalar ones (Loos [171, 18.5]). Prove
for k-modules M,N that there exists a unique k-linear map

Ψ : N ⊗ Pol(M, k) −→ Pol(M,N)

satisfying (
Ψ(v ⊗ f )

)
R(x) = v ⊗ fR(x) (1)

for all v ∈ N, f ∈ Pol(M, k), R ∈ k-alg, x ∈ MR. Moreover, Ψ is an isomorphism if N is
finitely generated projective.
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III

Alternative algebras

Alternative algebras are one of the most important building blocks of Albert
algebras. The main examples are associative algebras, which the reader is fa-
miliar with from the theory of non-commutative rings; the Graves-Cayley octo-
nions over the reals (1.5); and the Dickson-Coxeter octonions over the integers
(4.5).

In this chapter, we focus on those properties of alternative algebras that are
important for applications to Albert algebras. We derive a number of important
identities, then proceed to establish a fairly general version of Artin’s associa-
tivity theorem and investigate homotopes of alternative algebras.

13 Basic identities and invertibility

Having gained some proficiency in the language of arbitrary non-associative
algebras, we are now adequately prepared to deal with the more specific class
of alternative algebras. After giving the formal definition, we derive the Mou-
fang identities and introduce the notion of invertibility. Throughout, we let k
be an arbitrary commutative ring.

13.1 The concept of an alternative algebra. A k-algebra A is said to be al-
ternative if its associator (cf. 7.5), i.e., the trilinear map (x, y, z) 7→ [x, y, z] =
(xy)z− x(yz) from A× A× A to A, is alternating. This means that the following
identities hold in A:

x(xy) = x2y, (left alternative law) (1)

(yx)x = yx2, (right alternative law) (2)

(xy)x = x(yx). (flexible law) (3)

In fact, since the symmetric group on three letters is generated by any two of
the transpositions (1, 2), (2, 3), (3, 1), any two of the above equations imply the
third, hence force A to be alternative. An alternative algebra and its opposite
have the same associator, so Aop is alternative if and only if A is. It is sometimes
convenient to express the alternative laws in operator form, i.e., in terms of left

108
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and right multiplication operators as follows:

L2
x = Lx2 , (4)

R2
x = Rx2 , (5)

LxRx = RxLx. (6)

13.2 Linearizations. For the rest of this section, we fix an alternative algebra
A over k. Then, thanks to flexibility, the expression xyx is unambiguous in
A. Also, since (13.1.1)–(13.1.3) are quadratic in x, they may be linearized to
yield new identities valid in A. For example, replacing x by x + z in (13.1.1),
collecting mixed terms and interchanging y with z, we obtain

x(yz) + y(xz) = (xy + yx)z. (1)

Similarly,

(xy)z + (xz)y = x(yz + zy), (2)

(xy)z + (zy)x = x(yz) + z(yx). (3)

Again these relations can be expressed in terms of left and right multiplica-
tion operators; details are left to the reader. Also, it is now straightforward to
check that the property of an algebra to be alternative remains stable under
base change: AR is alternative, for any R ∈ k-alg.

13.3 The Moufang identities. Less obvious is the fact that the Moufang iden-
tities

(xyx)z = x
(
y(xz)

)
, (left Moufang identity) (1)

z(xyx) =
(
(zx)y

)
x, (right Moufang identity) (2)

(xy)(zx) = x(yz)x (middle Moufang identity) (3)

hold in any alternative algebra. Since the associator is alternating, (1) follows
from (13.1.1), (13.2.2) and

(xyx)z − x
(
y(xz)

)
= [xy, x, z] + [x, y, xz] = −[x, xy, z] − [x, xz, y]

= −(x2y)z − (x2z)y + x
(
(xy)z + (xz)y

)
= −x2(yz + zy) + x

(
x(yz + zy)

)
= 0.

Reading the left Moufang identity in the opposite algebra Aop gives the right
Moufang identity. Finally, again using the fact that the associator is alternating,
but also (1), we obtain

(xy)(zx) − x(yz)x = [x, y, zx] − x[y, z, x] = −[x, zx, y] − x[z, x, y]

= −(xzx)y + x
(
(zx)y

)
− x

(
(zx)y

)
+ x

(
z(xy)

)
= 0,
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and the middle Moufang identity is proved. For an ad-hoc approach to the
Moufang identities for the Graves-Cayley octonions, see Exc. 1.19.

Viewing (1), (2) as linear maps in z and (3) as a bilinear one in y, z, the
Moufang identities may also be expressed as

Lxyx = LxLyLx, (4)

Rxyx = RxRyRx, (5)

(Lxy)(Rxz) = LxRx(yz). (6)

The linearization process is useful also in the present context. For example,
linearizing the right Moufang identity (2) we deduce

z
(
(wy)x

)
+ z

(
(xy)w

)
=

(
(zw)y

)
x +

(
(zx)y

)
w = z

(
w(yx)

)
+ z

(
x(yw)

)
. (7)

13.4 Inverses. There is no useful concept of invertibility in arbitrary non-
associative algebras. Fortunately, however, the standard notion for associative
algebras carries over to the alternative case without change. If A is unital (with
identity element 1A), an element x ∈ A is said to be invertible if there ex-
ists an element y ∈ A, called an inverse of x in A, that satisfies the relations
xy = 1A = yx. With an eye on Exc. 14.10 below, we sometimes speak of y as a
two-sided inverse of x.

The concept of invertibility enjoys the usual properties. Before proving this,
we need some preparation.

13.5 The U-operator. The U-operator of A (no longer assumed to be unital)
is defined as the quadratic map

U : A −→ Endk(A), x 7−→ Ux := LxRx = RxLx, (1)

which acts on individual elements as

Uxy = xyx. (2)

Note that the U-operator does not change when passing to the opposite algebra.
Moreover, it may be used to rewrite the middle Moufang identity in the form

Ux(yz) = (Lxy)(Rxz). (3)

Finally, the U-operator satisfies the following important relations:

Uxy = LxUyRx = RyUxLy (4)
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for all x, y ∈ A. Indeed, using (13.3.7), (13.3.3), (13.3.2), (13.1.1), we obtain

Uxyz =
(
(xy)z

)
(xy) = x

(
(yz)(xy) + [(xy)z]y

)
−

(
[x(xy)]z

)
y

= x
(
y(zx)y + x(yzy)

)
− x2(yzy) = x

(
y(zx)y

)
= LxUyRxz

for all z ∈ A, giving the first part of (4). The second one follows by passing to
Aop.

13.6 Proposition. Let A be unital and x ∈ A. Then the following conditions
are equivalent.

(i) x is invertible.
(ii) Lx is bijective.
(iii) Rx is bijective.
(iv) Ux is bijective.
(v) Lx and Rx are surjective.
(vi) Ux is surjective.
(vii) 1A ∈ Im(Lx) ∩ Im(Rx).
(viii) 1A ∈ Im(Ux).

If these conditions hold, then x has a unique inverse in A, denoted by x−1, and

x−1 = L−1
x 1A = R−1

x 1A = U−1
x x, (1)

Lx−1 = L−1
x , Rx−1 = R−1

x , Ux−1 = U−1
x . (2)

Proof (i) ⇔ (ii). If x is invertible with inverse y, we obtain xy2x = 1A by
(13.3.3), hence LxLy2 Lx = 1A by (13.3.4), and (ii) follows. Conversely, suppose
Lx is bijective. Then there is a unique y ∈ A satisfying xy = 1A, and the relation
x(yx) = (xy)x = 1Ax = x1A combined with (ii) shows yx = 1A, hence (i).

(i)⇔ (iii). This is just (i)⇔ (ii) in Cop.
(iii)⇒ (iv). Obvious since (iii) implies (ii).
(iv)⇒ (v). Obvious since Lx and Rx commute by flexibility (13.1.2).
(v)⇒ (vi)⇒ (vii). Obvious, again by flexibility.
(vii) ⇒ (viii). We find elements y, z ∈ A satisfying xy = zx = 1A, and

(13.3.3) gives x(yz)x = 1A.
(viii) ⇒ (ii). We find an element w ∈ A satisfying xwx = 1A, and (13.3.1)

implies LxLwLx = 1A, forcing Lx to be bijective.
Uniqueness of the inverse and (1) now follow from (ii), (iii), (iv). Fur-

thermore, xx−1x = x and the (13.3.4) implies LxLx−1 Lx = Lx, so (ii) gives
Lx−1 = L−1

x . Reading this in Aop yields Rx−1 = R−1
x , hence Ux−1 = U−1

x , and the
proof of (2) is complete. □
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13.7 The set of invertible elements. If A is unital, then the set of its invertible
elements will be denoted by A×. Clearly, 1A ∈ A×, and x ∈ A× implies x−1 ∈ A×

with (x−1)−1 = x. Moreover, A× is closed under multiplication. More precisely,
if x, y ∈ A are invertible, so is xy and

(xy)−1 = y−1x−1. (1)

Indeed, setting z = y−1x−1, the Moufang identities and (13.6.2) imply ((xy)z)y =
x(y(y−1x−1)y) = x(x−1y) = y, hence (xy)z = 1A by Prop. 13.6 (iii). Replacing x
by y−1 and y by x−1 yields z(xy) = 1A, and (1) follows.

The preceding considerations imply: If the equation xy = z holds for x, y, z ∈
A, and if any two of x, y, z are invertible, so is the third, which is then uniquely
determined. Thus, since A satisfies the Moufang identities, A× is a “Moufang
loop” under the operation induced from A by restriction; for the definition and
more details on Moufang loops, see Bruck [40, Chap. VII, VIII] or Manin
[178].

13.8 Remark. Proposition 13.6 shows that a unital alternative algebra is a di-
vision algebra in the sense of 8.6 if and only if 1A , 0 and every non-zero
element is invertible.

13.9 Vista: simple alternative algebras over a field. In the next chapter, we
will define notions of quaternion and octonion algebras generalizing the real
algebrasH andO from Chap. I, see 19.20 and 19.22. While quaternion algebras
are associative, octonion algebras are merely alternative (Prop. 19.3).

Over a field F, quaternion and octonion algebras are simple (Exc. 19.28).
Conversely, Kleinfeld’s theorem says: If A is a simple alternative F-algebra,
then A is associative or it is an octonion algebra. See [298, §7.3] or [254,
Thm. 3.17]. Here is a more precise statement.

13.10 Theorem (Kleinfeld). An alternative algebra over a field F is simple if
and only if it is either associative simple or it is an octonion algebra over some
extension field of F in the sense of 19.22. □

14 Strongly associative subsets

Our aim in this section will be to prove Artin’s associativity theorem, which
says that every alternative algebra on two generators is associative. Actually,
we will derive a somewhat more general result by adopting the approach of
Bourbaki [28, III, Appendix, §1], alternatively see Braun-Koecher [36, VII,
§1]. Throughout we let k be a commutative ring and A an alternative k-algebra.
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14.1 The concept of a strongly associative subset. A subset X ⊆ A is said
to be strongly associative if [x, y, z] = 0 provided at least two of the elements
x, y, z ∈ A belong to X. Since the associator is alternating, this is equivalent
to the condition [X, X, A] = {0}. Hence, if X ⊆ A is strongly associative, so
is the submodule spanned by X, and X ∪ {1A} provided A is unital. Examples
of strongly associative subsets are X = {x}, for any x ∈ A (by (13.1.1)), and
X = {x, x−1}, for A unital and any x ∈ A× (by (13.1.1), (13.6.2)).

14.2 Lemma. Let X ⊆ A be a set of generators for A as a k-algebra. Suppose
M ⊆ A is a k-submodule that contains X and satisfies XM + MX ⊆ M. Then
M = A.

Proof We begin by showing that A′, the set of elements x ∈ A satisfying
xM + Mx ⊆ M, is closed under multiplication, so let x, y ∈ A′. Then, for all
z ∈ M, (xy)z = [x, y, z] + x(yz) = x(yz) − [x, z, y] = x(yz) − (xz)y + x(zy) ∈ M
and, similarly, z(xy) ∈ M, forcing xy ∈ A′, as claimed. It follows that A′, being
a subalgebra of A containing X, agrees with A, which implies AM ⊆ M. But
then M must be a subalgebra of A containing X, and we conclude M = A. □

14.3 Proposition. If X is a strongly associative subset of A, then so is the
subalgebra of A generated by X.

Proof By 7.4, it suffices to show that Mon(X) =
⋃

m>0 Monm(X), the set of
monomials over X, is a strongly associative subset of A. To this end, we only
need to prove

[Monm(X),Monn(X), A] = {0} (m, n ∈ Z,m, n > 0), (1)

and we do so by induction on p = m+ n ≥ 2. The case p = 2 being obvious by
hypothesis, let us assume p > 2. Since (1) is symmetric in m, n by alternativity,
we may even assume m > 1. Hence, given u ∈ Monm(X), v ∈ Monn(X), a ∈ A,
we obtain u = u1u2, ui ∈ Monmi (X), mi ∈ Z, mi > 0, i = 1, 2, m1 +m2 = m, and
(7.5.2) yields

−[u, v, a] = [u1u2, a, v] = −u1[u2, v, a] + [u1, u2, a]v − [u1, v, u2a] − [u1, u2, av],

where all terms on the right vanish by the induction hypothesis. Hence [u, v, a] =
0, which completes the induction. □

14.4 Proposition. Let X,Y be strongly associative subsets of A. Then the sub-
algebra of A generated by X and Y is associative.

Proof We may not only assume that A itself is generated by X and Y but also,
by Proposition 14.3, that X,Y ⊆ A are subalgebras. Then the set B of elements
z ∈ A such that [X,Y, z] = {0} is a submodule of A containing X and Y since
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they are both strongly associative. The proof will be complete once we have
shown B = A since this implies [X ∪ Y, X ∪ Y, A] = {0}, forcing X ∪ Y to be
a strongly associative subset of A; this property is inherited by the subalgebra
generated by X and Y , which shows that A is associative, as desired. In order
to prove B = A, we apply Lemma 14.2 and hence must show

XB + BX + YB + BY ⊆ B. (1)

Accordingly, let x, x′ ∈ X, y ∈ Y, z ∈ B. Then (7.5.2) yields

[x′x, z, y] − [x′, xz, y] + [x′, x, zy] = x′[x, z, y] + [x′, x, z]y = 0

since z ∈ B and X is strongly associative, which implies [x′, x, zy] = 0 as well.
But X is also a subalgebra of B, whence [x′x, z, y] = 0. Altogether, we conclude
[X, Xz,Y] = {0}, forcing Xz ⊆ B. Interchanging the roles of X and Y and
passing to the opposite algebra, we obtain (1), and the proof is complete. □

14.5 Corollary (Artin’s theorem). Let x, y ∈ A. Then the subalgebra of A
generated by x and y is associative. If A is unital, the same conclusion holds
for the unital subalgebra of A generated by x, y and (if they exist) their inverses.

Proof In the non-unital case, put X = {x},Y = {y}. In the unital case, put
X = {x, 1A} if x is not invertible, X = {x, 1A, x−1} otherwise, ditto for Y . □

14.6 Corollary. Alternative algebras are power-associative. Moreover, if A is
unital, then xmxn = xm+n and (xm)n = xmn for all x ∈ A×, m, n ∈ Z. □

Exercises
14.7. Show that an alternative algebra A over k satisfies the relation 3[A, A, A] ⊆ [A, A]+
A[A, A]+[A, A]A. Conclude that commutative alternative algebras without 3-torsion are
associative.

14.8. The Kleinfeld function (Kleinfeld [153]). Let A be a non-associative k-algebra.
The Kleinfeld function f : A4 → A is defined by

f (w, x, y, z) := [wx, y, z] − x[w, y, z] − [x, y, z]w

for w, x, y, z ∈ A. It is evidently linear in each of x, y, z, w. Prove: If A is an alternative
algebra, then f is alternating (as a multilinear map).

14.9. A characterization of unital alternative algebras (McCrimmon [185]). Let A be
an alternative k-algebra. Show that the following conditions are equivalent.

(i) A is unital.
(ii) For some x ∈ A, both Lx and Rx are bijective.
(iii) For some x ∈ A, both Lx and Rx are surjective.
(iv) For some x ∈ A, Ux is surjective.
(v) For some x, y ∈ A, both Lx and Ry are bijective.
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14.10. One-sided inverses (McCrimmon [185]). Let A be a unital alternative k-algebra.

(a) Show for x, y ∈ A that the following conditions are equivalent.
(i) xy = 1A.
(ii) LxLy = 1A.
(iii) RyRx = 1A.
(Hint: For the implication (i)⇒ (ii) prove that E = LxLy, F = RyRx are projections of
the k-module A satisfying EF = 1A.)
If these conditions are fulfilled, x (resp. y) is said to be right-invertible (resp. left-
invertible) with right (resp. left) inverse y (resp. x) (in general not unique).

(b) Conclude from (a) that if A is finitely generated as a k-module, then any right
(resp. left) invertible element of A is invertible, and any right (resp. left) inverse of x is
its two-sided inverse.

(c) Give an example of an associative k-algebra A and elements x, y ∈ A such that
xy = 1A but neither x nor y are invertible.

14.11 (McCrimmon [185]). Let A be a unital alternative algebra over k and x, y ∈ A
such that xy is invertible. Show in the language of Exc. 14.10 that x is right-invertible
with y(xy)−1 as a right inverse and y is left-invertible with (xy)−1 x as a left inverse. (Hint:
For the first assertion, use (13.5.4) to show that Ly is injective.)

14.12. The singular Peirce decomposition of alternative algebras (cf. Schafer [254]).1
Let A be a unital alternative algebra over k and c ∈ A an arbitrary idempotent. Put
c1 = c, c2 = 1A − c to prove that the maps Lci Rc j : A → A (i, j = 1, 2) form a complete
orthogonal system of projections satisfying (ci x)c j = ci(xc j) =: ci xc j for all x ∈ A.
(Hint: Expand Uc1+c2 .) Conclude

A = A11 ⊕ A12 ⊕ A21 ⊕ A22 (1)

as a direct sum of submodules

Ai j := Ai j(c) := {x ∈ A | ci xc j = x} = {x ∈ A | ci x = x = xc j} (2)
= {x ∈ A | cx = (2 − i)x, xc = (2 − j)x} ⊆ A (i, j = 1, 2)

that satisfy the multiplication rules

Ai jA jl ⊆ Ail, (3)
AiiA jl = Al jAii = {0}, (i , j) (4)

A2
i j ⊆ A ji (i , j) (5)

for all i, j, l = 1, 2. Prove x2 = 0 for all x ∈ Ai j, i , j, and that (5) can be sharpened to
A2

i j = {0} (for i , j) if A is associative.

15 Homotopes

Homotopes have been established a long time ago as an extremely versatile
tool in the theory of Jordan algebras and can look back to a long respectable
1 The Peirce decomposition is credited to Benjamin Peirce (1809–1880) due to Prop. 41 on

page 13 of [208]. Peirce is pronounced like the English word “purse”.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

116 Alternative algebras

history. Though they entered the scene of alternative algebras only much later,
receiving the amount of attention they were accustomed to from the Jordan set-
ting only quite recently (see Alsaody-Gille [15] and, in particular, Thm. 23.10
below), it will be shown in the present book that, also in these new surround-
ings, they provide a useful and convenient formalism for many problems re-
lated to Albert algebras.

In the present section, the conceptual foundations for homotopes and iso-
topes of alternative algebras will be laid down following McCrimmon [185].
Throughout, we let k be an arbitrary commutative ring and A an alternative
algebra over k. We begin with an easy special case of the general concept.

15.1 Digression: associative algebras. For the time being, let B be an ass-
ociative k-algebra and p ∈ B. Define a new k-algebra B(p) on the k-module B
by the multiplication

x .(p) y := xpy (x, y ∈ B).

We call B(p) the p-homotope of B, which is obviously associative; moreover,
the multiplication operators Lp,Rp : B(p) → B are algebra homomorphisms.
In particular, if B is unital and p is invertible, B(p) � B under Lp or Rp. This
explains why homotopes do not play a significant role in (associative) ring
theory.

15.2 The concept of a homotope. Returning to our original alternative algebra
A, let p, q ∈ A. On the k-module A we define a new k-algebra A(p,q) by the
multiplication

x .p,q y := (xp)(qy) (x, y ∈ A). (1)

We call A(p,q) the p, q-homotope (or just a homotope) of A. We obviously have

(A(p,q))op = (Aop)(q,p), A(αp,α−1q) = A(p,q) (α ∈ k×). (2)

A k-algebra is said to be homotopic to A if it is isomorphic to some of its
homotopes. If A is associative, (1) collapses to x .p,q y = xpqy, so A(p,q) = A(pq)

as in 15.1.

Our next aim will be to show that homotopes of alternative algebras are
alternative, and that homotopes of homotopes are homotopes. More precisely,
we obtain the following proposition.

15.3 Proposition. Let p, q, p′, q′ ∈ A. Then A(p,q) is an alternative k-algebra
and

(A(p,q))(p′,q′) = A(p′′,q′′), p′′ := p(qp′)p, q′′ := q(q′p)q. (1)
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Proof For the first part, it suffices to verify the left alternative law (13.1.1)
since by passing to the opposite algebra and invoking (15.2.2), we will obtain
the right alternative law as well. So let x, y ∈ A. Then (13.5.4) and the Moufang
identities (13.3.1), (13.3.2) imply

x . p,q (x .p,q y) = (xp)
(
q[(xp)(qy)]

)
= (Uxpq)(qy) = (LxUpRxq)(qy)

=
(
x[p(qx)p]

)
(qy) =

(
[(xp)(qx)]p

)
(qy) = (x .p,q x) .p,q y,

hence (13.1.1) for A(p,q). The verification of the second part is straightforward
and left to the reader. □

15.4 Functoriality. We denote by k-alt the category of (possibly non-unital)
alternative k-algebras, morphisms being ordinary k-algebra homomorphisms
(7.1). By contrast, the category of weakly two-pointed alternative k-algebras
will be denoted by k-twalt. Its objects are triples (A, p, q) consisting of an
alternative k-algebra A and a pair of elements p, q ∈ A, while its morphisms
have the form h : (A, p, q)→ (A′, p′, q′) with weakly two-pointed alternative k-
algebras (A, p, q), (A′, p′, q′) and an algebra homomorphism h : A → A′ satis-
fying h(p) = p′, h(q) = q′. It is then clear that the assignment (A, p, q) 7→ A(p,q)

gives rise to a (covariant) functor from k-twalt to k-alt which is the identity on
morphisms.

15.5 The connection with unital algebras. We are particularly interested in
homotopes containing an identity element. In order to find necessary and suffi-
cient conditions for this to happen, we consider the U-operator U(p,q) of A(p,q)

(p, q ∈ A), so U(p,q)
x = L(p,q)

x R(p,q)
x by (13.5.1), where L(p,q),R(p,q) stand for the

left, right multiplication of A(p,q). We claim

U(p,q)
x = UxUpq (x ∈ A). (1)

To prove this, we let x, y ∈ A and compute, using flexibility in A(p,q), the Mou-
fang identities and (13.5.2), (13.5.4)

U(p,q)
x y =

(
[(xp)(qy)]p

)
(qx) =

(
x[p(qy)p]

)
(qx) = x(RqUpLqy)x = UxUpqy,

as desired.

15.6 Proposition. For p, q ∈ A, the p, q-homotope A(p,q) has a unit element
if and only if A has a unit element and pq is invertible in A. In this case,
1(p,q)

A := (pq)−1 is the unit element of A(p,q).

Proof If e ∈ A is a unit element for A(p,q), then (15.5.1) implies 1A = U(p,q)
e =

UeUpq, so Ue is surjective. But then A is unital (Exc. 14.9), and e must be
invertible in A (Prop. 13.6). Hence so is pq with U−1

pq = Ue and (pq)−1 =
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U−1
pq (pq) = Ue(pq) = (ep)(qe) = e .p,q e = e since e is a unit element for

A(p,q). Conversely, let A be unital and suppose pq ∈ A is invertible with inverse
e := (pq)−1. Then Exc. 14.11 implies (ep)q = 1A, forcing LepLq = 1A by
Exc. 14.10, and we conclude e .p,q x = (ep)(qx) = x for all x ∈ A, so e is a
left unit element for A(p,q). Passing to the opposite algebra of A will show that
e is also a right unit for A(p,q), forcing A(p,q) to be unital with identity element
e. □

15.7 Isotopes. If A is unital and p, q ∈ A are both invertible (which is stronger
than just requiring pq to be invertible, cf. Exc. 14.10 (c)), then A(p,q) is called
the p, q-isotope (or simply an isotope) of A. By Props. 15.3, 15.6, A(p,q) is a
unital alternative algebra in this case, with unit element

1(p,q)
A = (pq)−1 = q−1 p−1, (1)

and (15.3.1) gives

(A(p,q))(p′,q′) = A (p′ := q−1 p−2, q′ := q−2 p−1). (2)

We say that a k-algebra is isotopic to A if it is isomorphic to an isotope of A.
Isotopy is an equivalence relation on unital alternative algebras.

By (1), the algebra A(p,q), for A unital and p, q ∈ A×, determines the product
pq uniquely. But it is important to note that the factors of this product are not
uniquely determined by A(p,q). Indeed, bringing in the nucleus of A (cf. 8.5),
we have the following.

15.8 Proposition. Let A be unital and p, q, p′, q′ ∈ A×. Then A(p,q) = A(p′,q′) if
and only if p′ = pu, q′ = u−1q for some u ∈ Nuc(A)×.

Proof p′ = pu, q′ = u−1q for some u ∈ Nuc(C)× clearly implies A(p,q) =

A(p′,q′). Conversely, assume A(p,q) = A(p′,q′). Then

(xp)(qy) = (xp′)(q′y) (x, y ∈ A). (1)

Setting u := p−1 p′, we obtain p′ = pu, and (1) for x = p′−1, y = 1A yields
q′ = u−1q, hence u = qq′−1. It remains to prove u ∈ Nuc(A) and, since A is
alternative, it suffices to show [A, u, A] = {0}. To this end, we put y = q′−1

(resp. x = p′−1) in (1) to obtain (xp)u = xp′, (resp. u−1(qy) = q′y). Hence (1)
reads (xp)(qy) = ((xp)u)(u−1(qy)), and since p, q are invertible, this amounts
to xy = (xu)(u−1y) for all x, y ∈ A. Replacing y by uy and invoking (13.6.2), we
conclude [A, u, A] = {0}, as desired. □

15.9 Unital isotopes. If A is unital, an isotope of A is said to be a unital isotope
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if it has the same identity element as A. By (15.7.1), unital isotopes have the
form

Ap := A(p−1,p) (p ∈ A×). (1)

Note that the algebra structure of Ap is given by the formula

x .p y = (xp−1)(py) (2)

for x, y ∈ A. By Exc. 15.13 below, invertibility and inverses in A and Ap (p ∈
A×) are the same, while from (15.2.2), (15.3.1) we conclude

(Ap)op = (Aop)p−1
, (Ap)q = Apq, Aαp = Ap (p, q ∈ A×, α ∈ k×). (3)

Moreover, Prop. 15.8 implies

Ap = Aq ⇐⇒ p = uq for some u ∈ Nuc(A)× (p, q ∈ A×). (4)

In particular, Ap = A for all p ∈ A× if A is associative.
Unital isotopes are important for various reasons: for example, they play a

useful role in the two Tits constructions of cubic Jordan algebras in Chap. VII.
Moreover, arbitrary isotopes are always isomorphic to appropriate unital ones
(cf. Exc. 15.18 below). And finally, working in unital isotopes turns out to be
computationally smooth, as may be seen from the following lemma.

15.10 Lemma. Let A be unital and p ∈ A×. Then A and Ap have the same
U-operators as well as the same powers xm for x ∈ A, m ∈ N (resp. for x ∈ A×,
m ∈ Z).

Proof The equality of U-operators follows from (15.5.1). Since Uxm xn =

(Ux)mxn = x2m+n for x ∈ A, m, n ∈ N (resp. x ∈ A×, m, n ∈ Z), the remaining
assertions can now be derived by induction. □

15.11 Functoriality. Adjusting the terminology of 15.4 to the unital case, we
denote by k-alt1 the category of unital alternative k-algebras, morphisms being
unital k-algebra homomorphisms (8.1). By contrast, the category of pointed
alternative k-algebras will be denoted by k-palt. Its objects are pairs (A, p)
consisting of a unital alternative k-algebra A and an invertible element p ∈ A,
while its morphisms have the form h : (A, p) → (A′, p′) with pointed alterna-
tive k-algebras (A, p), (A′, p′) and a unital algebra homomorphism h : A → A′

satisfying h(p) = p′. Again, it is then clear that the assignment (A, p) 7→ Ap

gives rise to a (covariant) functor from k-palt to k-alt1 which is the identity on
morphisms.

15.12 Isotopy versus isomorphism. Recall that unital alternative k-algebras
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A, B are isotopic if A � B(p,q) for some invertible elements p, q ∈ B, equiva-
lently by Exc. 15.18 (a) below, if A � Bp for some invertible element p ∈ B.
It is then a natural question to ask whether isotopic unital alternative alge-
bras are always isomorphic. This question has a trivial affirmative answer in
the associative case (cf. 15.1), but a less trivial negative one in general, see
McCrimmon [185, p. 259] for a counterexample. It becomes much more deli-
cate, however, when restricting oneself to unital alternative k-algebras that are
finitely generated projective as k-modules. In fact, there is a profound connec-
tion with the norm equivalence problem for composition algebras that will be
discussed in 23.8 (c)–23.11 below.

Exercises
15.13. Inverses in isotopes. Let A be a unital alternative k-algebra and p, q ∈ A×. Show
that the invertible elements of A and A(p,q) are the same and that, for x ∈ A× = A(p,q)×,

x(−1,p,q) := U−1
pq x−1

is the inverse of x in A(p,q).

15.14. Albert isotopies (Albert [4]). Given non-associative k-algebras A, B, an Albert
isotopy from A to B is a triple ( f , g, h) of k-linear bijections f , g, h : A → B such that
f (xy) = g(x)h(y) for all x, y ∈ A. Albert isotopies from A to itself are called Albert
autotopies of A. They form a subgroup of GL(A)×GL(A)×GL(A), denoted by Atp(A).
Now prove Schafer’s isotopy theorem (Schafer [252], McCrimmon [185]). If A, B are
k-algebras, with A alternative and B unital, and if ( f , g, h) is an Albert isotopy from
A to B, then A, B are both unital alternative, g−1(1B), h−1(1B) are invertible in A, and
f : A(p,q) → B, p := h−1(1B)−1, q := g−1(1B)−1, is an isomorphism.

15.15. The structure group of an alternative algebra (Petersson [217]). Let A be a unital
alternative k-algebra and Str(A) the set of all triples (p, q, g) composed of elements
p, q ∈ A× and an isomorphism g : A

∼
→ A(p,q). Show that Str(A) is a group under the

multiplication

(p, q, g)(p′, q′, g′) :=
(
p[qg(p′)]p, q[g(q′)p]q, gg′

)
(1)

for (p, q, g), (p′, q′, g′) ∈ Str(A) by performing the following steps.

(a) Str(A) is closed under the operation (1).

(b) For p, q ∈ A×, g ∈ GL(A), the following conditions are equivalent.

(i) (p, q, g) ∈ Str(A).
(ii) g(xy)p = g(x)[(pq)

(
g(y)p

)
] for all x, y ∈ A.

(iii) qg(xy) = [
(
qg(x)

)
(pq)]g(y) for all x, y ∈ A.

(c) The assignment ( f , g, h) 7→ (h(1A)−1, g(1A)−1, f ) determines a well-defined bijec-
tion from Atp(A), the group of Albert autotopies of A (Exc. 15.14), onto Str(A) that is
compatible with multiplications and whose inverse is given by (p, q, g) 7→ (g,Rpg, Lqg).
What is the unit element of Str(A)? What is the inverse of (p, q, g) ∈ Str(A)?



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

15 Homotopes 121

15.16. Extended left and right multiplications (Petersson [217]). Let A be a unital
alternative algebra and u ∈ A×. Prove that

L̃u := (u, u−2, Lu), R̃u := (u−2, u,Ru)

belong to the structure group of A (Exc. 15.15). Show further for u, v ∈ A× that the
following identities hold in Str(A):

L̃uvu = L̃uL̃vL̃u, (L̃u)−1 = L̃u−1 ,

R̃uvu = R̃uR̃vR̃u, (R̃u)−1 = R̃u−1 ,

L̃uR̃v = (v−2u, u−1vu−1, LuRv),

R̃vL̃u = (v−1u−1v−1, vu−2,RvLu),

L̃uR̃u = R̃uL̃u.

15.17. The unital structure group (Petersson [217]). Let A be a unital alternative k-
algebra. Show that the set Str1(A) of all elements (p, q, g) ∈ Str(A) such that g(1A) = 1A
(equivalently, p = q−1) is a subgroup of Str(A), called the unital structure group of A.
More precisely, show:

(a) Abbreviating the elements of Str1(A) as (p, g) := (p−1, p, g) (so for (p, g), p ∈
A×, g ∈ GL(A), to belong to the unital structure group of A it is necessary and
sufficient that g : A

∼
→ Ap be an isomorphism), its group structure is determined

by 1Str1(A) = (1A, 1A) and

(p, g)(p′, g′) =
(
pg(p′), gg′

)
for (p, g), (p′, g′) ∈ Str1(A).

(b) Int(p) := (p−3, LpRp−1 ) belongs to the unital structure group of A. Why can
Int(p) be viewed as the alternative version of the inner automorphism affected
by an invertible element of a unital associative algebra?

15.18. Let A be a unital alternative algebra over k.

(a) Show that arbitrary isotopes of A are canonically isomorphic to unital ones.
(Hint: For p, q ∈ A×, consider the extended right multiplication by pq (Exer-
cise 15.16).)

(b) Computing the iterated unital isotope ((Ap)q)r for p, q, r ∈ A× in two different
ways seems to imply (pq)r = up(qr) for some invertible element u ∈ Nuc(A).
What’s wrong with this argument and with this conclusion?

15.19. Nucleus and centre of an isotope (Petersson [213]). Let A be a unital alterna-
tive k-algebra and p, q ∈ A×. Prove Nuc(A(p,q)) = Nuc(A)(pq)−1 and Cent(A(p,q)) =
Cent(A)(pq)−1. (Hint: Reduce to the case of unital isotopes.)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

IV

Composition algebras

We have seen in Theorem 1.8 that the algebra of Graves-Cayley octonions
as defined in 1.5 carries a positive definite real quadratic form that permits
composition. In the present chapter we will study a class of non-associative
algebras over an arbitrary commutative ring for which such a property is char-
acteristic. Many results we derived for the Graves-Cayley octonions in the first
chapter will resurface here under far more general circumstances, and with
much more natural proofs attached.

16 Conic algebras

By (1.6.10), every element x in the algebra of Graves-Cayley octonions sat-
isfies a quadratic equation that is universal in the sense that its coefficients
depend “algebraically” on x. This innocuous but useful property gives rise to
the notion of a conic algebra that will be studied in the present section.

The term “conic algebra” made its first appearance in papers by Garibaldi-
Petersson [92] and Loos [175]. It derives its justification from the fact that
conic algebras, just like the curves called conics, are intimately tied up with
quadratic equations; for a more sophisticated motivation of this term, see 16.3
below. In deriving the main properties of conic algebras, we adhere rather
closely to the treatment of McCrimmon [189], who calls them degree 2 alge-
bras, while other authors speak of quadratic algebras in this context. By con-
trast, the term “quadratic algebra” will be used here in a much more restrictive
sense, as in Knus [157, I, (1.3.6)].

Throughout we let k be an arbitrary commutative ring.

16.1 The concept of a conic algebra. By a conic algebra over k we mean a
unital k-algebra C together with a quadratic form nC : C → k such that

nC(1C) = 1, x2 − nC(1C , x)x + nC(x)1C = 0 (x ∈ C). (1)

We call nC the norm of C. Most of the time, we will just speak of a conic
algebra C over k, its norm nC being understood. Even though it follows from
Exc. 17.8 below that the algebra C and condition (1) do not determine the quad-
ratic form nC uniquely, we feel justified in phrasing our definition, as well as

122
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similar ones later on, in this slightly informal manner because it is convenient
and there is no danger of confusion.

Let C be a conic algebra over k. Viewing C merely as a k-module, (C, nC , 1C)
is a pointed quadratic module over k in the sense of 11.14, with norm nC , base
point 1C , trace

tC : C −→ k, x 7−→ tC(x) := nC(1C , x),

and conjugation

ιC : C −→ C, x 7−→ x̄ := tC(x)1C − x;

in the present context we speak of the trace (resp. the conjugation) of C.
We also denote by tC the bilinear trace of C, i.e., the bilinear form C×C → k,

(x, y) 7→ tC(x, y) := tC(xy), which in general is not symmetric, and in gen-
eral does not agree with the bilinear trace of the pointed quadratic module
(C, nC , 1C). Given a submodule M ⊆ C, we always write M⊥ = {x ∈ C |
nC(x,M) = {0}} for the orthogonal complement of M in C relative to the polar-
ized norm.

Let C′ be another conic algebra over k. By a homomorphism h : C → C′

of conic algebras we mean a unital k-algebra homomorphism which preserves
norms in the sense that nC′ ◦ h = nC . It is clear that homomorphisms of conic
algebras also preserve (linear as well as bilinear) traces and conjugations. If
B ⊆ C is a unital subalgebra, it may and always will be regarded as a conic
algebra in its own right by defining its norm nB := nC |B as the restriction of the
norm of C to B; in this way, the inclusion B ↪→ C becomes a homomorphism
of conic algebras.

Conic algebras are clearly invariant under base change. If C is a conic alge-
bra over k, then so is Cop, with the same norm, linear trace and conjugation as
C, while the bilinear trace changes in the obvious way to tCop (x, y) := tC(y, x).

16.2 Examples of conic algebras. (a) The Graves-Cayley octonions O, the
Hamiltonian quaternions H and, more generally, all unital subalgebras D ⊆ O
are conic algebras over the reals.

(b) For D as in (a), all Z-structures of D in the sense of 3.6 (d) are conic
algebras over the integers.

(c) The base ring k itself, with norm nk : k → k given by the squaring: nk(α) =
α2 for α ∈ k, is a conic k-algebra. We have tk(α) = 2α, and the conjugation of
k is the identity.

(d) R = k × k (as a direct product of ideals), with norm nR : R → k given by
nR((α, β)) = αβ for α, β ∈ k, is a conic k-algebra. We have tR((α, β)) = α + β,
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and the conjugation of R is the “switch”: (α, β) = (β, α). In particular, the
quadratic module (R, nR) is the split hyperbolic plane (11.18).

(e) R = k[ε]/(ε2), the k-algebra of dual numbers, is a conic k-algebra, with
norm, trace, conjugation respectively given by nR(α1R + βε) = α2, tR(α1R +

βε) = 2α, α1R + βε = α1R − βε for α, β ∈ k.

(f) R = K, where k is a field and K/k is a quadratic field extension. Then R
is a conic k-algebra, with nR = NK/k (resp. tR = TK/k) the field norm (resp. the
field trace) of K/k. Moreover, ιR is the non-trivial Galois automorphism of K/k
if K/k is separable, and the identity otherwise.

(g) C = Mat2(k) with nC the determinant det. For x ∈ C, one finds that tC(x) =
tr(x), the usual trace, so the second equation in (16.1.1) is the familiar Cayley-
Hamilton Theorem. For α, β, γ, δ ∈ k we have(

α β
γ δ

)
=

(
δ −β
−γ α

)
so x̄ = yxTy−1 for y =

(
0 1
−1 0

)
.

16.3 Motivation. Let k be a field and X ⊆ P2
k a smooth conic in the plane,

given by a regular quadratic form in three variables. Then one checks easily
that the scheme-theoretic intersection (cf. [107, I, 4.4]) of X with appropriate
lines in P2

k has the form Spec(R) (viewed as an affine scheme), where R is one
of the algebras listed in 16.2 (d),(e),(f) above. This gives another motivation of
the term “conic algebra”.

16.4 Quadratic algebras. In analogy to Knus [157, I, (1.3.6)], an algebra R
over k is said to be quadratic if it contains an identity element and is projective
of rank 2 as a k-module. It follows from the Cayley-Hamilton theorem that a
quadratic k-algebra R is conic, with norm and trace given by

nR(x) = det(Lx), tR(x) = tr(Lx) (x ∈ R), (1)

in terms of the left multiplication of R. Moreover, we claim that 1R ∈ R is uni-
modular, R is commutative, associative, and its conjugation is an involution,
i.e., a k-automorphism of period two. As to the first part, we note that R(p), for
any p ∈ Spec(k), is a unital two-dimensional k(p)-algebra, forcing 1R(p) , 0.
Hence 1R is unimodular by Lemma 9.17. Since the remaining assertions are
local on k, we may assume that k is a local ring, making R a free k-module
of rank 2. Extending 1R to a basis of R, which we are allowed to do by uni-
modularity, the commutative and the associative law for the multiplication of R
trivially hold, as does the property of the conjugation being a k-automorphism
of period two. Thus our assertion is proved.
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16.5 Basic identities. Let C be a conic algebra over k. The following identities
either hold by definition or are straightforward to check.

x2 = tC(x)x − nC(x)1C , (1)

tC(x) = nC(1C , x), (2)

nC(1C) = 1, tC(1C) = 2, (3)

x̄ = tC(x)1C − x, 1̄C = 1C , x = x, (4)

x ◦ y := xy + yx = tC(x)y + tC(y)x − nC(x, y)1C , (5)

xx̄ = nC(x)1C = x̄x, x + x̄ = tC(x)1C , (6)

nC(x̄) = nC(x), tC(x̄) = tC(x), (7)

tC(x2) = tC(x)2 − 2nC(x), (8)

tC(x ◦ y) = tC(x, y) + tC(y, x) = 2[tC(x)tC(y) − nC(x, y)], (9)

nC(x, ȳ) = tC(x)tC(y) − nC(x, y), (10)

xy − ȳx̄ =
(
tC(x, y) − nC(x, ȳ)

)
1C . (11)

By (1) and 7.7, k[x] agrees with the submodule of C spanned by 1C and x;
it is a commutative associative subalgebra. In particular, conic algebras are
power-associative.

Before we can proceed, we require two short digressions.

16.6 Unimodular elements revisited. For several of our subsequent results it
will be important to know that 1C ∈ C is unimodular. While this is not always
true, it does hold automatically if the linear trace of C is surjective, since this
is equivalent to tC(x) = 1 for some x ∈ C and so the linear form λ : C → k,
y 7→ tC(xy), satisfies λ(1C) = 1.

For example, if 2 ∈ k×, then tC(x) = 1 for x = 1
2 · 1C and 1C is unimodular.

Moreover, we have

C = k1C ⊕C0 (1)

as a direct sum of submodules, where

C0 := Ker(tC) = {x ∈ C | x̄ = −x}, (2)

and

H(C, ιC) := {x ∈ C | x̄ = x} = k1C . (3)

Another important condition that ensures unimodularity of 1C will be stated
separately.

16.7 Proposition. Let C be a conic algebra over k which is projective as a
k-module. Then 1C ∈ C is unimodular and Cp , {0} for all prime ideals p ⊆ k.
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Proof The first part follows immediately from Lemma 11.15 (applied to the
pointed quadratic module (C, nC , 1C)), which in turn implies the second, by
Lemma 9.17. □

16.8 Trivial conjugation. A conic algebra C over k is said to have trivial con-
jugation if ιC = 1C . Having trivial conjugation is a rather exotic phenomenon.
For example, if 2 ∈ k×, then (16.6.1), (16.6.2) show that C does not have trivial
conjugation unless C � k. More generally, the same conclusion holds if tC is
surjective (Exc. 16.27). On the other hand, if 2 = 0 in k and tC = 0 (e.g., if k is
a field and C an inseparable quadratic field extension of k), then C does have
trivial conjugation.

16.9 The annihilator. The annihilator of a k-module M is defined by

Ann(M) :=
{
α ∈ k | αM = {0}

}
. (1)

M is said to be faithful if Ann(M) = {0}. If A is a unital k-algebra, then

Ann(A) = {α ∈ k | α1A = 0}. (2)

In subsequent applications, conic algebras which are flexible (i.e., satisfy
the flexible law (xy)x = x(yx)) or whose conjugation is an (algebra) involution
play an important role. These two properties will now be related to one another
in various ways.

16.10 Proposition. Let C be a conic algebra over k.

(a) The conjugation of C is an involution if and only if

tC(x, y) − nC(x, ȳ) ∈ Ann(C)

for all x, y ∈ C.

(b) C is flexible if and only if(
tC(x, y) − nC(x, ȳ)

)
x =

(
nC(x, xy) − tC(y)nC(x)

)
1C (1)

for all x, y ∈ C.

Proof (a) follows immediately from (16.5.11) and (16.9.2). In (b) one simply
notes (xy)x − x(yx) = (xy) ◦ x − x(x ◦ y) and expands the right-hand side using
(16.5.5), (16.5.1), (16.5.10). □

16.11 Corollary. Let C be a conic k-algebra whose conjugation is an involu-
tion. Then C is flexible if and only if nC(x, xy) − tC(y)nC(x) ∈ Ann(C) for all
x, y ∈ C. □
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16.12 Proposition. The following (collections of) identities are equivalent in
any conic algebra C over k.

nC(x, yx) = tC(y)nC(x), (1)

nC(x, xy) = tC(y)nC(x), (2)

nC(xy, z) = nC(x, zȳ), (3)

nC(xy, z) = nC(y, x̄z), (4)

tC(x, y) = nC(x, ȳ), tC(xy, z) = tC(x, yz). (5)

If these equations hold, the conjugation of C is an involution.

Proof Since (2) (resp. (4)) is (1) (resp. (3)) in Cop, the equivalence of (1)–(5)
will follow once we have established the following implications.

(1) ⇔ (2). Combine (16.5.2) with (16.5.5) to conclude that nC(x, x ◦ y) =
2tC(y)nC(x).

(2)⇒ (3). Linearize (2) and apply (16.5.4).
(4)⇒ (2). Put z = x in (4) and apply (16.5.6).
(3)⇒ (5). Put z = 1C in (3) and apply (16.5.2) to deduce the first equation

of (5). But then, by Prop. 16.10 (a), ιC is an involution of C, yielding the
final statement of the proposition, while the last equation of (5) follows by a
straightforward computation.

(5)⇒ (1). By Prop. 16.10 (a) and the first equation of (5), ιC is an involution
of C, which implies nC(x, yx) = tC(x, x̄ȳ) = tC(xx̄, ȳ) by (5), and (1) follows
from (16.5.6), (16.5.7). □

16.13 Norm-associative conic algebras. A conic algebra satisfying one (hence
all) of the identities (16.12.1)–(16.12.5) is said to be norm-associative. If C is a
norm-associative conic algebra, then (16.12.5) combined with (16.5.10) shows
that the linear trace of C is an associative linear form, so

tC(xy) = tC(yx), tC
(
(xy)z

)
= tC

(
x(yz)

)
=: tC(xyz). (1)

Moreover, the bilinear trace of C agrees with the bilinear trace of the pointed
quadratic module (C, nC , 1C). The property of being norm-associative is clearly
invariant under scalar extensions. Also, if C is a norm-associative conic alge-
bra, then so is Cop.

16.14 Proposition. Let C be a conic algebra over k.

(a) If C is norm-associative, then it is flexible and its conjugation is an invo-
lution.

(b) If C is flexible and it is projective as a k-module, then it is norm-associative.
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For a norm-associative conic algebra, the conjugation is called the canonical
involution.

Proof If C is a norm-associative conic k-algebra, then by (16.12.5) and
(16.12.2) combined with Proposition 16.10 (a), C is flexible and its conju-
gation is an involution. Conversely, suppose C is flexible and projective as a
k-module. Given y ∈ C, it suffices to show

tC(x, y) = nC(x, ȳ) (x ∈ C) (1)

since (16.10.1) and unimodularity of 1C (Proposition 16.7) then imply identity
(16.12.2). To establish (1), we may assume that k is a local ring and extend
e0 := 1C to a basis (ei) of the k-module C. Then (1) holds for x = e0 by
(16.5.7) and for x = ei, i , 0, by (16.10.1), hence on all of C by linearity. □

16.15 Corollary. A faithful conic algebra over k is norm-associative if and
only if it is flexible and its conjugation is an involution.

Proof The “only if” direction is Proposition 16.14(a). Conversely, suppose
C is a flexible faithful conic k-algebra whose conjugation is an involution.
Combining Proposition 16.10 with faithfulness, we see that (16.12.2) holds, so
C is norm-associative. □

16.16 Proposition. Let C be a conic algebra over k. If C is projective as a
k-module, then the norm of C is uniquely determined by the algebra structure
of C.

Proof Let n : C → k be any quadratic form making C a conic algebra and
write t for the corresponding linear trace. Then λ := tC − t (resp. q := nC − n)
is a linear (resp. a quadratic) form on C, and (16.5.1) yields

λ(x)x = q(x)1C , (1)

for all x ∈ C. We have to prove λ = q = 0. Since 1C ∈ C is unimodular by
Proposition 16.7, it suffices to show λ = 0. This can be checked locally, so we
may assume that k is a local ring, allowing us to extend e0 := 1C to a basis
(ei) of C as a k-module. But λ(e0) = 0 by (16.5.3). Hence it remains to show
λ(ei) = 0 for all i , 0, which follows immediately from (1). □

16.17 Semi-linear homomorphisms of conic algebras. Let σ : K → K′ be a
homomorphism in k-alg and C (resp. C′) a conic algebra over K (resp. K′). A
map φ : C → C′ is called a σ-semi-linear homomorphism of conic algebras if
the following conditions are fulfilled.

(i) φ is σ-semi-linear.
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(ii) φ : C → C′ is a unital homomorphism of k-algebras.
(iii) The σ-semi-linear polynomial square

C
φ
//

nC

��

C′

nC′

��
K

σ
// K′

(1)

commutes in the sense of 12.28.

By Corollary 11.5, condition (iii) is equivalent to (1) being commutative as a
diagram of set maps. Because of (iii), we have

nC′
(
φ(x)

)
= σ

(
nC(x)

)
, tC′

(
φ(x)

)
= σ

(
tC(x)

)
, φ(x̄) = φ(x) (2)

for all x ∈ C.

Exercises
16.18. Let C be a conic algebra over k and x ∈ C. Prove

(a) nC(yz) = nC(y)nC(z) for all y, z ∈ k[x].
(b) x is invertible in (the commutative associative k-algebra) k[x] if and only if

nC(x) is invertible in k, in which case

x−1 = nC(x)−1 x̄, nC(x−1) = nC(x)−1.

(c) x is a nilpotent element of C (Exc. 7.13) if and only if tC(x) and nC(x) are
nilpotent elements of k.

16.19. Let C,C′ be conic k-algebras and suppose C is projective as a k-module. Prove
that every injective homomorphism φ : C → C′ of unital k-algebras is, in fact, one of
conic algebras, i.e., it preserves norms (hence traces and conjugations as well). Does
this conclusion continue to hold without the hypothesis of φ being injective?

16.20. Co-ordinates for conic algebras (Loos [175]). Let k be a commutative ring, X a
k-module, e ∈ X a unimodular element and λ : X → k a linear form such that λ(e) = 1.
Putting Mλ := Ker(λ), we then have X = ke ⊕ Mλ as a direct sum of submodules.

(a) Let (T, B,K) be a conic co-ordinates system relative to (X, e, λ) in the sense that
T : Mλ → k is a linear form, B : Mλ × Mλ → k is a (possibly non-symmetric)
bilinear form and

K : Mλ × Mλ −→ Mλ, (x, y) 7−→ x × y,

is an alternating bilinear map. Define a k-algebra structure C := Con(T, B,K) =
CX,e,λ(T, B,K) on X by the multiplication

(αe + x)(βe + y) :=
(
αβ − B(x, y)

)
e +

(
(α + T (x))y + βx − x × y

)
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for α, β ∈ k, x, y ∈ Mλ. Show that C is a conic k-algebra with identity element
e and norm nC : C → k given by

nC(αe + x) := α2 + αT (x) + B(x, x)

for α ∈ k and x ∈ Mλ.
(b) Conversely, suppose C is a conic k-algebra with underlying k-module X and

identity element 1C = e. Show that (TC , BC ,KC), where T = TC : Mλ → k,
B = BC : Mλ × Mλ → k and K = KC : Mλ × Mλ → Mλ, (x, y) 7→ x × y are
defined by

T (x) := tC(x), B(x, y) := −λ(xy), x× y := tC(x)y− xy+λ(xy) (x, y ∈ Mλ),

is a conic co-ordinate system for (X, e, λ). Show further that the assignments
(T, B,K) 7→ Con(T, B,K) and C 7→ (TC , BC ,KC) define inverse bijections be-
tween the set of conic co-ordinate system for (X, e, λ) and the set of conic k-
algebras with underlying k-module X and identity element e.

Remarks. (a) It is sometimes convenient to define conic co-ordinate systems on a k-
module that is independent of the choice of λ, namely, on X/ke. This point of view,
systematically adopted by Loos [175], turns out to be particularly useful when analyz-
ing the question of how conic co-ordinate systems change with λ.

(b) Let C be a conic k-algebra, X = C as a k-module and e := 1C . If 2 ∈ k is a unit, then
conic co-ordinate systems may be taken relative to (X, e, λ) with λ := 1

2 tC , in which case
the conic co-ordinate system corresponding to C is already in Osborn [205, Thm. 1].

16.21 (Dickson [65]). Let k be a field of characteristic not 2 and C a unital algebra
over k. Show that C is conic if and only if 1C , x, x2 are linearly dependent over k for all
x ∈ C. (Hint: If this condition is fulfilled, linearize the expression 1C ∧ x ∧ x2 ∈

∧3(C)
to show that 0 and the elements u ∈ C \ k1C satisfying u2 ∈ k1C form a vector subspace
of C.)

16.22. The Dickson condition. Generalize Exc. 16.21 in the following way: let C be a
unital algebra over k which is either free (possibly of infinite rank) or finitely generated
projective as a k-module and whose identity element is unimodular. Show that there
exists a quadratic form nC : C → k making C a conic k-algebra if and only if C satisfies
the Dickson condition: For all R ∈ k-alg and all x ∈ CR, the element x2 ∈ CR is an
R-linear combination of x and 1CR .

16.23. Elementary idempotents. (a) Let C be a conic k-algebra. Show that, if k ,
{0} is connected (so 0, 1 are the only idempotents of k, equivalently by Exc. 9.29, the
topological space Spec(k) is connected), an element c ∈ C is an idempotent , 0, 1C if
and only if nC(c) = 0 and tC(c) = 1.

(b) Conclude that, for any commutative ring k and any element c ∈ C, the following
conditions are equivalent.

(i) c is an idempotent satisfying cR , 0, 1CR for all R ∈ k-alg, R , {0}.
(ii) c is an idempotent satisfying cp , 0, 1Cp for all prime ideals p ⊆ k.
(iii) nC(c) = 0, tC(c) = 1.
(iv) c is an idempotent and the elements c, 1C − c are unimodular.
If these conditions are fulfilled, we call c an elementary idempotent of C.
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16.24. Conic ideals. By a conic ideal in a conic k-algebra C we mean a pair (a, I)
consisting of an ideal a ⊆ k and a (two-sided) ideal I ⊆ C such that aC ⊆ I and

nC(x), nC(x, y) ∈ a (1)

for all x ∈ I, y ∈ C.

(a) Show that every ideal a ⊆ k (resp. I ⊆ C) can be extended to a conic ideal in
C. More precisely, there is a unique smallest ideal I ⊆ C (resp. a ⊆ k) making
(a, I) a conic ideal in C.

(b) Let σ : K → K′ be a morphism in k-alg, C (resp. C′) a conic algebra over K
(resp. K′) and φ : C → C′ a σ-semi-linear homomorphism of conic algebras.
Prove that

Ker(σ, φ) :=
(
Ker(σ),Ker(φ)

)
is a conic ideal in C.

(c) Conversely, let C be a conic k-algebra, (a, I) a conic ideal in C and write σ for
the canonical projection from k to k0 := k/a. Prove that C0 := C/I carries the
unique structure of a conic k0-algebra making the canonical projection π : C →
C0 a σ-semi-linear homomorphism of conic algebras. Moreover, Ker(σ, π) =
(a, I).

16.25. Conic nil ideals and the lifting of elementary idempotents. Let C be a conic
algebra over k. By a conic nil ideal in C we mean a conic ideal (a, I) such that a ⊆ k or
I ⊆ C is a nil ideal.

(a) Prove that if (a, I) is a conic nil ideal in C, then a and I are both nil ideals in k,
C, respectively.

(b) Prove that (Nil(k),Nil(C)) is a conic nil ideal in C.
(c) Let (a, I) be a conic nil ideal in C and put C0 := C/I, viewed as a conic algebra

over k0 := k/a via Exc. 16.24 (c). Letting c0 be an elementary idempotent in
C0, show with the canonical projection π : C → C0 that every idempotent in
π−1(c0) (whose existence is guaranteed by Exc. 7.14 (b)) is elementary.

16.26. Let C be a conic algebra over k. Prove for c ∈ C that the following conditions
are equivalent.

(i) c is an idempotent in C.
(ii) There exists a complete orthogonal system (ε(0), ε(1), ε(2)) of idempotents in k,

giving rise to decompositions

k = k(0) × k(1) × k(2), C = C(0) ×C(1) ×C(2)

as direct products of ideals, where k(i) = kε(i) and C(i) = ε(i)C = Ck(i) as a conic
algebra over k(i) for i = 0, 1, 2, such that

c = (0, c(1), 1C(2) ),

where c(1) is an elementary idempotent of C(1).

In this case, the idempotents ε(i), i = 0, 1, 2, in (ii) are unique and given by

ε(0) :=
(
1 − nC(c)

)(
1 − tC(c)

)
, ε(1) :=

(
1 − nC(c)

)
tC(c), ε(2) := nC(c). (1)

16.27. Let C be a conic k-algebra that is faithful as a k-module and whose linear trace
is surjective. Show that C has trivial conjugation if and only if C � k.
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16.28. Norms of commutators (Garibaldi-Petersson [92, Prop. 2.4]). Let C be a norm-
associative conic k-algebra. Show that the trilinear map

C3 −→ k, (x, y, z) 7−→ nC(x, [y, z])

is alternating and that the following identities

nC(xy) = nC(yx), (1)

nC([x, y]) = 4nC(xy) − tC(x)2nC(y) − tC(y)2nC(x) + nC(x, y)nC(x, ȳ) (2)

hold for all x, y ∈ C.

17 Conic alternative algebras

In 5.5, we have defined the euclidean Albert algebra as a commutative non-
associative real algebra that lives on the 3-by-3 hermitian matrices with entries
in the Graves-Cayley octonions. As we will show in due course, this impor-
tant construction can be generalized to arbitrary conic alternative algebras over
commutative rings once a peculiar additional hypothesis has been inserted. The
elementary properties of conic alternative algebras needed to carry out this
generalization will be assembled in the present section. Throughout we let k
be an arbitrary commutative ring.

We begin by identifying the “peculiar additional hypothesis”.

17.1 Multiplicative conic algebras. A conic algebra C over k is said to be
multiplicative if its norm permits composition:

nC(xy) = nC(x)nC(y) (x, y ∈ C) (1)

Linearizing this identity repeatedly, we conclude that multiplicative conic al-
gebras also satisfy the relations

nC(x1y, x2y) = nC(x1, x2)nC(y), (2)

nC(xy1, xy2) = nC(x)nC(y1, y2), (3)

nC(x1y1, x2y2) + nC(x1y2, x2y1) = nC(x1, x2)nC(y1, y2) (4)

for all x, x1, x2, y, y1, y2 ∈ C. We conclude from this that multiplicative conic
algebras are stable under base change. Note further that, if C is a multiplicative
conic algebra, so is Cop.

Putting y1 := 1C , y2 := y in (3), we see that multiplicative conic algebras
satisfy the identity (16.12.2). Therefore Prop. 16.14 immediately implies the
first part of the following observation, while the second part is a consequence
of (16.4.1) .
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17.2 Proposition. (a) Multiplicative conic algebras are norm-associative. In
particular, they are flexible, and their conjugation is an involution.

(b) Quadratic algebras are multiplicative. □

17.3 Vector product and the Lagrange identity. Let C be a multiplicative
conic k-algebra. Then Prop. 17.2 and (2) of Exc. 16.28 imply

nC([x, y]) = 4nC(x)nC(y) − tC(x)2nC(y) (1)

− tC(y)2nC(x) + nC(x, y)nC(x, ȳ)

for all x, y ∈ C. Now suppose in addition 2 ∈ k×. By (16.6.1), (16.6.2) we have

C = k1C ⊕C0, C0 = Ker(tC). (2)

For x, y ∈ C0, we deduce

x × y :=
1
2

[x, y] =
1
2

(xy − yx) ∈ C0 (3)

from (16.13.5) and call x × y the vector product of x and y, which is skew-
symmetric in x, y. Since ȳ = −y, it follows that (1) collapses to what we call
the Lagrange identity of the vector product:

nC(x × y) = nC(x)nC(y) −
(

1
2 nC(x, y)

)2
. (4)

In order to justify the preceding terminology, let C := H be the Hamiltonian
quaternions over k := R and identify H0 = R3 via the basis in 1.11. The vector
product as defined in (3) by (1.11.1) agrees with the ordinary vector product in
3-space. In view of (1.6.3), the Lagrange identity (4) takes on the usual form

∥x × y∥2 = ∥x∥2∥y∥2 − (xTy)2 (5)

for x, y ∈ R3.

17.4 Identities in conic alternative algebras. Let C be a conic alternative
algebra over k. Combining the left and right alternative laws, x(xy) = x2y and
(yx)x = yx2, with (16.5.1), (16.5.4), we deduce Kirmse’s identities [152, p. 67]:

x(x̄y) = nC(x)y = (yx̄)x. (1)

We can also derive a formula for the U-operator,

Uxy = xyx = nC(x, ȳ)x − nC(x)ȳ, (2)

which follows by using (16.5.1), (16.5.5), (16.5.4), (16.5.10) to manipulate the
expression xyx = (x ◦ y)x − yx2, see Exc. 1.18 (c) in the special case k = R,
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C = O. Applying the norm to the right-hand side of (2) and expanding, we
conclude

nC(Uxy) = nC(xyx) = nC(x)2nC(y). (3)

In view of this, one might be tempted to conjecture that conic alternative al-
gebras are multiplicative. But, according to Exc. 17.8 below, this is not so.
Fortunately, however, (3) is strong enough to characterize invertibility in conic
alternative algebras.

17.5 Proposition. Let C be a conic alternative algebra over k. An element
x ∈ C is invertible in C if and only if nC(x) is invertible in k. In this case,
x−1 = nC(x)−1 x̄ and nC(x−1) = nC(x)−1.

Proof If nC(x) ∈ k×, then (16.5.6) shows that y := nC(x)−1 x̄ satisfies xy =
1C = yx, forcing x ∈ C× and y = x−1 by Prop. 13.6. Conversely, suppose x
is invertible in C. Then Uxx−2 = 1C , and (17.4.3) yields 1 = nC(x)2nC(x−2),
hence nC(x) ∈ k×. The final formula follows from the fact that the conjugation
of C leaves its norm invariant. □

While it is not true in general that conic alternative algebras are multiplica-
tive, this implication does hold under natural conditions on the module struc-
ture.

17.6 Proposition. Let C be a conic alternative algebra over k that is projective
as a k-module. Then C is multiplicative.

Proof As an alternative algebra, C is flexible, whence Proposition 16.14 im-
plies that C is norm-associative. In particular, the conjugation of C is an involu-
tion. Let x, y ∈ C. By Artin’s Theorem (Corollary 14.5), the unital subalgebra
of C generated by x, y is associative. Moreover, by (16.5.4), it contains x̄ and
ȳ. Hence (16.5.6) yields

nC(xy)1C = xyxy = xyȳx̄ = nC(y)xx̄ = nC(x)nC(y)1C ,

and since 1C is unimodular (Prop. 16.7), C is indeed multiplicative. □

17.7 Some categories of conic algebras. For future references it will be conve-
nient to consider the category k-conalg whose objects are conic k-algebras and
whose morphisms are homomorphisms of conic algebras as defined in 16.1.
Multiplicative conic alternative algebras will be regarded as a full subcategory
of k-conalg, denoted by k-mcalt. Strictly speaking, the objects of k-mcalt have
the form (C, nC) where C is a conic alternative k-algebra with norm nC which
is multiplicative in the sense of 17.1. We obtain the forgetful functor from



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024
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k-mcalt to k-alt1 defined by (C, nC) 7→ C on objects and by the identity on
morphisms. This functor is obviously faithful but, by Exc. 17.8 below, not full.

Exercises
17.8 (McCrimmon [189]). The following exercise will produce an example of an alge-
bra that supports many different conic algebra structures, some of which are multiplic-
ative (resp. norm-associative), while others are not.

Let k = k0[ε], ε2 = 0, be the algebra of dual numbers over a commutative ring k0, and
view k0 as a k-algebra via the natural map k → k0, ε 7→ 0, the corresponding module
action k×k0 → k0 being indicated by (α, α0) 7→ α.α0. In particular, (column) 3-space k3

0
becomes a k-module in this way. In fact, it becomes a k-algebra under the multiplicationα1

α2
α3


β1
β2
β3

 :=

 0
0

α1β2

 (αi, βi ∈ k0, 1 ≤ i ≤ 3). (1)

Furthermore, let

z =

δ1
δ2
δ3

 ∈ k3
0

be arbitrary. Now consider the k-algebra C defined on the k-module k × k3
0 by the mul-

tiplication

(α1, u1)(α2, u2) :=
(
α1α2, α1.u2 + α2.u1 + [u1, u2]

)
for αi ∈ k, ui ∈ k3

0, i = 1, 2, where [u1, u2] is the commutator belonging to the k-algebra
structure of k3

0 just defined, and let nz : C → k be given by

nz
(
(α, u)

)
:= α2 +

(
α.(zTu)

)
ε

for α ∈ k, u ∈ k3
0. Then show that C is an associative conic k-algebra with norm nC := nz,

and that the following conditions are equivalent.

(i) C is multiplicative.
(ii) C is norm-associative.
(iii) The conjugation of C is an involution.
(iv) δ3 = 0.

17.9. Let C be a multiplicative conic algebra over k. Show that its nil radical has the
form

Nil(C) = {x ∈ C | nC(x), nC(x, y) ∈ Nil(k) for all y ∈ C}.

17.10. Artin’s theorem for conic alternative algebras. Let C be a conic alternative k-
algebra that is unitally generated by two elements x, y ∈ C. Show that C is spanned
by 1C , x, y, xy as a k-module. Conclude without recourse to Artin’s theorem (Cor. 14.5)
that C is associative.
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17.11. Norms of associators (Garibaldi-Petersson [92, Thm. 2.8]). Let C be a multipl-
icative conic alternative algebra over k. Prove

nC([x1, x2, x3]) = 4nC(x1)nC(x2)nC(x3) −
∑

tC(xi)2nC(x j)nC(xl)

+
∑

tC(xi x j)nC(xi, x j)nC(xl) − tC(x1 x2)tC(x2 x3)tC(x3 x1)

+ tC(x1 x2 x3)tC(x2 x1 x3)

for all x1, x2, x3 ∈ C, where both summations on the right are to be taken over the cyclic
permutations (i jl) of (123).

17.12. Isotopes of conic alternative algebras. Let C be a conic alternative k-algebra.
Prove for p, q ∈ C× that C(p,q) is again a conic alternative k-algebra with norm nC(p,q) =
nC(pq)nC . Moreover, trace and conjugation of C(p,q) are given by

tC(p,q) (x) = nC(pq, x), ιC(p,q) (x) = x(p,q)
= nC(pq)−1 pq x pq (x ∈ C).

Show further that, if in addition, C is multiplicative, then so is C(p,q).

18 The Cayley-Dickson construction

The only example we have encountered so far of an alternative algebra which
is not associative is the real algebra of Graves-Cayley octonions. The Cayley-
Dickson construction will provide us with a tool to accomplish the same over
any commutative ring. Moreover, it will play a crucial role in the structure
theory of composition algebras over fields later on.

Throughout this section, we fix an arbitrary commutative ring k. Our first
aim will be to present what might be called an internal version of the Cayley-
Dickson construction.

18.1 Proposition (Internal Cayley-Dickson construction). Let C be a multi-
plicative conic alternative algebra over k and B ⊆ C a unital subalgebra. If
l ∈ C is perpendicular to B relative to DnC , then B + Bl ⊆ C is the subalgebra
of C generated by B and l. Moreover, setting µ := −nC(l), the identities

u(vl) = (vu)l, (1)

(vl)u = (vū)l, (2)

(ul)(vl) = µv̄u, (3)

nC(u + vl) = nC(u) − µnC(v), (4)

tC(u + vl) = tC(u), (5)

u + vl = ū − vl (6)
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hold for all u, v ∈ B, and

Bl = lB ⊆ B⊥. (7)

Proof The first assertion follows from (1)–(3), so it will be enough to estab-
lish (1)–(7). Since l is orthogonal to B and, in particular, has trace zero, (16.5.5)
implies

u ◦ l = tC(u)l, (8)

hence lu = tC(u)l − ul, and we have (2) in the special case v := 1C , i.e.,

lu = ūl. (9)

Combining (9) with the linearized left alternative law (13.2.1) and (8), we con-
clude u(vl) = u(lv) = (u ◦ l)v − l(uv) = tC(u)lv̄ − l(uv̄) = l(ū v̄) = (vu)l, since
ιC is an involution by Prop. 17.2 (a). Thus (1) holds. Reading (1) in Cop and
invoking (8), (9) once more gives (2) in full generality. In order to establish (3),
we combine the middle Moufang identity (13.3.3) with (17.4.2) and (9) to con-
clude (ul)(vl) = (lū)(vl) = l(ūv)l = nC(l, v̄u)l−nC(l)v̄u = µv̄u, as claimed. Turn-
ing to (4), we use (16.12.4) to expand the left-hand side and obtain nC(u+vl) =
nC(u)+nC(u, vl)+nC(v)nC(l) = nC(u)+nC(v̄u, l)−µnC(v) = nC(u)−µnC(v), and
the proof of (4) is complete. It is now straightforward to verify (5), (6). Finally,
turning to (7), we have Bl = lB by (9) and note that C is norm-associative by
Prop. 17.2 (a). Hence (16.12.4) yields nC(u, vl) = nC(v̄u, l) = 0 for all u, v ∈ B,
which implies Bl ⊆ B⊥ and (7) holds. □

18.2 Remark. The above sum B+ Bl of k-submodules of C need not be direct.
For example, it could happen that 0 , l ∈ Rad(DnB) ⊆ B.

18.3 The external Cayley-Dickson construction. We will now recast the pre-
ceding considerations on a more abstract, but also more general, level. Let B
be any conic algebra over k and µ ∈ k an arbitrary scalar (playing the role of
−nC(l) in Prop. 18.1). We define a k-algebra C on the direct sum B⊕ B j of two
copies of B as a k-module by the multiplication

(u1 + v1 j)(u2 + v2 j) := (u1u2 + µv2v1) + (v2u1 + v1u2) j,

for ui, vi ∈ B, i = 1, 2, and a quadratic form nC : C → k by

nC(u + v j) := nB(u) − µnB(v) (u, v ∈ B).

C together with nC is said to arise from B, µ by means of the Cayley-Dickson
construction, and is written as Cay(B, µ) in order to indicate dependence on
the parameters involved. Note that 1C = 1B + 0 · j is an identity element for
C and that the assignment u 7→ u + 0 · j gives an embedding, i.e., an injective
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homomorphism, B ↪→ C of unital k-algebras, allowing us to identify B ⊆ C as
a unital subalgebra.

18.4 Proposition. Let B be a conic k-algebra and µ ∈ k an arbitrary scalar.
Then C = Cay(B, µ) as defined in 18.3 is a conic k-algebra whose algebra
structure, unit element, norm, polarized norm, trace, conjugation relate to the
corresponding objects belonging to B by the formulas

(u1 + v1 j)(u2 + v2 j) = (u1u2 + µv2v1) + (v2u1 + v1u2) j, (1)

1C = 1B, (2)

nC(u + v j) = nB(u) − µnB(v), (3)

nC(u1 + v1 j, u2 + v2 j) = nB(u1, u2) − µnB(v1, v2), (4)

tC(u + v j) = tB(u), (5)

ιC(u + v j) = u + v j = ū − v j (6)

for all u, ui, v, vi ∈ B, i = 1, 2. In particular,

B j = jB ⊆ B⊥. (7)

Proof (1)–(3) are simply repetitions of things stated in 18.3 and immediately
imply (4). Hence nC(1C , x) = tB(u) for x = u + v j, u, v ∈ B, and from (1),
(16.5.4), (16.5.1) we conclude

x2 =
(
u2 + µnB(v)1B

)
+ tB(u)v j = tB(u)(u + v j) −

(
nB(u) − µnB(v)

)
1B

= nC(1C , x)x − nC(x)1C .

Thus C is a conic k-algebra. (1)–(6) are now clear, while (7) follows directly
from (1) and (4). □

18.5 Remark. In the situation of Prop. 18.4, the norm of the Cayley-Dickson
construction Cay(B, µ) may be written more concisely as

nCay(B,µ) = nB ⊥ (−µ)nB = nB ⊗ ⟨1,−µ⟩.

18.6 The Cayley Dickson process. Since the Cayley-Dickson construction
stabilizes the category of conic algebras, it can be iterated: given a conic alge-
bra B over k and scalars µ1, . . . , µn ∈ k, we say that

Cay(B; µ1, µ2, . . . , µn) := Cay
(
. . .

(
Cay

(
Cay(B, µ1), µ2

))
. . . , µn

)
.

arises from B and µ1, . . . , µn by means of the Cayley-Dickson process.

Confronting the external Cayley-Dickson construction with the internal one
as described in Prop. 18.1, one obtains the following useful result.
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18.7 Proposition (Universal property of the Cayley-Dickson construction).
Let g : B → C be a homomorphism of conic k-algebras and suppose in ad-
dition that C is multiplicative alternative. Given l ∈ g(B)⊥ ⊆ C and set-
ting µ := −nC(l), there exists a unique extension of g to a homomorphism
h : Cay(B, µ)→ C of conic algebras over k sending j to h( j) = l. The image of
h is the subalgebra of C generated by g(B) and l, while its kernel has the form

Ker(h) = {u + v j | u, v ∈ B, g(u) = −g(v)l}.

Proof Any such h has the form h(u + v j) = g(u) + g(v)l for u, v ∈ B. Con-
versely, defining h in this manner, we obtain h( j) = l and deduce from (18.1.1)–
(18.1.4) combined with (18.4.1) that h is a homomorphism of conic algebras.
The remaining assertions are clear. □

Before we can proceed, we will have to insert an easy technicality.

18.8 Zero divisors of modules. Let M be a k-module. In accordance with
Bourbaki [28, I, 8.1], an element µ ∈ k is called a zero divisor of M if the
homothety x 7→ µx from M to M is not injective. We claim that, if M is pro-
jective and contains unimodular elements, the zero divisors of M are precisely
the zero divisors of k. Indeed, since the injectivity of linear maps can be tested
locally, we may assume that k is a local ring, in which case M , {0} is free as
a k-module, and the assertion follows.

18.9 Corollary. Under the hypotheses of Proposition 18.7, assume that g is
injective, B is projective as a k-module, nB is weakly regular and µ is not a zero
divisor of k. Then h is an isomorphism from Cay(B, µ) onto the subalgebra of
C generated by B and l.

Proof We need only show that h is injective, so let u, v ∈ B satisfy u + v j ∈
Ker(h). By Prop. 18.7 and (18.1.7), we have g(u) = −g(v)l ∈ g(B) ∩ g(B)⊥,
forcing g(u) = g(v)l = 0 by weak regularity of nB, and (18.1.3) yields g(µv) =
µg(v) = (g(v)l)l = 0, hence µv = 0. But µ, not being a zero divisor of k, neither
is one of B by 18.8 since 1B ∈ B is unimodular by Prop. 16.7. Thus v = 0, as
claimed. □

18.10 Examples. Considering the conic algebras of Chap. I over the field
k = R of real numbers, we note that i ∈ C belongs to (R1C)⊥ and has norm
1. Hence Cor. 18.9 yields a canonical identification C = Cay(R,−1). Simi-
larly, identifying C = R[i] as a subalgebra of H, the Hamiltonian quaternions,
j ∈ H belongs to C⊥ and again has norm 1, which implies H = Cay(C,−1) =
Cay(R;−1,−1). And finally, viewing H via 1.11 as a subalgebra of O, the
Graves-Cayley octonions, and consulting (1.6.1), (1.6.2), we conclude that j :=
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0⊕(ie1) ∈ H⊥ ⊆ O has norm 1. ThereforeO = Cay(H,−1) = Cay(C;−1,−1) =
Cay(R;−1,−1,−1).

Useful properties of conic algebras preserved by the Cayley-Dickson con-
struction are in short supply. For instance, the property to be projective as a
k-module trivially carries over from a conic algebra B to any Cayley-Dickson
construction Cay(B, µ), µ ∈ k. Other examples are provided by the following
result.

18.11 Proposition. Let B be a conic algebra over k and µ ∈ k. If the conjuga-
tion of B is an involution, then so is the conjugation of C := Cay(B, µ). If B is
norm-associative, then so is C.

Proof The first part follows by a straightforward computation. As to the sec-
ond, it suffices to verify (16.13.2), so we must show

nC
(
u1 + v1 j, (u1 + v1 j)(u2 + v2 j)

)
= tC(u2 + v2 j)nC(u1 + v1 j)

for ui, vi ∈ B, i = 1, 2. To this end, one expands the left-hand side using
(18.4.1), (18.4.4) and observes that (16.13.4) holds for B. Details are left to
the reader. □

On the other hand, preserving flexibility under the Cayley-Dickson con-
struction is only possible with a caveat.

18.12 Proposition. For a conic k-algebra B and µ ∈ k, the Cayley-Dickson
construction C = Cay(B, µ) is flexible if and only if B is flexible and the conju-
gation of B is an involution.

Proof Suppose first that C is flexible. Then B is flexible and (16.10.1) holds
for all x, y ∈ C. In particular, for u1, u2, v1 ∈ B, we set x := u1 + v1 j, y := u2

and conclude that(
tC(x, y) − nC(x, ȳ)

)
x =

(
tC((u1 + v1 j)u2) − nC(u1 + v1 j, ū2)

)
(u1 + v1 j)

=
(
tB

(
u1u2 + (v1ū2) j

)
− nB(u1, ū2)

)
(u1 + v1 j)

=
(
tB(u1, u2) − nB(u1, ū2)

)
(u1 + v1 j),

belongs to k1B ⊆ B. Comparing B j-components, we find that tB(u1, u2) −
nB(u1, ū2) ∈ Ann(B), whence the conjugation of B is an involution by Prop.
16.10 (a).

Conversely, suppose B is flexible and its conjugation is an involution. Then,
by Prop. 18.11, the conjugation of C is an involution, and we deduce from
Cor. 16.11 that it suffices to show

nC(x, xy) − tC(y)nC(x) ∈ Ann(C)
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for all x, y ∈ C. By linearity (in y), assuming x = u1 + v1 j with u1, v1 ∈ B, we
are left with two cases y ∈ B or y ∈ B j.

Suppose first that y = u2 ∈ B. Then

nC(x, xy) − tC(y)nC(x) = nC
(
u1 + v1 j, u1u2 + (v1ū2) j

)
− tB(u2)nC(u1 + v1 j)

= nB(u1, u1u2) − µnB(v1, v1ū2)

− tB(u2)nB(u1) + µtB(u2)nB(v1)

=
(
nB(u1, u1u2) − tB(u2)nB(u1)

)
− µ

(
nB(v1, v1ū2) − tB(ū2)nB(v1)

)
,

where both summands on the right by the hypotheses on B and Cor. 16.11
belong to Ann(B) = Ann(C). Hence so does nC(x, xy) − tC(y)nC(x).

Suppose now that y = v2 j, v2 ∈ B. Then

nC(x, xy) − tC(y)nC(x) = nC
(
u1 + v1 j, µv̄2v1 + (v2u1) j

)
= µ

(
nB(v̄2v1, u1) − nB(v1, v2u1)

)
.

It therefore remains to show nB(u, vw) − nB(v̄u,w) ∈ Ann(B) for all u, v,w ∈
B. Since Bop is a flexible conic algebra whose conjugation is an involution,
Cor. 16.11 implies nB(u, vu) − tB(v)nB(u) ∈ Ann(B), so after linearization,
Ann(B) contains nB(u, vw)+ nB(w, vu)− tB(v)nB(u,w) = nB(u, vw)− nB(v̄u,w),
as desired. □

18.13 Commutators and associators. Let B be a conic algebra over k. For
µ ∈ k, we wish to find conditions that are necessary and sufficient for the
Cayley-Dickson construction C = Cay(B, µ) to be commutative, associative,
alternative, respectively. To this end, we will describe the commutator and the
associator of C in terms of B and µ under the assumption that, in case of
the associator, the conjugation of B is an involution. Then, letting ui, vi ∈ B,
i = 1, 2, 3 and keeping the notation of 18.3, a lengthy but straightforward com-
putation yields

[u1 + v1 j, u2 + v2 j] = u + v j, and

[u1 + v1 j, u2 + v2 j, u3 + v3 j] = ũ + ṽ j,
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where

u = [u1, u2] + µ(v2v1 − v1v2), (1)

v = v2(u1 − u1) − v1(u2 − u2), (2)

ũ = [u1, u2, u3] + µ
(
(v2v1)u3 − (u3v2)v1+ (3)

v3(v2u1) + v3(v1u2) − u1(v3v2) − (u2 v3)v1
)
,

ṽ = v3(u1u2) − (v3u2)u1 + (v2u1)u3 + (v1u2)u3 (4)

− (v2u3)u1 − v1(u3 u2) + µ
(
v3(v2v1) − v1(v2v3)

)
.

With the aid of these identities, we can now prove the following important
result.

18.14 Theorem. For a conic k-algebra B, an arbitrary scalar µ ∈ k and
the corresponding Cayley-Dickson construction C := Cay(B, µ), the follow-
ing statements hold.

(a) C is commutative if and only if B is commutative and has trivial conju-
gation.

(b) C is associative if and only if B is commutative associative and its
conjugation is an involution.

(c) C is alternative if and only if B is associative and its conjugation is an
involution.

Proof (a) If C is commutative, then so is B and (18.13.2) for v2 = 1B, v1 = 0
implies ιB = 1B. Conversely, let B be commutative and suppose ιB = 1B. Then
an inspection of (18.13.1), (18.13.2) shows that C is commutative as well.

(b) If C is associative, then so is B, its conjugation is an involution by
Prop. 18.12, and (18.13.4) for u3 = v1 = v2 = 0, v3 = 1C shows that B is
commutative as well. Conversely, if B is commutative associative and its con-
jugation is an involution, an inspection of (18.13.3), (18.13.4) shows that C is
associative.

(c) If C is alternative, then the conjugation of B by Prop. 18.12 is an invo-
lution. Moreover, ṽ = 0 for u1 = u2, v1 = v2, v3 = 0 and (18.13.4) combined
with (16.5.4) yield

0 = (v1u1)u3 + (v1u1)u3 − (v1u3)u1 − v1(u3 u1)

= tB(u1)v1u3 − (v1u3)u1 − tB(u1)v1u3 + v1(u3u1)

= −[v1, u3, u1].

Hence B is associative. Conversely, let this be so and suppose ιB is an invo-
lution. Setting u1 = u2, v1 = v2 in (18.13.3), (18.13.4), Kirmse’s identities



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

18 The Cayley-Dickson construction 143

(17.4.1) and (16.5.4), (16.5.6) imply

ũ = µ
(
nB(v1)u3 − nB(v1)u3 + tB(u1)v3v1 − tB(u1)v3v1

)
= 0,

ṽ = tB(u1)v1u3 − tB(u1)v1u3 + µ
(
nB(v1)v3 − nB(v1)v3

)
= 0,

forcing C to be alternative. □

18.15 Corollary. In addition to the above, assume that B is projective as a
k-module. Then

(a) C is associative if and only if B is commutative associative.
(b) C is alternative if and only if B is associative.

Proof All the algebras of Thm. 18.14 are flexible. Hence in each case Propo-
sition 16.14 shows that the hypothesis of the conjugation of B being an invo-
lution is automatic. □

18.16 Remark. Different characterizations of alternativity (resp. associativity
or commutativity) for algebras arising from the Cayley-Dickson construction
may be found in [189, Thm. 6.8] and [190, II, Thm. 2.5.2].

18.17 Examples. (a) Let R be a quadratic k-algebra whose conjugation is
non-trivial. For any µ1 ∈ k, Cor. 18.15 (a) combined with Theorem 18.14 (a)
shows that the conic algebra B := Cay(R, µ1) is associative but not commu-
tative. Applying Cor. 18.15 again, we therefore conclude for any µ2 ∈ k that
the conic algebra C := Cay(B, µ2) = Cay(R; µ1, µ2) is alternative but not ass-
ociative. In view of Example 18.10, these results generalize what we have
found in Exc. 1.16 combined with Cor. 1.12.

(b) At the other extreme, assume 2 = 0 in k. If B is a commutative associative
conic k-algebra with trivial conjugation (e.g., B = k), then by Theorem 18.14
and (18.4.6) so is the Cayley-Dickson process C := Cay(B; µ1, . . . , µn), for any
positive integer n and any µ1, . . . , µn ∈ k.

Exercises
18.18. Let B be a multiplicative conic algebra over k and µ ∈ k. Show that the Cayley-
Dickson construction Cay(B, µ) is multiplicative if and only if µ[B, B, B] ⊆ Rad(DnB).

18.19 (McCrimmon [189, p. 103]). Let B be a multiplicative conic k-algebra, and let
µ ∈ k, a ∈ Nuc(B). Show that the map

φ : Cay
(
B, nB(a)µ

)
−→ Cay(B, µ)

defined by φ(u + v j) := u + (av) j for u, v ∈ B is a homomorphism of conic algebras.
Moreover, it is an isomorphism if and only if a is invertible in Nuc(B).
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18.20. Zero divisors of algebras. Let A be a k-algebra. An element x ∈ A is called a
right (resp. left) zero divisor of A if the left (resp. right) multiplication operator Lx : A→
A (resp. Rx : A → A) of x in A is not injective. We say A has zero divisors if there are
non-zero elements x, y ∈ A such that xy = 0.

Now let C be a conic alternative k-algebra that is projective as a k-module. Prove for
x ∈ C that the following conditions are equivalent.

(i) x is a right zero divisor of C.
(ii) x is a left zero divisor of C.
(iii) nC(x) is a zero divisor of k.

(Hint: For the implication (i)⇒ (iii), argue indirectly and pass to the base change C f =
C ⊗ k f , f = nC(x).)

18.21. Let A be a nonassociative k-algebra. For R = k[t] or k[[t]] prove: A has zero
divisors if and only if AR has zero divisors.

18.22. A variant of the Cayley-Dickson construction. Let B be a conic k-algebra and
µ ∈ k. On the direct sum B⊕ j′B of two copies of B as a k-module we define a k-algebra
structure Cay′(B, µ) by the formula

(u1 + j′v1)(u2 + j′v2) := (u1u2 + µv2v̄1) + j′(ū1v2 + u2v1)

for u1, u2, v1, v2 ∈ B. Show that there is a natural isomorphism

Cay(Bop, µ) � Cay′(B, µ)op

and conclude that Cay′(B, µ) is a conic k-algebra with norm, trace and conjugation
canonically isomorphic to the corresponding objects attached to Cay(B, µ). Show fur-
ther that, if the conjugation of B is an involution, then

Cay(B, µ)
∼
−→ Cay′(B, µ), u + v j 7−→ u + j′v̄,

is an isomorphism of conic algebras.

19 Basic properties of composition algebras

Before being able to deal with the main topic of this section, it will be neces-
sary to introduce an auxiliary notion that can hardly stand on its own but turns
out to be technically useful. Throughout, we let k be an arbitrary commutative
ring.

19.1 Pre-composition algebras. By a pre-composition algebra over k we mean
a k-algebra C satisfying the following conditions.

(i) C is unital.
(ii) C is projective as a k-module.
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(iii) There exists a non-degenerate quadratic form n : C → k that permits
composition:

n(1C) = 1, (1)

n(xy) = n(x)n(y) (x, y ∈ C). (2)

In this case, (2) may be linearized (repeatedly) and yields the relations

n(xy, xz) = n(x)n(y, z), (3)

n(xy, zy) = n(x, z)n(y), (4)

n(xy,wz) + n(wy, xz) = n(x,w)n(y, z) (5)

for all x, y, z,w ∈ C.

19.2 Examples. Let k := R be the field of real numbers and D as in 3.1 (b) one
of the subalgebras R, C,H,O of the Graves-Cayley octonionsO. Let M ⊆ D be
an arbitrary Z-structure as defined in 3.6 (d). The property of the norm nD of D
to be positive definite and to permit composition is inherited by its restriction to
M. Thus M is a pre-composition algebra over Z. It follows in particular that the
Gaussian integers Ga(C), Ga(H), Ga(O) of 3.16 are pre-composition algebras
over Z, as are the Hurwitz quaternions (Thm. 4.2) and the Dickson-Coxeter
octonions (Thm. 4.5).

An analogous conclusion could have been drawn for the algebras D over R
but in this case, as will be seen in a moment, one can do better than that.

In view of Prop. 17.6, conic alternative algebras that are projective as k-
modules are pre-composition algebras provided their norm is a non-degenerate
quadratic form. Remarkably, the converse of this is also true.

19.3 Proposition. Let C be a pre-composition algebra over k and n : C →
k any non-degenerate quadratic form that permits composition. Then C is a
conic alternative k-algebra with unique norm nC = n. Moreover,

C⊥ := Rad(DnC) = {x ∈ C | nC(x, y) = 0 for all y ∈ C} ⊆ Cent(C)

is a central ideal of C satisfying

2C⊥ = nC(x, y)C⊥ = {0}

for all x, y ∈ C.

Proof For the first part, it suffices to show that C is a conic alternative alge-
bra with norm nC := n since uniqueness follows from Proposition 16.16. By
(19.1.1), we have n(1C) = 1. Now we put z = 1C in (19.1.3). Then

n(xy, x) = n(x)t(y), (1)
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where t(y) := n(1C , y). Setting y = x,w = z = 1C in (19.1.5), we obtain
t(x2) + n(x, x) = t(x)2, hence

t(x2) = t(x)2 − 2n(x). (2)

Furthermore, setting z = x,w = 1C in (19.1.5), we also obtain n(xy, x) +
n(x2, y) = t(x)n(x, y), so by (1),

n
(
x2 − t(x)x + n(x)1C , y) = 0.

Similarly, one can show n(x2 − t(x)x + n(x)1C) = 0 by expanding the left-hand
side and using (1) (for y = x) as well as (2). Since n is non-degenerate, C is
therefore a conic k-algebra with norm nC = n. Moreover, (1) shows that C is
norm-associative, hence flexible by Proposition 16.14. Thus alternativity will
follow once we have established the left alternative law, equivalently, the first
of Kirmse’s identities (17.4.1). To this end, we combine (16.12.4) with (19.1.3)
and the multiplicativity of n to obtain n(x(xy), z)) = n(xy, xz) = n(n(x)y, z).
A similar computation yields n(x(xy) − n(x)y) = 0. The fact that n is non-
degenerate implies the first Kirmse identity x(xy) = n(x)y, as claimed.

We now turn to C⊥. By non-degeneracy of n, the function n : C⊥ → k is an
embedding of additive groups. In particular, n(2x) = 2n(x, x) = 0 for x ∈ C⊥

implies 2C⊥ = {0}. Moreover, (16.12.3) and (16.12.4) show that C⊥ ⊆ C is
an ideal. We claim that this ideal belongs to the centre of C. Indeed, for x, y ∈
C, z ∈ C⊥, evaluating n at (xy)z, x(yz) ∈ C⊥ yields the same value n(x)n(y)n(z),
which implies [x, y, z] = 0. Similarly, [y, z] = 0, and the assertion follows. It
remains to prove n(x, y)z = 0. Since the conjugation of C is the identity on C⊥,
this follows from (16.12.5) and n(x, y)z = t(xy)z = (xy)z+(yx)z = (zx)y+yzx =
n(zx, y)1C = 0. □

19.4 Example. Let K ⊇ k be fields of characteristic 2, with K purely insep-
arable of exponent at most 1, meaning that K2 ⊆ k. (We allow the dimension
[K : k] to be infinite.) Then K is a pre-composition algebra over k whose norm,
given by the squaring K → k, x 7→ x2, is an anisotropic quadratic form with
zero bilinearization.

If K , k, then there is some α ∈ K \ k,

K ⊗ K ⊇ K ⊗ k[α] � K[t]/(t2 − α2) � K[t]/(t − α)2 � K[ε]/(ε2),

and nK ⊗ K is isotropic, hence degenerate. That is, the corresponding scalar
extension of the k-algebra K is not a pre-composition algebra anymore.

We are now ready for the main concept of this section.
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19.5 The concept of a composition algebra. We define a composition algebra
over k as a k-algebra C satisfying the following conditions.

(i) C is unital.
(ii) C is projective as a k-module.
(iii) The rank function p 7→ rk(Cp) from Spec(k) to N ∪ {∞} is locally con-

stant with respect to the Zariski topology of Spec(k).
(iv) There exists a non-singular quadratic form n : C → k that permits com-

position:

n(1C) = 1, (1)

n(xy) = n(x)n(y) (x, y ∈ C). (2)

If the quadratic form in (iv) can be chosen to be regular (rather than just
non-singular), we speak of a regular composition algebra. We will see later
(Cor. 19.11) that requiring a composition algebra to be regular is a mild extra
condition. Note further that among the preceding conditions, (ii) implies (iii)
if C is finitely generated as a k-module (9.8).

19.6 Example: the base ring. The only quadratic form permitting composition
on the k-algebra k is the squaring α 7→ α2, i.e., the norm of k (as a conic
algebra, see Example 16.2 (c)), which is obviously non-singular. Hence k is a
composition algebra over itself. It is a regular composition algebra if and only
if 2 ∈ k×.

On the other hand, k is a pre-composition algebra if and only if, for all α ∈ k,
the relations α2 = 2α = 0 imply α = 0, which fails to be the case if, e.g., k
contains non-zero nilpotent elements and 2 = 0 in k.

19.7 Remark. (a) Composition algebras are stable under base change (since
non-singular quadratic forms are), while pre-composition algebras are not (Ex-
ample 19.4). This is the main reason why the latter are less interesting than the
former. In case k is the zero ring, the unique module — the zero module — is
a composition algebra, albeit a rather uninteresting one.

(b) If C is a (regular, resp. a pre-) composition algebra, then so is Cop.

(c) Regular composition algebras are pre-composition algebras; in particular,
they are conic alternative (Prop. 19.3). But, as Example 19.6 shows, arbitrary
composition algebras may fail to be pre-composition algebras.

(d) There is no universal agreement in the literature on how to define compo-
sition algebras. Some authors, e.g., [92, 95, 212, 216, 270], require a regular
quadratic form permitting composition and thus exclude the base ring from
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counting as a composition algebra unless 2 is invertible (Example 19.6). Oth-
ers, e.g., [70, 160], do not insist on an identity element, in which case composi-
tion algebras that contain one are called Hurwitz algebras. In some cases, e.g.,
in [189, 242], what we call pre-composition algebras are called composition
algebras.

We now proceed by characterizing a class of composition algebras sitting
inside arbitrary conic algebras as “small” unital subalgebras.

19.8 Proposition. Let C be a conic algebra over k and u ∈ C. Then D :=
k[u] ⊆ C is a unital commutative associative subalgebra and the following
conditions are equivalent.

(i) D is a regular composition algebra of rank 2.
(ii) D is free of rank 2 as a k-module with basis (1C , u), and the quadratic

form nC is regular on D.
(iii) tC(u)2 − 4nC(u) ∈ k×.

In this case,

disc
(
(D, nD)

)
=

(
tC(u)2 − 4nC(u)

)
mod k×2 (1)

is the discriminant of the quadratic space (D, nD).

Proof Since conic algebras are power-associative by 16.5, the first part is
clear.

(i) ⇔ (ii). Suppose (i) holds. Since D is a finitely generated projective k-
module of rank 2, the natural surjection k2 → D determined by the elements
1C , u must be a bijection (Exc. 9.30), giving the first part of (ii). As to the sec-
ond, D is a pre-composition algebra, hence a conic one, so nC by Prop. 19.3 re-
stricts to the unique non-degenerate (actually, regular) quadratic form on D per-
mitting composition. Conversely, (i) is a consequence of (ii) by Exc. 16.18 (a).

(ii)⇔ (iii). Since D is flexible, (ii) combined with Prop. 16.14 implies that
it is norm-associative, so by (16.12.5) the bilinear trace tD = tC |D×D is regular
along with nD = nC |D×D. Computing the determinant of DnD relative to the
basis (1D, u) of D, we obtain

det
(
nC(1C , 1c) nC(1C , u)
nC(u, 1C) nC(u, u)

)
= det

(
2 tC(u)

tC(u) 2nC(u)

)
(2)

= 4nC(u) − tC(u)2,

hence (iii), and the formula for the discriminant. Conversely, if (iii) holds, it
suffices to show that 1C , u are linearly independent over k, so suppose α, β ∈ k
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satisfy the relation α1C + βu = 0. Then αu + βu2 = 0, and taking traces we
conclude (

2 tC(u)
tC(u) tC(u)2 − 2nC(u)

) (
α

β

)
=

(
tC(1C) tC(u)
tC(u) tC(u2)

) (
α

β

)
= 0.

But by (iii) the matrix on the very left is invertible, forcing α = β = 0, as
desired. □

19.9 Proposition (Kaplansky [149]). If F is a field, an F-algebra C is a pre-
composition algebra if and only if it is either a (finite-dimensional) regular
composition algebra or a purely inseparable field extension of characteristic 2
and exponent at most 1.

Proof In view of Example 19.4, we only have to prove that a pre-composition
algebra C over F has the form indicated in the proposition. Adopting the nota-
tion of Prop. 19.3, we first assume C⊥ , {0}. Since 2C⊥ = {0} and C⊥ is a cen-
tral ideal of C whose non-zero elements, by non-degeneracy, are anisotropic
relative to nC , hence invertible in C (Prop. 17.5), we conclude that F has char-
acteristic 2 and K := C = C⊥ = Cent(C) is an extension field of F whose trace
(in its capacity as a conic algebra) vanishes identically. Thus K is a purely
inseparable extension of F of exponent ≤ 1.

We are left with the case C⊥ = {0}, so nC is weakly regular. It suffices
to show that C is finite-dimensional. Our first aim will be to exhibit a unital
subalgebra D ⊆ C of dimension at most 2 on which nC is regular. For char(F) ,
2, D := F1C will do, so suppose char(F) = 2. Then weak regularity of nC

produces an element u ∈ C of trace 1, and Prop. 19.8 shows that D := F[u] ⊆
C is a subalgebra of the desired kind. Now let B ⊂ C be any proper unital
subalgebra of finite dimension on which nC is regular. Then C = B ⊕ B⊥ by
Lemma 11.10, and since nC is weakly regular on C, we find an anisotropic
vector l ∈ B⊥. But C is a conic alternative F-algebra, so Cor. 18.9 leads to
an embedding Cay(B, µ) ↪→ C, µ = −nC(l) ∈ F×, whose image continues to
be a unital subalgebra of C on which nC is non-degenerate. Assuming C were
infinite-dimensional and starting from D, we could repeat this procedure at
most four times (Cor. 18.15) and would then arrive at a subalgebra of C that is
no longer alternative. This contradiction to Prop. 19.3 shows that C is indeed
finite-dimensional. □

19.10 Remark. The preceding proof actually yields more than is claimed in the
proposition. But since the situation described here will soon be re-examined in
the more general set-up of LG rings, we see no point at this stage to state this
additional piece of information explicitly.
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19.11 Corollary. Let C be a composition algebra over k. Then C is finitely
generated as a k-module. If C has constant rank r, then C is either regular, or
r = 1 (i.e., C � k) and 2 is not invertible in k.

Proof We first assume that k is a local ring with maximal idealm. Then C(m)
is a composition algebra, hence also a pre-composition algebra, over the field
k(m) and thus, by Prop. 19.9 combined with Example 19.4, is either regular
of finite dimension or one-dimensional of characteristic 2. It follows that C is
a regular composition algebra (of finite rank) over k or has rank 1 with 2 not
invertible in k.

For general k, we deduce that C is finitely generated from the local case,
condition (iii) in the definition of a composition algebra (19.5), and Lemma
9.9. The remaining assertions of the proposition follow easily from the local
case. □

19.12 Corollary. If k is a ring with no non-zero nilpotent elements, then every
composition algebra over k is a pre-composition algebra.

Proof Suppose C is a composition algebra over k. Trivially, we may assume
that C is of finite constant rank and not regular. The preceding corollary then
implies that C = k and 2 is not invertible in k. Therefore, Rad(nC) consists
of elements of k of square zero, so Rad(nC) = 0 and C is a pre-composition
algebra. □

19.13 Theorem. A k-algebra C is a composition algebra (resp. a regular com-
position algebra) if and only if it is a conic alternative algebra which is finitely
generated projective as a k-module and has a non-singular (resp. regular)
norm. In this case, the norm nC (cf. Prop. 16.16) is the only non-singular quad-
ratic form on C permitting composition.

Proof A conic alternative algebra that is finitely generated projective as a k-
module and has a non-singular (resp. regular) norm is a composition algebra
(resp. a regular composition algebra) by Prop. 17.6. Conversely, let C be a
composition algebra and n : C → k a non-singular quadratic form permitting
composition. By Cor. 19.11, it suffices to show that C is conic alternative with
norm nC = n. By Prop. 19.3, we are done if C is a pre-composition algebra.
Otherwise, C is a non-regular composition algebra. Since C is a finitely gener-
ated projective k-module, by Cor. 19.11, we may invoke the rank decomposi-
tion of Exc. 9.31 to assume that C has constant rank r ∈ N, whence Cor. 19.11
again combined with Example 19.6 shows C � k and n � nk. □

In order to keep track of the logical interdependence between the various
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classes of conic algebras introduced in the present section and the preceding
ones, the reader may consult Figure 19a.

composition algebra
of rank r > 1
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Figure 19a Diagram showing logical interdependence between different kinds of
algebras related to composition algebras.

A more detailed understanding of composition algebras will now be ob-
tained by exposing them to the Cayley-Dickson construction.

19.14 Theorem. Let B be a conic k-algebra and µ ∈ k an arbitrary scalar.
Then C = Cay(B, µ) is a composition algebra if and only if B is a regular
associative composition algebra and µ is invertible in k. In this case, C is a
regular composition algebra as well.

Proof Assume first that B is a regular associative composition algebra and
µ ∈ k is a unit. Then B is conic associative by Thm. 19.13, forcing C to
be conic alternative by Cor. 18.15 and nC � nB ⊥ (−µ)nB (by (18.5)) to
be a regular quadratic form. By Cor. 19.11 and Thm. 19.13, therefore, C is
a regular composition algebra. Conversely, assume that C is a composition
algebra. Since C is conic alternative by Thm. 19.13, B is conic associative
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by Cor. 18.15. Furthermore, for every field K ∈ k-alg, the decomposition
(nC)K � (nB)K ⊥ (−µK)(nB)K combines with the non-degeneracy of (nC)K

to show that (nB)K is non-degenerate as well and µK , 0. Hence B is a compo-
sition algebra, and specializing K = k(p) for all p ∈ Spec(k) implies µ ∈ k×. It
remains to prove that B is regular. Otherwise, Bp would be a non-regular com-
position algebra over kp, for some p ∈ Spec(k), forcing Cp to be a non-regular
composition algebra as well. But then Cor. 19.11 implies that Cp has rank 1, a
contradiction. □

Before exploiting the Cayley-Dickson construction still further, it is advis-
able to insert a technicality.

19.15 Lemma. The linear trace of a regular composition algebra is surjec-
tive. Up to isomorphism, the only composition algebra over k having trivial
conjugation is k itself.

Proof For the first part, we combine regularity of the bilinear trace with uni-
modularity of the identity to find an element of trace 1 in C. For the second part,
we let C be a composition algebra over k with trivial conjugation. Localizing if
necessary, we may assume by Cor. 19.11 that C is regular. Then the assertion
follows from the first part combined with Prop. 16.7 and Exc. 16.27. □

Our next aim will be to show that, under suitable conditions on k, all com-
position algebras arise from composition algebras of rank 2 by means of the
Cayley-Dickson process. For this purpose, we return to the setting of LG rings
from 11.20.

19.16 Theorem. Let k be an LG ring and C a composition algebra of rank r
over k.

(a) If B ⊆ C is a regular composition subalgebra of rank s < r, there exists
a unit µ ∈ k× such that the inclusion B ↪→ C extends to an embedding
Cay(B, µ)→ C.

(b) If r > 1, then C contains a regular composition subalgebra of rank 2.

Proof (a) Since nC is regular on B, Lemma 11.10 yields an orthogonal split-
ting C = B ⊥ B⊥, and the assumption s < r implies that (B⊥, nC |B⊥ ) is a quad-
ratic space over k having B⊥p , {0} for all p ∈ Spec(k). Thus, by Lemma 11.26,
there exists an element l ∈ B⊥ satisfying µ := −nC(l) ∈ k×. Now Cor. 18.9
implies (a).

(b) Prop. 19.8 shows that the existence of such a rank 2 subalgebra follows
from the existence of u ∈ C such that tC(u)2 − 4nC(u) ∈ k×. Because C has
constant rank r and k is LG, C is a free module (Prop. 11.24) and the function



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

19 Basic properties of composition algebras 153

u 7→ tC(u)2 − 4nC(u) can be expressed as a polynomial in r variables with
coefficients in k. The definition of LG ring reduces us to verifying that this
polynomial represents a unit when k is a field, i.e., it suffices to prove (b) in the
case where k is a field.

If k is a field of characteristic , 2, then k is a regular composition subalgebra
of C and (a) produces a rank 2 subalgebra, which is regular by Thm. 19.14.

Finally, suppose k is a field of characteristic = 2. Since C is regular, there is
a u ∈ C with tC(u) = 1, so tC(u)2 − 4nC(u) = 1 ∈ k×. □

19.17 Corollary. Every composition algebra of rank > 1 over an LG ring
arises from a composition algebra of rank 2, and even from the base ring itself
if 2 is a unit, by an application of the Cayley-Dickson process. □

The preceding theorem has important consequences also in the case when
the base ring is arbitrary.

19.18 Corollary (cf. Legrand [170]). Let C be a composition algebra of rank
r over k and assume k , {0}. Then r = 1, 2, 4 or 8 and the following statements
hold.

(a) If r = 1, then C � k.
(b) If r = 2, then C is commutative associative and has non-trivial conju-

gation.
(c) If r = 4, then C is associative but not commutative.
(d) If r = 8, then C is alternative but not associative.

Proof We conclude from Cor. 19.17 that r = 2s is a power of 2. Localizing
whenever necessary, (a)–(d) now follow by a straightforward combined appli-
cation of Cor. 19.11, Lemma 19.15 and Thms. 19.14, 19.16, 18.14. Finally,
Thm. 19.13 and Cor. 18.15 show that s > 3 is impossible. □

Composition algebras of rank 1 are of course trivial. We conclude this sec-
tion by taking a closer look at the remaining cases collected in Cor. 19.18.

19.19 Quadratic étale algebras. Let D be a unital commutative associative k-
algebra that is finitely generated projective as a k-module. Then the following
conditions are easily seen (and well known) to be equivalent.

(i) For all maximal ideals m ⊆ k, the algebra D(m) over the field k(m) =
k/mmay be written as a (finite) direct product of (finite) separable field
extensions.

(ii) For all prime ideals p ⊆ k, the k(p)-algebra D(p) may be written as a
(finite) direct product of (finite) separable field extensions.
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(iii) The bilinear trace D × D → k, (x, y) 7→ tr(Lxy), L being the left multi-
plication of D, is a regular symmetric bilinear form.

If these conditions are fulfilled, D is said to be finite étale (or separable) over
k. If, in addition, D has rank 2 as a finitely generated projective k-module,
we speak of a quadratic étale k-algebra. Comparing (iii) with (16.12.5), 16.4
and Cor. 19.18, we see that being a quadratic étale k-algebra and a composi-
tion algebra over k of rank 2 are equivalent notions; therefore these terms will
henceforth be used interchangeably.

Typical examples of quadratic étale k-algebras arise as follows.

(iv) Let λ ∈ k and D := k[t]/(t2 − t + λ) = k[u], where u, the canonical
image of t in D, has trace 1 and norm λ. Then D is free of rank 2 as
a k-module, with basis 1D, u, hence a quadratic k-algebra whose norm
satisfies nD(α1D + βu) = α2 + αβ + λβ2 for all α, β ∈ k. By Prop. 19.8,
the algebra D is quadratic étale if and only if 1 − 4λ ∈ k×.

If k is a field of characteristic 2, then the map λ 7→ k[t]/(t2 − t + λ)
defines a bijection

k/{α2 − α | α ∈ k}
∼
−→

{
isomorphism classes of
quadratic étale k-algebras

}
.

This is part of the theory of Artin-Schreier extensions as in [271, Tag
09I7].

(v) If 2 ∈ k×, the Cayley-Dickson construction D := Cay(k, µ), µ ∈ k,
yields a quadratic algebra over k with norm nD � ⟨1,−µ⟩quad in the
sense of 11.7. Moreover, D is quadratic étale if and only if µ ∈ k×.

If k is a field of characteristic , 2, then the map µ 7→ Cay(k, µ) =
k[t]/(t2 − µ) defines a bijection

k×/k×2 ∼
−→

{
isomorphism classes of
quadratic étale k-algebras

}
.

This is part of the theory of Kummer extensions as in [271, Tag 09I6].

The most prominent examples of quadratic étale algebras are

(vi) the conic k-algebra D := k × k of Example 16.2 (d), whose norm
nD : D → k defined by nD((α, β)) = αβ for α, β ∈ k is binary split
hyperbolic, hence regular; we call D the split quadratic étale k-algebra
or the split composition algebra of rank 2 over k;

(vii) the complex numbers C = Cay(R,−1) (18.10) over the field R of real
numbers.

https://stacks.math.columbia.edu/tag/09I7
https://stacks.math.columbia.edu/tag/09I7
https://stacks.math.columbia.edu/tag/09I6
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19.20 Quaternion algebras. Quaternion algebras over k are defined as com-
position algebras of rank 4. By Cor. 19.18, they are associative but not com-
mutative. Typical examples arise from the Cayley-Dickson construction as fol-
lows:

(i) B = Cay(D, µ), D a quadratic étale k-algebra and µ ∈ k×, by Thm. 19.14
is a quaternion algebra over k with norm

nB = nD ⊥ (−µ)nD = nD ⊗ ⟨1,−µ⟩.

If k is an LG ring, then every quaternion k-algebra is of this form by
Cor. 19.17.

(ii) More specifically, if 2 ∈ k×, then B = Cay(k; µ1, µ2), µ1, µ2 ∈ k×, is a
quaternion algebra over k with norm

nB = ⟨1,−µ1,−µ2, µ1µ2⟩quad (1)

The most prominent examples of quaternion algebras are provided by

(iii) the algebra Mat2(k) of 2-by-2 matrices over k whose norm is given by
the determinant: indeed, det : Mat2(k) → k is a quadratic form that
permits composition and is isometric to 2h, the orthogonal sum of two
copies of the split hyperbolic plane, hence regular. We call Mat2(k) the
split quaternion algebra over k;

(iv) the Hamiltonian quaternions H = Cay(R;−1,−1) (18.10) over the field
R of real numbers as defined in 1.11.

But note that the Hurwitz quaternions of Thm. 4.2, though a pre-composition
algebra over Z (19.2), are not a quaternion algebra since they have discriminant
4. They belong to the class of algebras known as orders, see for example [291].

19.21 Remark. A quaternion algebra in our sense is the same thing as an Azu-
maya algebra of rank 4 as in books such as Knus-Ojanguren [158] and Knus
[157], see Exc. 19.32(b) and [157, p. 51]. We will return to Azumaya algebras
as a subject in 42.6.

19.22 Octonion algebras. Octonion algebras over k are defined as composi-
tion algebras of rank 8. By Cor. 19.18, they are alternative but not associative.
Typical examples arise again from the Cayley-Dickson construction:

(i) C = Cay(B, µ), B a quaternion algebra over k, µ ∈ k×, by Thm. 19.14 is
an octonion algebra over k with norm

nC � nB ⊥ (−µ)nB � nB ⊗ ⟨1,−µ⟩.
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(ii) C = Cay(D; µ1, µ2), D a quadratic étale k-algebra and µ1, µ2 ∈ k×, is an
octonion algebra with norm

nC = nD ⊥ (−µ1)nD ⊥ (−µ2)nD ⊥ (µ1µ2)nD = nD⊗⟨1,−µ1,−µ2, µ1µ2⟩.

If k is an LG ring, then every octonion k-algebra is of this form by
Cor. 19.17.

(iii) If 2 ∈ k×, then C = Cay(k; µ1, µ2, µ3), with µ1, µ2, µ3 ∈ k×, is an octo-
nion algebra over k, whose norm is given by norm

nC = ⟨1,−µ1,−µ2, µ1µ2,−µ3, µ1µ3, µ2µ3,−µ1µ2µ3⟩quad (1)

The most prominent example of an octonion algebra is provided by

(iv) the Graves-Cayley octonions O = Cay(R;−1,−1,−1) (18.10) over the
field R of real numbers as defined in 1.5.

In a more arithmetic vein,

(v) the Dickson-Coxeter octonions of Thm. 4.5 form an octonion alge-
bra over the ring of rational integers. Since they are indecomposable
as an integral quadratic lattice (cf. 4.6), they provide an example of
an octonion algebra that cannot be obtained from the Cayley-Dickson
construction. For other examples of this remarkable phenomenon, see
Knus-Parimala-Sridharan [159] or Thakur [274].

We are not ready yet to define the notion of a split octonion algebra; this task
has to be postponed to one of the next sections.

19.23 Sedenion algebras. One may continue the preceding examples by con-
sidering C = Cay(B, µ) for an octonion algebra B over k and µ ∈ k×. The re-
sulting algebra is conic (18.4), norm-associative (18.11), and flexible (18.12).
But it is not alternative (18.15), so its norm does not permit composition (19.3).
These algebras are sometimes called sedenion algebras.

19.24 Remark. One could make an analogy between:

• The algebras of rank 2r constructed by the Cayley-Dickson process, which
are associative for r < 3, exceptional for r = 3 (octonions), and no longer
composition algebras for r > 3 (Cor. 19.18).

• The hermitian matrices Herr(O) from 5.2 and §36, which are special for
r < 3 (Exc. 36.10), exceptional for r = 3 (Albert algebras), and no longer
Jordan algebras for r > 3 (Exc. 5.16).
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19.25 Sextonions. Let C be a conic algebra over k that contains a right ideal
I and pick µ ∈ k. The subspace S of Cay(C, µ) consisting of elements of the
form u + v j with u ∈ C and v ∈ I is closed under multiplication and therefore
is itself a conic algebra. It is, for example, alternative or norm-associative if
Cay(C, µ) is.

In the special case where k = R, C = Mat2(k), and I is the set of matrices
with zeros on the bottom row, the algebra S is known as the sextonions. (You
can check that choosing instead the other proper right ideal does not change
the isomorphism class of S .) The algebra S is a multiplicative conic algebra.
However, it is neither a pre-composition algebra nor a composition algebra
because DnS has radical I j := {v j | v ∈ I}.

For more on the sextonions and their relationship to “the Lie algebra e7 1
2
”,

see for example [154], [168], [244], and [295].

Exercises
19.26. Let C be a unital k-algebra and n : C → k a quadratic form such that all the
conditions of 19.1 hold, with the possible exception of (19.1.1). Show that the following
conditions are equivalent.

(i) C is a pre-composition algebra.
(ii) 1C ∈ C is unimodular in the sense of 9.13.
(iii) C is a faithful k-module.

19.27. Let F be a field. Show that a two-dimensional unital F-algebra is precisely one
of the following.

(i) a separable quadratic extension field of F,
(ii) split quadratic étale,
(iii) an inseparable quadratic extension field of F,
(iv) isomorphic to the F-algebra of dual numbers.

Conclude that, if F is perfect of characteristic 2 and C is a conic F-algebra without
nilpotent elements other than 0, then C has dimension at most 2.

19.28. Let F be a field and C a conic F-algebra whose conjugation is an involution
and whose norm is a non-degenerate quadratic form. Prove that (C, ιC) is simple as an
algebra with involution and conclude that C is either simple or split quadratic étale.

19.29. For a conic algebra over a field to be a division algebra it is necessary that its
norm be anisotropic. Show that the converse of this statement does not hold, even in
the finite-dimensional case, by proving Brown’s theorem (Brown [39, Thm. 3]): given
an octonion algebra B over a field of characteristic not 2 and a non-zero scalar µ, the
Cayley-Dickson construction C = Cay(B, µ) = B ⊕ B j is a division algebra if and only
if µ is not the norm of an element in B and −µ is not the norm of a trace zero element
in B. In order to do so, let F be a field of arbitrary characteristic and with B, µ as above
perform the following steps.
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(a) Suppose µ < nB(B×). Show for 0 , xi = ui + vi j ∈ C, ui, vi ∈ B, i = 1, 2 that
x1 x2 = 0 if and only if ui , 0 , vi for i = 1, 2 and the following relations hold.

(i) nB(u1) = −µnB(v1),
(ii) (u1u2)v̄1 = −u1(u2v̄1),
(iii) v2 = −(v1ū2)u−1

1 .
(b) Conclude from (a) that if F has characteristic 2, then C is a division algebra if

and only if its norm is anisotropic.
(c) Suppose char(F) , 2 and B is a division algebra. Then non-zero elements

x, y, z ∈ B satisfy the relation (xy)z = −x(yz) if and only if there is a quaternion
subalgebra A ⊆ B with x, y ∈ A, x ◦ y = 0, z ∈ A⊥.

(d) Now prove Brown’s theorem.
(e) Conclude from (d) that the norm of the real sedenions

S := Cay(O;−1)

is anisotropic but the algebra itself fails to be a division algebra.

Remark. The final statement of (e) follows also from the Bott-Milnor-Kervaire the-
orem recalled in 1.14. For a more precise statement about the zero divisors of S, see
Exc. 23.34 below.

19.30. Frobenius’s theorem for alternative real division algebras. Prove that a finite-
dimensional alternative real division algebra is isomorphic to R,C,H, or O. (Hint:
Exc. 14.9, Exc. 16.21.)
Remark. Frobenius’s actual theorem in [86, §11] was the weaker result that the only
associative real division algebras are R, C, and H.

19.31. Isotopes and the Cayley-Dickson construction. Let B be a multiplicative conic
associative algebra over k, µ ∈ k and p ∈ B×. Prove that the assignment u + v j 7→
p−1up+ v j determines an isomorphism from Cay(B, µ) = B⊕B j onto the unital isotope
Cay(B, µ)p. Conclude for an octonion algebra C over k and p, q ∈ C× that the algebras C
and C(p,q) are isomorphic provided the element pq2 belongs to a quaternion subalgebra
of C.

19.32. Centre and nucleus of quaternion and octonion algebras.

(a) Show for a quadratic k-algebra R and u ∈ R that u − ū is invertible if and only
if R is étale and generated by u. Show further that a quadratic étale k-algebra
D contains an element u with u − ū ∈ D× provided k is LG. Conclude for k
arbitrary that H(D, ιD) = k1D.

(b) Conclude from (a) and Cor. 19.17 that a quaternion algebra over any commu-
tative ring k is central, hence an Azumaya algebra (cf. Knus-Ojanguren [158,
III, §5]). Prove similarly that an octonion algebra C over k satisfies

Nuc(C) = {x ∈ C | xy = yx for all y ∈ C} = k1C .

19.33. Automorphisms of quadratic étale algebras. Let D be a quadratic étale k-algebra.
Prove:

(a) If k is a local ring, then 1D can be extended to a basis (1D, u) of D as a k-module,
for some u ∈ D of trace 1.
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(b) A k-linear map φ : D → D is an automorphism of D if and only if there exists
a decomposition k = k+ × k− of k as a direct product of ideals such that the induced
decompositions

D = D+ × D−, D± := Dk± , φ = φ+ × φ−, φ± := φk±

satisfy φ+ = 1D+ , φ− = ιD− .

19.34. Ideals in composition algebras (Petersson [221, Thm. 4.1]). Let C be a compo-
sition algebra over k and view k ⊆ C as a subalgebra in the natural way. Show that the
assignments

a 7−→ aC, I 7−→ k ∩ I

give inclusion-preserving inverse bijections between the ideals of k and

(i) the ideals of (C, ιC) as an algebra with involution if C is quadratic étale,
(ii) the two-sided ideals of C if C is a quaternion algebra,
(iii) the one-sided ideals of C if C is an octonion algebra.

Show also that (iii) (resp. (ii)) does not hold for quaternion (resp. quadratic étale) alge-
bras.

(Hint: Assume C has constant rank r as a k-module and perform the following steps:
(a) One-sided ideals of octonion algebras are two-sided. (b) Let I ⊆ C be a two-sided
ideal. Then I ∩ k = {0} implies I = {0} provided r > 2 or I is stable under conjugation.
(c) (aC) ∩ k = a for all ideals a ⊆ k. (d) I = (I ∩ k)C for all two-sided ideals I ⊆ C
provided r > 2 or I is stable under conjugation.)
Remark. By [158, Cor. 5.2], (ii) also follows from the fact that quaternion algebras are
Azumaya. Part (iii) has been known for a long time to hold for the Dickson-Coxeter
octonions (Allcock [13], Van der Blij-Springer [286]).

19.35. Elementary Peirce decomposition. Let C be a multiplicative conic alternative
algebra over k. If c ∈ C is an elementary idempotent (cf. Exc. 16.23), put c1 := c,
c2 := 1C − c, Ci j := Ci j(c) for i, j = 1, 2 and show

Cii = kci (i = 1, 2). (1)

Show further for elements

x = α1c1 + x12 + x21 + α2c2, y = β1c1 + y12 + y21 + β2c2, (2)

in C, where αi, βi ∈ k, xi j, yi j ∈ Ci j for i, j = 1, 2, i , j (Excs. 14.12, 16.23), that

nC(x) = α1α2 + nC(x12, x21), (3)
nC(x, y) = α1β2 + α2β1 + nC(x12, y21) + nC(x21, y12), (4)

tC(x) = α1 + α2, (5)
x = α2c1 − x12 − x21 + α1c2. (6)

Moreover, if C is a composition algebra, then the k-modules C12,C21 are in duality to
each other under DnC . Finally, for i, j = 1, 2 distinct, the trilinear form

C3
i j −→ k, (x, y, z) 7−→ tC(xyz),

(cf. (16.13.1)) is alternating.
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19.36. Minimal splitting of quadratic étale algebras. Let D be a quadratic étale k-
algebra.

(a) Prove that the map φ : D ⊗ D
∼
→ D × D defined by

φ(x ⊗ d) := (xd, x̄d)

for x, d ∈ D is an isomorphism of D-algebras. (Hint: For u ∈ D compute
φ(u ⊗ 1D − 1D ⊗ ū) and φ(1D ⊗ u − u ⊗ 1D).)

(b) Conclude from (a) that

σ := 1D ⊗ ιD : D ⊗ D −→ D ⊗ D,

σ′ := φ ◦ σ ◦ φ−1 : D × D −→ D × D

are ιD-semi-linear involutions of D ⊗ D, D × D, respectively, with

σ′((a, b)) = (b̄, ā)

for all a, b ∈ D.

19.37. Quadratic forms permitting composition on quadratic algebras. Let R be a
quadratic algebra over k.

(a) Prove for an idempotent e ∈ R with nR(e) = 0 that

tR ◦ Le : R −→ k, x 7−→ tR(ex)

is a (possibly non-unital) algebra homomorphism.
(b) Conclude from (a) that for idempotents ε ∈ k, e ∈ R with εe = 0, nR(e) = 0, the

quadratic form
q : R −→ k, x 7−→ tR(ex2) + εnR(x)

permits composition.
(c) Let D = k× k be the split quadratic étale k-algebra. Show that a quadratic form

q : D→ k permits composition if and only if there exists an orthogonal system
(ε1, ε2, ε3) of idempotents in k (possibly incomplete) such that

q((α, β)) = ε1α
2 + ε2αβ + ε3β

2 (1)

for all α, β, γ ∈ k
(d) Finally, show that if D is étale, all quadratic forms on D permitting composition

have the form described in (b). (Hint: Reduce to the split case D = k × k by
using (c) and Exc. 19.36.)

19.38. Embeddings into quaternion subalgebras. Let C be an octonion algebra over
an LG ring k and R ⊆ C a quadratic subalgebra. Show that there exists a quaternion
subalgebra of C containing R. (Hint: Show more precisely that there exists an element
b ∈ C making the subalgebra of C generated by R and b a quaternion algebra and reduce
this assertion to the field case by using the LG property.)
Remark. Over fields, the preceding result amounts to [270, Prop. 1.6.4]: every element
of an octonion algebra over a field can be embedded into a quaternion subalgebra.

19.39. Reflections and involutions of composition algebra (cf. Jacobson [132] and
Racine-Zel’manov [245]). Let k be a commutative ring in which 2 is invertible and
C a composition algebra of rank r > 1 over k.
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(a) Let σ be a reflection of C, i.e., an automorphism of order 2. Show that its fixed
algebra Fix(σ) := {x ∈ C | σ(x) = x} ⊆ C is a composition subalgebra of rank
r
2 and that the assignment σ 7→ Fix(σ) determines a bijection from the set of
reflections of C onto the set of composition subalgebras of C having rank r

2 .
Show further that two reflections of C are conjugate under Aut(C) if and only
if their fixed algebras are.

(b) Show that an involution of C commutes with its conjugation. Use this and (a)
to set up a bijective correspondence between the set of involutions of C that are
distinct from its conjugation (resp. the set of their isomorphism classes) and
the set of composition subalgebras of C having rank r

2 (resp. the set of their
conjugacy classes under Aut(C)). Finally, show for an involution τ , ιC of C
that H(C, τ) ⊆ C is a finitely generated projective submodule of rank r

2 + 1.

20 Hermitian forms

Before proceeding with the study of composition algebras, it will be necessary
to insert a few basic facts about hermitian forms over commutative rings that
will be useful not only in the present context but also for cubic Jordan algebras
later on. A systematic account of the subject may be found in Knus [157] or
Hahn-O’Meara [111].

Throughout we let k be an arbitrary commutative ring and (B, τ) an ass-
ociative algebra with involution over k in the sense of 10.1. In particular, B
contains an identity element. We also write x̄ := τ(x) for x ∈ B.

20.1 Passing from left to right modules and conversely. Any left B-module
M may be converted into a right B-module by defining xa := āx for x ∈ M
and a ∈ B. We denote this right B-module by Mτ. The identity of M, viewed
as a map from M to Mτ, will be indicated by x 7→ xτ, so we have (ax)τ = xτā
for all a ∈ B. A B-linear map f : M → N, x 7→ (x) f , of left B-modules may
be viewed as a B-linear map f τ : Mτ → Nτ of right B-modules, so we have
f τ(xτ) = ((x) f )τ for all x ∈ M. The preceding conventions make equally good
sense with left and right modules interchanged. We then have Mττ = M and
xττ = x for any left (right) module M over B and any x ∈ M. Moreover, f ττ = f
for any B-linear map f : M → N of left (right) B-modules.

Writing BB (resp. BB) for B viewed as a left (resp. right) B-module, the map
τ : (BB)τ → BB is a linear bijection of right B-modules. Hence, if a left B-
module is (finitely generated) projective (resp. free), then so is Mτ as a right
B-module, and conversely.

20.2 The twisted dual of a module. Let M be a right B-module. Then the
additive group M• := HomB(M, B) canonically becomes a left B-module if
one defines ax• : M → B by (ax•)(y) := ax•(y) for a ∈ B, x• ∈ M• and y ∈ M.
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Using the formalism of 20.1, we may then convert the left B-module M• into
the right B-module M∗ := M•τ, which we call the τ-twisted dual, or simply the
twisted dual, of M. Note that for B commutative and τ = 1B, the terms “right
B-module” and “left B-module” may be used interchangeably, and the twisted
dual of M agrees with the ordinary dual as defined in 9.11. On the other hand,
if (B still being commutative) τ is not the identity, the twisted dual and the
ordinary dual are different notions. However, it will always be clear from the
context which one of the two we have in mind.

For any right B-module M, we have its canonical pairing

capM : M∗ × M −→ B, (x∗, y) 7−→ ⟨x∗, y⟩ := x∗(y), (1)

which is anti-linear in the first variable and linear in the second:

⟨x∗a, yb⟩ = ā⟨x∗, y⟩b (a, b ∈ B, x∗ ∈ M∗, y ∈ M). (2)

If f : M → N is a linear map of right B-modules, then the assignment y∗ 7→
y∗ ◦ f defines a linear map f ∗ : N∗ → M∗, called the adjoint of f because it is
characterized by the relation

⟨ f ∗(y∗), x⟩ = ⟨y∗, f (x)⟩ (y∗ ∈ N∗, x ∈ M). (3)

In this way, we obtain a contravariant additive functor from the category of
right B-modules to itself.

20.3 Sesquilinear forms. By a sesquilinear form over B we mean a bi-additive
map h : M × N → B, where M,N are right B-modules such that h(xa, yb) =
āh(x, y)b for all a, b ∈ B and all x ∈ M, y ∈ N. In this case, we define the
adjoint map or simply the adjoint of h as the B-linear map

φh : M → N∗, x 7−→ φh(x) := h(x,−).

Conversely, given a B-linear map φ : M → N∗, we obtain a sesquilinear form
hφ : M × N → B via hφ(x, y) := ⟨φ(x), y⟩ for x ∈ M, y ∈ N, and the two
constructions are inverse to each other.

As an example, let M be any right B-module. Then the canonical pairing of
(20.2.1) by (20.2.2) is a sesquilinear form over B whose adjoint map M∗ → M∗

is the identity on M∗.

20.4 Base change. For R ∈ k-alg, we can form the base change (B, τ)R =

(BR, τR), which is an associative algebra with involution over R, and for a right
B-module M, the R-module MR = M ⊗ R becomes a right BR-module in a
natural way. If f : M → N is a homomorphism of right B-modules, then its
R-linear extension fR : MR → NR is in fact one of right BR-modules.

For x∗ ∈ M∗, we clearly have x∗ ⊗ 1R ∈ (MR)∗, and the assignment x∗ 7→
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x∗ ⊗ 1R gives a k-linear map M∗ → (MR)∗, which in turn induces an R-linear
map

ΦM,R : (M∗)R → (MR)∗, x∗ ⊗ r 7−→ r(x∗ ⊗ 1R).

This map is, in fact, a homomorphism of right BR-modules and will henceforth
be referred to as the canonical homomorphism from (M∗)R to (MR)∗.

Any sesquilinear form h : M×N → B over B yields canonically an extended
sesquilinear form hR : MR×NR → BR over BR, called the base change or scalar
extension of h from k to R, such that the diagram

MR
(φh)R //

φ(hR ) ''

(N∗)R

ΦN,R

��
(NR)∗

(1)

commutes.

20.5 Sesquilinear modules. By a sesquilinear module over B, we mean a pair
(M, h) consisting of a right B-module M and a sesquilinear form h : M ×M →
B. Given two sesquilinear modules (M, h) and (M′, h′) over B, a homomor-
phism from (M, h) to (M′, h′) (or from h to h′) is a B-linear map f : M → M′

preserving sesquilinear forms in the sense that h′ ◦ ( f × f ) = h. In this way
one obtains the category of sesquilinear modules over B. Isomorphisms in this
category are called isometries.

20.6 Sesquilinear forms and matrices. Let p, q be positive integers. Viewing
M := Bp, N := Bq as free right B-modules in the natural way, every matrix
T ∈ Matp,q(B) determines a sesquilinear form

⟨T ⟩sesq : Bp × Bq −→ B, (x, y) 7−→ x̄TTy,

and every sesquilinear form on Bp × Bq can be written uniquely in this way.
Identifying a vector x ∈ Bq with the linear form Bq → B, y 7→ x̄Ty, we obtain
an identification Bq = Bq∗. The adjoint of ⟨T ⟩sesq then agrees with the linear
map T̄ T : Bp → Bq.

20.7 The double dual. Given a right B-module M, we obtain a natural B-linear
map canM : M → M∗∗ determined by the condition

canM(x)(y∗) := ⟨y∗, x⟩ (x ∈ M, y∗ ∈ M∗).

In important cases, canM is an isomorphism. For example, if M = Bn, then
Bn∗∗ = Bn and canM = 1Bn under the identifications of 20.6. Now let h : M ×
M → B be a sesquilinear form. Then so is h∗ : M × M → B defined by
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h∗(x, y) := h(y, x) for x, y ∈ M, and the adjoints of h, h∗ are related to one
another by the commutative diagram

M
φh∗ //

canM

��

M∗

M∗∗
(φh)∗

<<

Hence if canM is bijective, allowing us to identify M = M∗∗ accordingly, the
adjoint of h∗ agrees with the adjoint of the adjoint of h.

20.8 Hermitian forms. By a hermitian form on a right B-module M we mean
a sesquilinear form h : M ×M → B satisfying h(y, x) = h(x, y) for all x, y ∈ M;
this is equivalent to h = h∗. For T ∈ Matn(B), we obtain (⟨T ⟩sesq)∗ = ⟨T̄ T⟩sesq,
so ⟨T ⟩sesq is a hermitian form if and only if T = T̄ T is a hermitian matrix. By
a hermitian module we mean a pair (M, h) consisting of a right B-module M
and a hermitian form h : M × M → B. We view hermitian modules as a full
subcategory of sesquilinear modules.

21 Ternary hermitian spaces

The Cayley-Dickson construction discussed in some of the preceding sections
is not an appropriate tool when dealing with octonion algebras that fail to con-
tain any quaternion subalgebras. In the sequel, we therefore propose a different
method of constructing composition algebras that is due to Thakur [274] over
rings where 2 is invertible and has been sketched in [230, 3.8] over fields of ar-
bitrary characteristic; if the characteristic is not two, the construction is already
implicit in Jacobson [132, pp. 15,16]. The main constituents of this construc-
tion are quadratic étale algebras and ternary hermitian spaces. They always
lead to octonion algebras and, conversely, every octonion algebra containing a
quadratic étale subalgebra arises in this manner; in particular, this holds true for
the Graves-Cayley octonions over the reals as defined in 1.5 and for arbitrary
octonion algebras over any commutative ring that contains 2 in its Jacobson
radical (Prop. 21.17 below). A slight generalization of our method leads to a
similar construction of quaternion algebras due to Pumplün [241] provided 2
is invertible in the base ring. Both constructions, the octonionic as well as the
quaternionic one, will be treated here in a unified fashion.

In this section, we fix a composition algebra D of rank r ≤ 2 over a nonzero
commutative ring k. By Cor. 19.18, D is commutative associative and is en-
dowed with its canonical involution, which we abbreviate as ι := ιD, a 7→ ā.
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The set-up of the preceding section may thus be specialized to (B, τ) := (D, ι).
By Exc. 19.32, we can identify k = H(D, ι) as a unital subalgebra of D, and
this identification is compatible with base change.

21.1 Some useful identifications. Fix R ∈ k-alg and let M be a right D-
module. In analogy to (12.27.1), (12.27.2), we obtain a natural identification

MR = M ⊗ R = M ⊗D (D ⊗ R) = MDR (1)

as right DR-modules such that

x ⊗ r = x ⊗D (1D ⊗ r) and x ⊗D (a ⊗ r) = (xa) ⊗ r (2)

for x ∈ M, r ∈ R, a ∈ D, ditto for left D-modules. It follows that, if M is
finitely generated projective over D, then so is MR over DR. Moreover, M is a
finitely generated projective k-module.

Now suppose that M is a left D-module. Since Mι = M as k-modules, we
obtain a canonical identification (Mι)R = (MR)ιR as right DR-modules, and (1),
(2) yield an identification (Mι)DR = (MDR )ιDR as right DR-modules matching
x ⊗D (a ⊗ r) in (Mι)DR with x ⊗D (ā ⊗ r) in (MDR )ιDR , for x ∈ M, a ∈ D, r ∈ R.

21.2 Lemma. Let M be a finitely generated projective right D-module and
R ∈ k-alg. Then the canonical homomorphism

ΦM,R : (M∗)R −→ (MR)∗, x∗ ⊗ r 7−→ r(x∗ ⊗ 1R),

is an isomorphism of right DR-modules. Identifying (M∗)R = (MR)∗ =: M∗R by
means of this isomorphism, we have ⟨x∗, x⟩R = ⟨x∗R, xR⟩ for all x ∈ M, x∗ ∈ M∗,
in other words, the canonical pairing M∗R × MR → DR is the R-hermitian
extension of the canonical pairing M∗ × M → D.

Proof The preceding identifications combined with 20.2, 20.4 yield (M∗)R =

(M•ι)R = ((M•)R)ιR = ((M•)DR )ιR and (MR)∗ = ((MDR )•)ιR . From Lemma 9.15
we derive an isomorphism φ : (M•)DR

∼
→ (MDR )• of left DR-modules, which

may be viewed as an isomorphism

φιR : (M∗)R = ((M•)DR )ιR
∼
−→ ((MDR )•)ιR = (MR)∗

of right DR-modules, and one checks that φιR agrees with ΦM,R. □

21.3 Regular sesquilinear forms. A sesquilinear form h : M×M → D over D
with a right D-module M is said to be regular if M is finitely generated projec-
tive and the adjoint φh : M → M∗ is an isomorphism. Combining (20.4.1) with
Lemma 21.2 we see that the property of a sesquilinear form to be regular is
stable under base change. By a sesquilinear (resp. hermitian) space over D we
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mean a sesquilinear (resp. hermitian) module (M, h) such that the sesquilinear
(resp. hermitian) form h : M × M → D is regular. Given a positive integer n,
we speak of a hermitian space of rank n if the underlying module has rank n
as a finitely generated projective right D-module.

Our next aim will be to discuss exterior powers of sesquilinear forms over
D. We begin with a reminder.

21.4 Reminder: exterior powers under base change. Following [28, III.7,
Prop. 8], taking exterior powers is compatible with arbitrary base change. More
precisely, let M be a k-module, n ∈ N and R ∈ k-alg. Then there is a natural
identification (∧n

(M)
)
R =

∧n
(MR) (1)

as R-modules such that

(x1 ∧ · · · ∧ xn) ⊗ r = r(x1R ∧ · · · ∧ xnR), (2)

(x1 ⊗ r1) ∧ · · · ∧ (xn ⊗ rn) = (x1 ∧ · · · ∧ xn) ⊗ (r1 · · · rn) (3)

for all x1, . . . , xn ∈ M, r, r1, . . . , rn ∈ R. Under this identification, (
∧n f )R =∧n( fR) for all k-linear maps f : M → N.

21.5 Exterior powers of sesquilinear forms. Let M,N be right D-modules
and h : M × N → D a sesquilinear form. Given a positive integer n, we may
pass to the n-th exterior power over D, i.e., to∧n

h :
∧n

M ×
∧n

N −→ D

(well) defined by

(
∧n

h)(x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn) = det
((

h(xi, y j)
)
1≤i, j≤n

)
(1)

for xi ∈ M, y j ∈ N, 1 ≤ i, j ≤ n. We call
∧n h, which is again a sesquilinear

form over D, the n-th exterior power of h. Passing to the adjoint maps, we
conclude that the diagram

∧n M
∧n φh //

φ∧n h ((

∧n(N∗)

φ∧n capN

��
(
∧n N)∗

(2)

commutes, where capN is defined as in 20.2. Note that not only
∧n φh (for

trivial reasons) and φ∧n h by Exc. 21.20 below but also φ∧n cap(N) is compatible
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with base change: for R ∈ k-alg, we obtain a commutative diagram(∧n(N∗)
)
R =

∧n (
(N∗)R

) ∧n(ΦN,R)

� //

(φ∧n capN )R

��

∧n (
(NR)∗

)
φ∧n cap(NR)

��(
(
∧n N)∗

)
R Φ∧n (N),R

� // ((∧n N)R
)∗
=

(∧n(NR)
)∗
.

(3)

21.6 Lemma. If h : M × M → D is a regular sesquilinear form over D, then
so is its n-th exterior power, for any positive integer n.

Proof The claim is that the diagonal arrow in (21.5.2) is an isomorphism.
Because the horizontal arrow is an isomorphism, it suffices to show that the
vertical arrow in (21.5.2) is an isomorphism. By (21.5.3), the assertion is local
on k, so Exc. 21.21 (a) below allows us to assume that M is free of finite rank
p ≥ n over D. Let (ei)1≤i≤p be a D-basis of M and (e∗i )1≤i≤p the corresponding
dual basis of M∗. Then

(e j1 ∧ · · · ∧ e jn )1≤ j1<···< jn≤p (1)

is a D-basis of
∧n M, while

(e∗i1 ∧ · · · ∧ e∗in )1≤i1<···<in≤p (2)

is a D-basis of
∧n(M∗) such that(

φ∧n capN
(e∗i1 ∧ · · · ∧ e∗in )

)
(e j1 ∧ · · · ∧ e jn ) = det

(
(⟨e∗iλ , e jµ⟩)1≤λ,µ≤n

)
,

which is 1 for (i1, . . . , in) = ( j1, . . . , jn) and 0 otherwise. Thus φ∧n capM
maps

the D-basis (2) of
∧n(M∗) onto the dual of the basis (1) of

∧n M, hence must
be an isomorphism. □

21.7 Remark. Let M be a finitely generated projective right D-module and n a
positive integer. Then the preceding result (or its proof) yields an identification∧n(M∗) = (

∧n M)∗ such that the canonical pairing∧n
(M∗) ×

∧n
M = (

∧n
M)∗ ×

∧n
M −→ D

is given by

⟨x∗1 ∧ · · · ∧ x∗n, y1 ∧ · · · ∧ yn⟩ = det
(
(⟨x∗i , y j⟩)1≤i, j≤n

)
for x∗1, . . . , x

∗
n ∈ M∗, y1, . . . , yn ∈ M.

21.8 Determinants. Let (M, h) be a hermitian space of rank n over D. An
isomorphism ∆ :

∧n M
∼
→ D may not exist but if it does, we follow Asok et al

[16] and call it an orientation of M; it is unique up to an invertible factor in D.
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Given an orientation ∆ :
∧n M

∼
→ D, there exists a unique element det∆(h) ∈

k×, called the ∆-determinant of (M, h), or just h, such that ∆ :
∧n(M, h)

∼
→

(D, ⟨det∆(h)⟩sesq) is an isometry. In other words, det∆(h) is the unique invertible
element in k such that

det∆(h)∆(x1 ∧ · · · ∧ xn)∆(y1 ∧ · · · ∧ yn) = det
((

h(xi, y j)
)
1≤i, j≤n

)
(1)

for all xi, y j ∈ M, 1 ≤ i, j ≤ n. The ∆-determinant changes with ∆ according to
the rule

deta∆(h) = nD(a)−1 det∆(h) (a ∈ D×). (2)

If M is free of rank n as a right D-module with basis (ei) and T = (h(ei, e j)) ∈
GLn(D) stands for the corresponding hermitian matrix, then det∆(h) = det(T ),
where ∆ :

∧n M
∼
→ D is the orientation normalized by ∆(e1 ∧ · · · ∧ en) = 1.

21.9 Ternary hermitian spaces and the hermitian vector product. Let (M, h)
be a hermitian space over D which is ternary in the sense that it has rank n = 3
and suppose ∆ :

∧3 M
∼
→ D is an orientation of M. By regularity of h, there

exists a unique map M × M → M, (x, y) 7→ x ×h,∆ y, such that

h(x ×h,∆ y, z) = ∆(x ∧ y ∧ z). (x, y, z ∈ M)

We call ×∆,h the hermitian vector product induced by h and ∆. It is obviously
bi-additive, alternating and anti-linear in both arguments. Moreover, the ex-
pression h(x ×∆,h y, z) remains unaffected by a cyclic change of variables and
vanishes if two of them coincide. We have x×h,a∆ y = (x×h,∆ y)ā for all a ∈ D×,
and the hermitian vector product is stable under base change: ∆R is an orien-
tation of MR over DR for all R ∈ k-alg and (x ×h,∆ y)R = xR ×hR,∆R yR for all
x, y ∈ D.

21.10 Example. In keeping with the previous conventions, we regard D3 as
a free right D-module of rank 3 that is equipped with the canonical basis
(e1, e2, e3) of ordinary unit vectors, and denote by x×y the usual vector product
of x, y ∈ D3, as defined 1.1 for the special case k = R, D = C. It satisfies the
Grassmann identity (1.1.3), i.e.,

(x × y) × z = y(zTx) − x(zTy), (1)

but also

(S x) × (S y) = (S ♯)T(x × y) (2)

for all x, y, z ∈ D3 and all S ∈ Mat3(D), where S ♯ ∈ Mat3(D) stands for the
usual adjoint of S in the sense of linear algebra.

Now suppose T ∈ GL3(D) is a hermitian matrix and consider the ternary
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hermitian space (D3, ⟨T ⟩sesq). Writing ∆0 :
∧3 D3 ∼

→ D for the ordinary deter-
minant, i.e., for the orientation normalized by ∆0(e1 ∧ e2 ∧ e3) = 1, any other
volume element on D3 has the form ∆ = a∆0 for some a ∈ D×, and it is easily
checked that the hermitian vector product induced by ⟨T ⟩sesq and ∆ relates to
the ordinary one according to the formula

x ×⟨T ⟩sesq,∆ y = T−1(x̄ × ȳ)ā = (T x × Ty) det(T )−1ā. (3)

21.11 Proposition. Let (M, h) be a ternary hermitian space over D and sup-
pose ∆ :

∧3 M
∼
→ D is an orientation of M. Then the hermitian vector product

induced by h and ∆ satisfies the hermitian Grassmann identity

(x ×h,∆ y) ×h,∆ z =
(
yh(z, x) − xh(z, y)

)
det∆(h)−1 (x, y, z ∈ M). (1)

Proof The question is local on k, so by Exc. 21.21 (a) we may assume M =
D3, h = ⟨T ⟩sesq, ∆ = a∆0 as in Example 21.10. Then the assertion follows from
(21.8.2), (21.10.1), (21.10.3) by a straightforward computation. □

We will now be able to derive the first main result of this section. It turns out
to be a direct generalization of the construction leading to the Graves-Cayley
octonions (1.5) and to Thm. 1.8.

21.12 Theorem (Thakur [274]). Let D be a regular composition algebra of
rank r ≤ 2 over k, (M, h) a ternary hermitian space over D and suppose
∆ :

∧3 M
∼
→ D is an orientation of M satisfying det∆(h) = 1. Then the k-

module D×M becomes a composition algebra over k under the multiplication

(a, x)(b, y) :=
(
ab − h(x, y), ya + xb + x ×h,∆ y

)
(1)

for a, b ∈ D, x, y ∈ M. Identifying k ⊆ D canonically, this composition algebra,
written as

C = Ter(D; M, h,∆),

has unit element, norm, linearized norm, trace, conjugation given by

1C = (1D, 0), (2)

nC
(
(a, x)

)
= nD(a) + h(x, x), (3)

nC
(
(a, x), (b, y)

)
= nD(a, b) + tD

(
h(x, y)

)
, (4)

tC
(
(a, x)

)
= tD(a), (5)

(a, x) = (ā,−x) (6)

for all a, b ∈ D, x, y ∈ M.
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Proof C is clearly a k-algebra with unit element given by (2), and it follows
from Exc. 21.21 below that the quadratic form nC : C → k as defined in (3),
which trivially satisfies (4), is regular. Therefore the theorem will follow once
we have shown that nC permits composition relative to the multiplication (1).
Accordingly, using standard properties of the hermitian vector product (21.9),
we expand

nC
(
(a, x)(b, y)

)
= nC

(
ab − h(x, y), yā + xb + x ×h,∆ y

)
= nD(ab) − nD

(
ab, h(x, y)

)
+ nD

(
h(x, y)

)
+ h(yā + xb + x ×h,∆ y, yā + xb + x ×h,∆ y)

= nD(a)nD(b) − nD
(
ab, h(x, y)

)
+ nD

(
h(x, y)

)
+ nD(a)h(y, y) + abh(y, x) + ā b̄h(x, y)

+ nD(b)h(x, x) + h(x ×h,∆ y, x ×h,∆ y).

Here abh(y, x) + ā b̄h(x, y) = nD(ab, h(x, y)) by (16.5.4), (16.12.5), and the
hermitian Grassmann identity (21.11.1) yields

h(x ×h,∆ y, x ×h,∆ y) = h
(
y, (x ×h,∆ y) ×h,∆ x

)
= h

(
y, yh(x, x) − xh(x, y)

)
= h(x, x)h(y, y) − nD

(
h(x, y)

)
.

Hence nC does indeed permit composition relative to (1) and the proof is com-
plete. □

21.13 The ternary hermitian construction. The composition algebra

C = Ter(D; M, h,∆)

obtained in Theorem 21.12 is said to arise from the parameters involved by
means of the ternary hermitian construction. Note that C has rank 4r. After
the canonical identification a = (a, 0) for a ∈ D, the composition algebra
C contains D as a composition subalgebra. The entire construction, which is
clearly stable under base change, will now be reversed by showing that any
composition algebra containing D as a composition subalgebra arises from D
by means of the ternary hermitian construction.

21.14 Theorem (Thakur [274]). Let C be a composition algebra of rank 4r
over k containing D as a regular composition subalgebra of rank r ≤ 2.
Then there exist a ternary hermitian space (M, h) over D and an orientation
∆ :

∧3 M
∼
→ D satisfying det∆(h) = 1 such that the inclusion D ↪→ C extends

to an isomorphism from Ter(D; M, h,∆) onto C.
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Proof Identifying k = k1C ⊆ C throughout, we proceed in several steps.

1◦. Since nC is regular on D, Lemma 11.10 yields a decomposition

C = D ⊕ M, M = D⊥ (1)

as a direct sum of k-submodules. Associativity of the norm ((16.12.3) and
(16.12.4)) implies MD ⊆ M and we claim that M becomes a right D-module in
this way. Localizing if necessary we may assume that D is generated by a sin-
gle element (Exc. 19.33 (a)), in which case the assertion follows immediately
from the alternative law. We also observe M ⊆ Ker(tC) and

ax = xā (x ∈ M, a ∈ D) (2)

since ax + xa = tD(a)x by (16.5.5) and (1).

2◦. Next we define k-bilinear maps h : M × M → D, ×D : M × M → M by

xy = −h(x, y) + x ×D y, h(x, y) ∈ D, x ×D y ∈ M, (3)

for all x, y ∈ M. From x2 = −nC(x) we conclude

nC(x) = h(x, x) (4)

and that the map ×D is alternating. Moreover, xy = y x = (−y)(−x) = yx yields

h(x, y) = h(y, x), (5)

hence

nC(x, y) = tD
(
h(x, y)

)
. (6)

In particular, h(x, y) = 0 for all y ∈ M implies x = 0.

3◦. We claim that (M, h) is a hermitian module over D. By (5), it suffices to
show that h is linear in the second variable. Using (16.12.3), (16.12.4) repeat-
edly and observing that M is a right D-module by 1◦, we obtain nC(x(yb), a) =
nC((xy)b, a) for all x, y ∈ M, a, b ∈ D, and (3) in conjunction with regularity of
nD leads to the required conclusion.

4◦. Consider the k-trilinear map δ : M3 → D defined by δ(x, y, z) = h(x ×D

y, z), which by 3◦ is D-linear in z. We clearly have δ(x, x, z) = 0, but also
δ(x, y, y) = 0 since (2), (3) imply (x×D y)y = h(x, y)y+xy2 = yh(x, y)−nC(y)x ∈
M. Hence δ is alternating, forcing it to be in fact D-trilinear, and we obtain a
unique D-linear map ∆ :

∧3 M → D satisfying

∆(x ∧ y ∧ z) = h(x ×D y, z). (x, y, z ∈ M). (7)

5◦. We now show that (M, h) is a ternary hermitian space over D, that
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∆ :
∧3 M

∼
→ D is an orientation of M satisfying det∆(h) = 1 and that ×D is

the hermitian vector product induced by h and ∆. The final statement follows
immediately from (7) as soon as the preceding ones have been established. To
do so, we may assume that k is a local ring, forcing C to arise from D by a
twofold application of the Cayley-Dickson construction (Cor. 19.17): there are
units µ1, µ2 ∈ k satisfying

C = Cay(D; µ1, µ2) = D ⊕ D j1 ⊕ D j2 ⊕ D j3,

where j1 ∈ D⊥ = M satisfies nC( j1) = −µ1, j2 ∈ (D ⊕ D j1)⊥ satisfies nC( j2) =
−µ2, and j3 = j1 j2. Hence, by (1),

M = j1D ⊕ j2D ⊕ j3D.

More precisely, (3), (4) and the relations j1 j2 = j3 ∈ M, j1 j3 = µ1 j2 ∈ M,
j3 j2 = µ2 j1 ∈ M show that ( j1, j2, j3) is a basis of M over D with respect
to which the matrix of h has the form diag(−µ1,−µ2, µ1µ2) ∈ GL3(D). Hence
(M, h) is a ternary hermitian space over D; moreover, j1×D j2 = j3 by (3). Thus
(7) gives ∆( j1 ∧ j2 ∧ j3) = h( j3, j3) = µ1µ2 ∈ k×, so ∆ is indeed an orientation
of M. The remaining assertion det∆(h) = 1 now follows from (21.8.1).

6◦. In view of 5◦ we can form the composition algebra C′ := Ter(D; V, h,∆)
and our construction yields a natural identification C = C′ matching D with
the first summand of C′. □

21.15 Corollary (Pumplün [241]). If 2 ∈ k×, then every quaternion algebra
over k has the form Ter(k; M, β,∆), where (M, β) is a ternary symmetric bilin-
ear space over k and ∆ is an orientation of M satisfying det∆(β) = 1. Con-
versely, every such algebra is a quaternion algebra. □

21.16 Example. Working over the field k = R of real numbers, we have

O = Ter(C;C3, ⟨13⟩sesq,∆0), H = Ter(R;R3, ⟨13⟩,∆0),

where ∆0 is the normalized orientation of 21.10.

The Dickson-Coxeter octonions and the examples in the papers of Knus-
Parimala-Sridharan [159] and Thakur [274] show that there are octonion alge-
bras to which the ternary hermitian construction does not apply since they do
not contain any quadratic étale subalgebras. On the other hand, if 2 ∈ k is suffi-
ciently far removed from being a unit, then quadratic étale subalgebras always
exist.

21.17 Proposition. Let C be a composition algebra of rank r > 1 over k
and assume 2 ∈ k is contained in the Jacobson radical of k (which holds, for
example, if 2 = 0 in k). Then C contains quadratic étale subalgebras.
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Proof By Lemma 19.15, C contains an element u of trace 1. Then tC(u)2 −

4nC(u) = 1 − 4nC(u) ∈ k× by hypothesis, so k[u] ⊆ C is a quadratic étale
subalgebra by Proposition 19.8. □

21.18 Zorn vector matrices. Let D := k × k be the split quadratic étale k-
algebra. Then ι = ιD is the exchange involution, and the free right D-module
D3 = k3 × k3 is endowed with the normalized orientation ∆ :

∧3 D3 ∼
→ D as in

21.8 and with the unit hermitian form h := ⟨13⟩sesq, which satisfies det∆(h) = 1.
Hence we may form the octonion algebra

C := Ter(D; D3, h,∆)

over k, which may now be described more explicitly as follows.
Writing elements a, b ∈ D, x, y ∈ D3 = k3 × k3 as

a = (α1, α2), b = (β1, β2), x = (u1, u2), y = (v1, v2) (1)

with αi, βi ∈ k, ui, vi ∈ k3, i = 1, 2, we have

h(x, y) = (u1, u2)
T
(v1, v2) = (u2, u1)T(v1, v2),

hence

h(x, y) = (uT
2 v1, uT

1 v2), (2)

and applying (21.10.3), we obtain

x ×h,∆ y = x̄ × ȳ = (u2 × v2, u1 × v1). (3)

Visualizing the elements of C = D × D3 in matrix form as

(a, x) =
(
α1 u2

u1 α2

)
, (b, y) =

(
β1 v2

v1 β2

)
,

we deduce from (21.12.1), (2), (3) that(
α1 u2

u1 α2

) (
β1 v2

v1 β2

)
=

(
α1β1 − uT

2 v1 α1v2 + β2u2 + u1 × v1

β1u1 + α2v1 + u2 × v2 α2β2 − uT
1 v2

)
. (4)

Consulting Thm. 21.12, we therefore conclude that the multiplication rule (4)
converts the k-module

Zor(k) :=
(

k k3

k3 k

)
(5)
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into an octonion algebra, called the octonion algebra of Zorn vector matrices
over k. Norm, trace and conjugation of this octonion algebra are given by

nZor(k)

( (α1 u2

u1 α2

) )
= α1α2 + uT

1 u2, (6)

tZor(k)

( (α1 u2

u1 α2

) )
= α1 + α2, (7)

(
α1 u2

u1 α2

)
=

(
α2 −u2

−u1 α1

)
. (8)

21.19 Split composition algebras. Let C be a composition algebra over k. We
say that C is

(a) split of rank 1 if C � k,
(b) split of rank 2 or split quadratic étale if C � k × k (as a direct product

of ideals).
(c) split of rank 4 or a split quaternion algebra if C � Mat2(k),
(d) split of rank 8 or a split octonion algebra if C � Zor(k).

In case k is the zero ring, we define the zero module to be a split composition
algebra.

If C is a composition algebra over a nonzero ring k, we consider the rank
decomposition of C (Exc. 9.31), which in the special case at hand, thanks to
Cor. 19.18, has the form

k = k0 × k1 × k2 × k3, ki := kεi (0 ≤ i ≤ 3), (1)

C = C0 ×C1 ×C2 ×C3, Ci := C ⊗ ki (0 ≤ i ≤ 3) (2)

as direct products of ideals induced by a complete orthogonal system (εi)0≤i≤3

of idempotents in k uniquely determined by the condition that Ci is a compo-
sition algebra of rank 2i over ki for 0 ≤ i ≤ 3. Then C is said to be split if Ci

is split of rank 2i for all i = 0, 1, 2, 3. Note that the property of a composition
algebra to be split is stable under base change.

For the split composition algebras of rank r = 1, 2, 4, 8 over k exhibited in
(a)–(d) above, it is sometimes helpful to introduce a unified notation. We put

C0r(k) :=


k for r = 1,

k × k for r = 2,

Mat2(k) for r = 4,

Zor(k) for r = 8

(3)
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and have

C0r(k)R = C0r(R)

for all R ∈ k-alg. We call C0r(k) the standard split composition algebra of rank
r over k.

Exercises
21.20. Let D be a quadratic étale k-algebra, M,N be right D-modules and h : M ×
N → D a sesquilinear form. Prove that exterior powers of h are compatible with base
change, i.e., for all positive integers n and all R ∈ k-alg, the identifications 21.4 yield
(
∧n h)R =

∧n(hR).

21.21. Let D be a quadratic étale k-algebra, use Exc. 19.32 to identify k = H(D, ιD) ⊆
D canonically, and let (M, h) be a hermitian space of rank n over D.

(a) If k is an LG ring, show that h can be diagonalized: there exist a basis (ei)1≤i≤n
of M as a right D-module and scalars α1, . . . , αn ∈ k× such that h(ei, e j) = δi jαi
for 1 ≤ i, j ≤ n. In particular, M is a free right D-module of finite rank.

(b) Deduce from (a) that (M, q), where M is viewed canonically as a k-module and
q : M → k is defined by q(x) := h(x, x) for x ∈ M, is a quadratic space of rank
2n over k.

21.22. Isotopes of the ternary hermitian construction. Let D be a quadratic étale k-
algebra, (M, h) a ternary hermitian space over D and ∆ :

∧3 M
∼
→ D an orientation

of M satisfying det∆(h) = 1. Put C = Ter(D; M, h,∆). For p ∈ D× ⊆ C×, we refer
to the concept of unital p-isotopes as defined in 15.9 and have D = Dp ⊆ Cp, so
Theorem 21.14 yields a ternary hermitian space (M, h)p = (Mp, hp) over D and an
orientation ∆p of Mp such that Cp = Ter(D; Mp, hp,∆p). Describe Mp, hp,∆p explicitly.
What does this description mean for the octonion algebras of Zorn vector matrices?

21.23 (Thakur [274]). For i = 1, 2, let (Mi, hi) be a ternary hermitian space over a
quadratic étale k-algebra D and let ∆i :

∧3 Mi
∼
→ D be an orientation of Mi satisfying

det∆i (hi) = 1. Put

Ci := Ter(D; Mi, hi,∆i) = D × Mi (i = 1, 2)

and prove for any map χ : M1 → M2 that the following conditions are equivalent.

(i) χ : (M1, h1,∆1)
∼
→ (M2, h2,∆2) is an isomorphism, i.e., χ : (M1, h1)

∼
→ (M2, h2)

is an isometry satisfying ∆2 ◦ (
∧3 χ) = ∆1.

(ii) χ : (M1, h1)
∼
→ (M2, h2) is an isometry satisfying

χ(x ×h1 ,∆1 y) = χ(x) ×h2 ,∆2 χ(y). (x, y ∈ M1).

(iii) 1D × χ : C1
∼
→ C2 is an isomorphism.

21.24. A presentation of the split octonions. Show that C := Zor(k) is the free unital
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alternative k-algebra on three generators E, X1, X2 satisfying the relations

E2 = E, X2
1 = X2

2 = 1C , X1X2X1 = −X2, (1)

X1EX1 = X2EX2 = −(X1X2)E(X1X2) = Ē := 1C − E,

i.e., that C has three generators E, X1, X2 satisfying (1) and, conversely, given any unital
alternative k-algebra A and three element e, x1, x2 ∈ A such that (1) holds (after the
obvious notational adjustments), there exists a unique homomorphism C → A of unital
k-algebras sending E, X1, X2 respectively to e, x1, x2. Conclude that, for some ideal a ⊆
k, the subalgebra of A generated by e, x1, x2 is isomorphic to Zor(k/a) as a k-algebra.

22 Reduced composition algebras

In the classical theory of finite-dimensional linear non-associative algebras
over fields, the standard way to define the notion of a reduced algebra consists
in requiring the existence of a complete orthogonal system of absolutely prim-
itive idempotents. This approach will be adapted here to the setting of compo-
sition algebras over arbitrary commutative rings. We then proceed to explore
more accurately the structure of reduced composition algebras and compare it
with the more restrictive notion of splitness as defined in 21.19.

Throughout we let k be an arbitrary commutative ring.

22.1 Primitive and absolutely primitive idempotents. Recall from, e.g.,
Braun-Koecher [36, p. 52] or Schafer [254, pp. 39, 56], see also Exc. 8.13,
that an idempotent of an algebra over a field is said to be primitive if it is
non-zero and it cannot be decomposed into the sum of two non-zero orthogo-
nal idempotents; we speak of an absolutely primitive idempotent if it remains
primitive in every base field extension. These definitions have natural exten-
sions to algebras over arbitrary commutative rings as follows.

Let A be a k-algebra. An idempotent c ∈ A is called primitive if c , 0 and
for all orthogonal idempotents c1, c2 ∈ A satisfying c = c1 + c2, there exists a
complete orthogonal system (ε1, ε2) of idempotents in k such that ci = εic for
i = 1, 2; this notion obviously reduces to the previous one if k is a field (or,
more generally, a connected commutative ring). The idempotent c is said to be
absolutely primitive if it remains primitive in AR for every non-zero R ∈ k-alg.

Note that for an alternative algebra A over a field, an idempotent c ∈ A is
primitive if and only if the subalgebra A11(c) ⊆ A contains no idempotents
other than 0 and c.

22.2 Example. The identity element of the k-algebra k is an absolutely prim-
itive idempotent if and only if k , {0}. On the other hand, it is an elementary
idempotent in the sense of Exc. 16.23 if and only if k = {0}.
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22.3 Proposition. Let A be an algebra over k and suppose A is finitely gener-
ated projective as a k-module. Then every absolutely primitive idempotent of
A is a unimodular element.

Proof Let c ∈ A be an absolutely primitive idempotent. Then, for all p ∈
Spec(k), the idempotent c(p) ∈ A(p) is primitive, hence non-zero. The assertion
follows from Lemma 9.17. □

22.4 Separable alternative algebras over rings. A unital alternative algebra
C over k is said to be separable if

(i) C is projective as a k-module.
(ii) Nil(CF) = {0} for all fields F ∈ k-alg.

We claim that composition algebras are separable alternative. Indeed, condi-
tion (i) is part of the definition and alternativity follows from Thm. 19.13. In
order to establish condition (ii), it suffices to show that a composition algebra
C over a field F, being automatically finite-dimensional, satisfies Nil(C) = {0}.
Since the norm of C is a non-degenerate quadratic form by definition, this fol-
lows immediately from Exc. 17.9.

For a finite-dimensional separable alternative algebra, the property of an
idempotent to be absolutely primitive can be characterized by means of its
Peirce decomposition (Exc. 14.12).

22.5 Proposition. Let A be a separable alternative algebra over k that is
finitely generated as a k-module. For an idempotent c ∈ A to be absolutely
primitive it is necessary and sufficient that A11(c) be free of rank 1 as a k-
module. In this case, c is a basis of A11(c).

Proof Note first that by Exc. 14.12 the Peirce components of A relative to c
are compatible with base change, i.e., Ai j(c)R � (AR)i j(cR) canonically, for all
i, j = 1, 2, R ∈ k-alg. In order to prove sufficiency, suppose A11(c) is free of
rank 1 as a k-module. Then c is a basis of A11(c) and obviously a primitive
idempotent, hence an absolutely primitive one since the property of A11(c) to
be free of rank 1 remains stable under base change. Conversely, in order to
prove necessity, suppose c is absolutely primitive. The Peirce decomposition
shows that A11(c) is finitely generated projective as a k-module. For any prime
ideal p ⊆ k, let K ∈ k-alg be the algebraic closure of the residue field k(p).
Then cK ∈ AK is a primitive idempotent and Nil(AK) = {0} by separability. We
conclude that A11(c)K � (AK)11(cK) has nil radical equal to {0} [252, Cor. 3.8],
whence A11(c)K by [252, Lemma 3.5 and Thm. 3.7] is a finite-dimensional
alternative division algebra over the algebraically closed field K. By Exc. 8.16,
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this implies rkp(A11(c)) = dimK((AK)11(cK)) = 1, so A11(c) is a line bundle.
But c ∈ A11(c) is a unimodular vector by Prop. 22.3, forcing A11(c) to be free
of rank 1 with basis c. □

22.6 Reduced composition algebras. A composition algebra over k is said to
be reduced if it contains an absolutely primitive idempotent. The base ring k
itself is clearly a reduced composition algebra of rank 1. In order to describe the
reduced composition algebras of rank > 1, we require a few preparations. The
first one of these connects absolutely primitive idempotents with elementary
ones as defined in Exc. 16.23.

22.7 Proposition. If k , {0}, then elementary idempotents of conic algebras
over k are absolutely primitive. Conversely, if C is a composition algebra of
rank r > 1 over k, then every absolutely primitive idempotent in C is elemen-
tary.

Proof Let C be a conic k-algebra and suppose c ∈ C is an elementary idempo-
tent. Since the property of an idempotent to be elementary is stable under base
change, it suffices to show for the first part of the proposition that c is prim-
itive. Accordingly, assume c = c1 + c2 with orthogonal idempotents ci ∈ C,
i = 1, 2. Then 2ci = c ◦ ci = tC(c)ci + tC(ci)c − nC(c, ci)1C and we conclude
ci = tC(ci)c − nC(c, ci)1C . Multiplying this by c, we obtain ci = εic for some
εi ∈ k, and since c is unimodular, (ε1, ε2) is a complete orthogonal system of
idempotents in k. Thus c is primitive, as claimed.

For the second part of the proposition, assume C is a composition algebra of
rank r > 1 and let c ∈ C be an absolutely primitive idempotent. Then so is cR,
for any R ∈ k-alg, R , {0}. This gives cR , 0 by definition, but also cR , 1CR

since r > 1 and C11(c) is free of rank 1 as a k-module by Prop. 22.5. Hence c
is elementary. □

22.8 Remark. The proof of the first part of the preceding proposition shows,
more generally,

kc = {x ∈ C | cx = x = xc}

for any elementary idempotent in a conic algebra C over k.

22.9 Proposition. Let C be a composition algebra of rank r > 1 over k. Then
the following conditions are equivalent.

(i) C is reduced.
(ii) C contains a split quadratic étale subalgebra.
(iii) The norm of C is isotropic.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

22 Reduced composition algebras 179

(iv) The norm of C is hyperbolic.

If these conditions are fulfilled and c ∈ C is an absolutely primitive idempotent,
then

nC � hkc⊕C12(c). (1)

Proof (i) ⇒ (ii). By definition and Prop. 22.7, C contains an elementary
idempotent c, whence Exc. 16.23 shows that kc ⊕ kc̄ ⊆ C is a split quadratic
étale subalgebra.

(ii)⇒ (iii). Let D ⊆ C be a split quadratic étale subalgebra. Since nD = nC |D

is isotropic (Example 16.2 (d)), so is nC .
(iii) ⇒ (i). Choose an isotropic vector u ∈ C relative to nC . Since u is uni-

modular and nC is regular, some v ∈ C satisfies tC(uv) = nC(u, v̄) = 1. But
nC(uv) = nC(u)nC(v) = 0, so (by Exc. 16.23) c = uv ∈ C is an elementary,
hence absolutely primitive, idempotent.

(i) ⇒ (iv). Let c ∈ C be an absolutely primitive idempotent with Peirce
components Ci j = Ci j(c), i, j = 1, 2. By Prop. 22.7, c is elementary, and (3),
(4) of Exc. 19.35 imply that the norm nC determines a duality between the k-
modules kc ⊕ C12 and kc̄ ⊕ C21, on which it is identically zero. Hence (1) and
(iv) follow.

(iv)⇒ (iii). If (iv) holds, C = M1 ⊕ M2 may be written as the direct sum of
two totally isotropic submodules Mi ⊆ C relative to nC , i = 1, 2. In particular,
1C = e1 + e2, ei ∈ Mi, i = 1, 2, which implies nC(ei) = 0, 1 = nC(1C) =
nC(e1, e2). Thus (e1, e2) is a hyperbolic pair in (C, nC). □

22.10 Corollary. The reduced composition algebras of rank 2 over k are pre-
cisely the split quadratic étale k-algebras. □

22.11 Example. Let B be a regular associative composition k-algebra of con-
stant rank. For every b ∈ B×, we obtain a composition k-algebra Cay(B, nB(b))
that is regular by Theorem 19.14. We claim that Cay(B, nB(b)) is reduced. To
see this, note that the algebra is isomorphic to C := Cay(B, 1) by Exc. 18.19,
so we may assume that nB(b) = 1. By Lemma 19.15, there exists an element
u ∈ B having tB(u) = 1. Setting c := u+ u j ∈ C, we apply (18.4.5) and (18.4.3)
to conclude tC(c) = 1, nC(c) = 0, so c is an elementary idempotent in C and
hence a primitive one. Thus C is reduced.

22.12 Twisted 2-by-2 matrices. Let L be a line bundle over k. Then there is a
natural identification

Endk(k ⊕ L) =
(
k L∗

L k

)
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as k-algebras, where multiplication on the right is the usual matrix product,
taking advantage of the canonical pairing L∗ × L→ k at the appropriate place.
We claim that C := Endk(k ⊕ L) is a quaternion algebra over k, with norm,
trace, conjugation respectively given by

nC

( (α1 u∗

v α2

) )
= α1α2 − ⟨u∗, v⟩, (1)

tC
( (α1 u∗

v α2

) )
= α1 + α2, (2)

(
α1 u∗

v α2

)
=

(
α2 −u∗

−v α1

)
. (3)

for α1, α2 ∈ k, u∗ ∈ L∗ and v ∈ L. Since passing to the dual of a finitely gener-
ated projective module by Lemma 9.15 commutes with base change, so does
the construction of C. Hence our claim may be checked locally, in which case
L is a free k-module of rank 1 and C becomes isomorphic to the split quater-
nion algebra of 2-by-2 matrices, with (1)–(3) converted into the formulas for
the ordinary determinant, trace, conjugation, respectively, of 2-by-2 matrices.
We call C = Endk(k ⊕ L) the quaternion algebra of L-twisted 2-by-2 matrices
over k. Note that

e :=
(
1 0
0 0

)
, e′ :=

(
0 0
0 1

)
(4)

form a complete orthogonal system of elementary idempotents in C with off-
diagonal Peirce components

C12(e) =
(
0 L∗

0 0

)
, C21(e) =

(
0 0
L 0

)
. (5)

We can now characterize reduced quaternion algebras in the following way.

22.13 Proposition (Petersson [216, Cor. 2.7]). Up to isomorphism, the re-
duced quaternion algebras over k are precisely the quaternion algebras of
L-twisted 2-by-2 matrices, for some line bundle L over k. More precisely, let C
be a quaternion algebra over k and c ∈ C an absolutely primitive idempotent.
Then there exist a line bundle L over k and an isomorphism

ϕ : C
∼
−→ Endk(k ⊕ L)

such that

ϕ(c) =
(
1 0
0 0

)
. (1)

If L is a free module, then C is split.
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Proof Let L be a line bundle over k. By (22.12.1), the norm of C := Endk(k⊕
L) is hyperbolic, and Prop. 22.9 shows that C is reduced. Conversely, suppose
C is a reduced quaternion algebra over k and c1 := c ∈ C is an absolutely
primitive idempotent. Then c is an elementary idempotent by Prop. 22.7, so the
corresponding Peirce decomposition of C takes on the form C = kc1 ⊕ C12 ⊕

C21 ⊕ kc2, with c2 := 1C − c1 and finitely generated projective k-modules C12,
C21 which, by Exc. 19.35, are in duality under the bilinearized norm. Counting
ranks, we conclude that L := C21 is a line bundle over k and C12 = L∗ under the
natural identification induced by the bilinearized norm. Since C is associative,
Exc. 14.12 shows C2

i j = {0}. By the same token, given x21 ∈ C21, y∗21 ∈ C12, we
obtain y∗21x21 = αc1 for some α ∈ k, and taking traces in conjunction with (6)
of Exc. 19.35, yields

α = tC(y∗21, x21) = nC(y∗21, x̄21) = −nC(y∗21, x21) = −⟨y∗21, x21⟩.

Thus y∗21x21 = −⟨y∗21, x21⟩c1. But then

x21y∗21 = (−x̄21)(−ȳ∗21) = x̄21ȳ∗21 = y∗21x21 = −⟨y∗21, x21⟩c2.

Now one checks easily that

ϕ : C
∼
−→ End(k ⊕ L), α1c1 ⊕ x∗21 ⊕ x21 + α2c2 7−→

(
α1 −x∗21
x21 α2

)
is an isomorphism of quaternion algebras having the desired property.

The final claim, that C is split if L is free, was already observed in 22.12. □

22.14 Twisted Zorn vector matrices. Let M be a finitely generated projec-
tive k-module of rank 3 and θ an orientation of M, i.e., a k-linear bijection
θ :

∧3 M
∼
→ k. Dualizing by means of the identification 21.7, we obtain a

k-linear bijection θ∗ : k = k∗
∼
→ (

∧3 M)∗ =
∧3(M∗), hence an induced orienta-

tion θ∗−1 on M∗ uniquely determined by the condition

θ(v1 ∧ v2 ∧ v3)θ∗−1(v∗1 ∧ v∗2 ∧ v∗3) = det
(
(⟨v∗i , v j⟩)1≤i, j≤3

)
(1)

for v j ∈ M, v∗i ∈ M∗, 1 ≤ i, j ≤ 3. These two orientations in turn give rise to
alternating bilinear maps

M × M −→ M∗, (v,w) 7−→ v ×θ w,

M∗ × M∗ −→ M, (v∗,w∗) 7−→ v∗ ×θ w∗,

called the associated vector products, according to the rules

θ(u ∧ v ∧ w) = ⟨u ×θ v,w⟩, θ∗−1(u∗ ∧ v∗ ∧ w∗) = ⟨w∗, u∗ ×θ v∗⟩ (2)
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for u, v,w ∈ M, u∗, v∗,w∗ ∈ M∗. Now the k-module

Zor(M, θ) =
(

k M∗

M k

)
becomes a unital k-algebra under the multiplication(

α1 v∗

v α2

) (
β1 w∗

w β2

)
=

(
α1β1 − ⟨v∗,w⟩ α1w∗ + β2v∗ + v ×θ w

β1v + α2w + v∗ ×θ w∗ −⟨w∗, v⟩ + α2β2

)
(3)

for αi, βi ∈ k, v,w ∈ M, v∗,w∗ ∈ M∗, i = 1, 2, whose unit element is the identity
matrix 12. We call Zor(M, θ) the algebra of (M, θ)-twisted Zorn vector matrices
over k. We claim that C := Zor(M, θ) is an octonion algebra over k, with norm,
trace, conjugation given by

nC

( (α1 u∗

v α2

) )
= α1α2 − ⟨u∗, v⟩, (4)

tC
( (α1 u∗

v α2

) )
= α1 + α2, (5)

(
α1 u∗

v α2

)
=

(
α2 −u∗

−v α1

)
. (6)

for α1, α2 ∈ k, u∗ ∈ M∗, v ∈ M. Since the construction of C, as in the quater-
nionic case, commutes with base change, this may be checked locally, so we
may assume that M is a free k-module of rank 3. Hence there exist elements
u1, u2, u3 ∈ M satisfying the following equivalent conditions.

(i) B := (u1, u2, u3) is a basis of M.

(ii) u1 ∧ u2 ∧ u3 ∈
∧3(M) is unimodular.

(iii) θ(u1 ∧ u2 ∧ u3) ∈ k×.

Replacing, e.g., u3 by an appropriate scalar multiple, we may therefore assume
B to be θ-balanced in the sense that θ(u1 ∧ u2 ∧ u3) = 1. Hence we find a
natural identification M = k3 such that B = (e1, e2, e3) is the basis of ordinary
unit vectors and θ = det :

∧3(k3) → k is given by the ordinary determinant.
This in turn yields a natural identification M∗ = k3 such that the canonical
pairing M∗ × M → k agrees with the map k3 × k3 → k, (u, v) 7→ uTv. Thus the
basis (ei)1≤i≤3 is self-dual, and applying (1) we conclude θ∗−1 = det as well.
Hence both vector products ×det agree with the ordinary vector product × on
k3 and Zor(k3, det) = Zor(k) is the same as the algebra of ordinary Zorn vector
matrices over k. The assertion follows. As in the case of reduced quaternion
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algebras,

e :=
(
1 0
0 0

)
, e′ :=

(
0 0
0 1

)
(7)

form a complete orthogonal system of elementary idempotents in C with off
diagonal Peirce components

C12(e) =
(
0 M∗

0 0

)
, C21(e) =

(
0 0
M 0

)
. (8)

22.15 Theorem (Petersson [216, Thm. 3.5]). Up to isomorphism, the reduced
octonion algebras over k are precisely the algebras of (M, θ)-twisted Zorn vec-
tor matrices, for some finitely generated projective k-module M of rank 3 and
some orientation θ of M. More precisely, given an octonion algebra C over k
and an absolutely primitive idempotent c ∈ C, there exist M, θ as above and an
isomorphism ϕ : C

∼
→ Zor(M, θ) such that

ϕ(c) =
(
1 0
0 0

)
. (1)

If M is a free module, then C is split.

Proof Let M be a finitely generated projective k-module of rank 3 and θ an
orientation of M. Then (22.14.4) shows that the norm of the octonion algebra
Zor(M, θ) is hyperbolic, forcing the algebra itself to be reduced (Prop. 22.9).
Conversely, suppose C is a reduced octonion algebra over k and c1 := c ∈ C is
an absolutely primitive idempotent. Then c is an elementary one by Prop. 22.7,
so the corresponding Peirce decomposition takes on the form C = kc1 ⊕C12 ⊕

C21 ⊕ kc2, with c2 := 1C − c1 and finitely generated projective k-modules C12,
C21 in duality under the bilinearized norm (Exc. 19.35). Counting ranks, we
conclude that M := C21 is a finitely generated projective k-module of rank
3 and C12 = M∗ under the natural identification induced by the bilinearized
norm. Given v ∈ M = C21, u∗ ∈ M∗ = C12, we claim

u∗v = −⟨u∗, v⟩c1, vu∗ = −⟨u∗, v⟩c2. (2)

Indeed, the Peirce rule (3) of Exc. 14.12, yield u∗v = αc1 for some α ∈ k, and
taking traces in conjunction with (6) of Exc. 19.35, we conclude

α = tC(u∗v) = nC(u∗, v̄) = −nC(u∗, v) = −⟨u∗, v⟩.

Hence the first equation of (2) holds; the second one follows by applying the
conjugation. Now combine (16.12.5) with Exc. 19.35, and observe that the
expression tC(uvw) = nC(uv, w̄) = −nC(uv,w) is alternating trilinear in u, v,w ∈
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M. Since M2 ⊆ M∗ by the Peirce rules (Exc. 14.12), we therefore obtain a
unique linear map θ :

∧3(M)→ k such that

θ(u ∧ v ∧ w) = −tC(uvw) = nC(uv,w) = ⟨uv,w⟩ (u, v,w ∈ M). (3)

We claim that θ is an isomorphism. In order to see this, we may assume that k
is a local ring and first treat the case that k is a field. Then we must show θ , 0.
Otherwise, ⟨uv,w⟩ = nC(uv,w) = 0 for all u, v,w ∈ M, hence M2 = {0}. But
then, given u, v ∈ M, w∗ ∈ M∗, linearized right alternativity yields (uv)w∗ +
(uw∗)v = u(vw∗) + u(w∗v), which combines with (2) to imply ⟨w∗, u⟩c2v =
⟨w∗, v⟩(uc2 + uc1), hence the contradiction ⟨w∗, u⟩v = ⟨w∗, v⟩u. We are left with
the case that k is a local ring. Given any basis (u1, u2, u3) of M, the case just
treated implies that θ(u1 ∧ u2 ∧ u3) does not vanish after passing to the residue
field of k. Hence θ(u1 ∧ u2 ∧ u3) is invertible in k, and we conclude that θ
is indeed an isomorphism. Moreover, combining (3) with (22.14.2) we obtain
u ×θ v = uv for the associated vector product of u, v ∈ M. Our next aim is to
prove

θ∗−1(u∗ ∧ v∗ ∧ w∗) = nC(u∗v∗,w∗) = ⟨w∗, u∗v∗⟩ (u∗, v∗,w∗ ∈ M∗). (4)

Localizing if necessary, we may assume that M is a free k-module, with basis
(ei)1≤i≤3 chosen in such a way that θ(e1 ∧ e2 ∧ e3) = 1. If we write (e∗i )1≤i≤3 for
the corresponding dual basis of M∗, then (22.14.1) shows θ∗−1(e∗1∧e∗2∧e∗3) = 1,
and since both sides of (4) are alternating trilinear in u∗, v∗,w∗, the proof will be
complete once we have shown e∗1e∗2 = e3. Consulting (3), and making use of its
alternating character, we obtain e1e2 = e∗3, whence a cyclic change of variables
also yields e2e3 = e∗1, e3e1 = e∗2. Since ēi = −ei, ē∗i = −e∗i for i = 1, 2, 3 by (6)
of Exc. 19.35, the middle Moufang identity (13.3.3) combined with (17.4.2)
yields

e∗1e∗2 = ē∗1ē∗2 = (e3e2)(e1e3) = e3(e2e1)e3 = −e3(e1e2)e3 = −e3e∗3e3

= −nC(e3, ē∗3)e3 + nC(e3)ē∗3 = ⟨e
∗
3, e3⟩e3 = e3,

and (4) is proved. Consequently, u∗ ×θ v∗ = u∗v∗ ∈ M is the corresponding
vector product of u∗, v∗ ∈ M∗. Now one checks that ϕ : C

∼
→ Zor(M, θ) defined

by

ϕ(α1c1 + v∗ + u + α2c2) :=
(
α1 v∗

u α2

)
for α1, α2 ∈ k, v∗ ∈ M∗ = C12, u ∈ M = C21 is an isomorphism of octonion
algebras satisfying (1).

The final claim, that C is split if M is free, was already observed in 22.14.
□
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The next results concern rings k such that every projective k-module of con-
stant finite rank is free. Examples of such rings are principal ideal domains and
LG rings (Prop. 11.24). Exercises 22.27 and 22.30 provide related results for
Dedekind domains.

22.16 Corollary. Split composition algebras over any commutative ring are
reduced. Conversely, if every projective k-module of constant finite rank is free,
then every reduced composition algebra over k is split.

Proof Let C be a composition algebra over k. Combining the rank decom-
position (Exc. 9.31) with Example 22.2, we may assume that C has constant
rank r > 1. If C is split, hence isomorphic to one of the algebras in 21.19 (b)–
(d), it contains an elementary idempotent, which is absolutely primitive by
Prop. 22.7. Thus C is reduced. Conversely, assume C is reduced. If projec-
tive k-modules of constant finite rank are free, splitness of C follows from
Cor. 22.10 combined with Prop. 22.13 and Thm. 22.15. □

22.17 Corollary. Suppose every projective k-module of constant finite rank is
free. Then the automorphism group of a composition algebra C over k acts
transitively on the elementary idempotents of C.

Proof Using the rank decomposition (Exc. 9.31), we reduce to the case that
C has rank r = 1, 2, 4, 8 as a k-module. The case r = 1 (resp. r = 2) is empty
(resp. trivial). The case r = 4 is analogous to the case r = 8 (only easier), so let
us assume r = 8. Let e be an elementary idempotent of C. Then e is absolutely
primitive (Prop. 22.7), and Thm. 22.15 yields an isomorphism C → Zor(M, θ)
sending e to (

1 0
0 0

)
, (1)

for some finitely generated projective k-module M of rank 3 and some ori-
entation θ of M. But M is free by hypothesis. By 22.14, therefore, (M, θ) is
isomorphic to (k3, det), so we find an isomorphism Zor(M, θ) → Zor(k) ex-
tending the identity on the diagonals of both algebras. Summing up, therefore,
we find an isomorphism C → Zor(k) sending e to the idempotent (1). The
assertion follows. □

22.18 Corollary. Suppose every projective k-module of constant finite rank is
free. For a composition algebra C of constant rank > 1 over k, the following
conditions are equivalent.

(i) C is split.
(ii) The norm of C is isotropic.
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(iii) The norm of C is hyperbolic.

Moreover, if k = F is a field, they are also equivalent to

(iv) C is not a division algebra.

Proof By Cor. 22.16, C is split if and only if it is reduced. Thus (i)–(iii) are
equivalent (Prop. 22.9). Moreover, if k = F is a field, the implication (i)⇒(iv)
is obvious, while (iv)⇒(ii) follows from Prop. 17.5. □

22.19 Corollary. Let k be a principal ideal domain with field of fractions F.
For a composition algebra C of rank r > 1 over k, the following conditions are
equivalent.

(i) CF is split.
(ii) nC is isotropic in the sense of 11.17.
(iii) nC represents zero in the sense of Exc. 12.38.
(iv) C has left or right zero divisors in the sense of Exc. 18.20.
(v) C is split.

We remark that the equivalence of (iv) and (v) is due to van der Blij-Springer
[286, (3.4)], see also [216, Cor. 3.6].

Proof (i)⇒ (ii). Because CF is split, (nC)F is isotropic. Because k is a prin-
cipal ideal domain, Exc. 12.38 (b),(c) yield that nC is isotropic.

(ii)⇒ (iii). Obvious.
(iii)⇒ (iv). Some non-zero u ∈ C has nC(u) = 0. This implies uū = 0, so u

is a left and ū a right zero divisor in C.
(iv) ⇒ (v). Since k is an integral domain, Exc. 18.20 yields a non-zero el-

ement u ∈ C such that nC(u) = 0. On the other hand, k being a PID, C is
free of finite rank as a k-module. Letting (ei)1≤i≤r be a k-basis of C, we write
u =

∑r
i=1 αiei for some α1, . . . , αr ∈ k not all zero. In fact, dividing by their

greatest common divisor, we may assume that they are mutually prime, so we
can find β1, . . . , βr ∈ k such that

∑r
i=1 αiβi = 1. Since C has rank > 1, it is reg-

ular, allowing us to consider the DnC-dual basis ( fi)1≤i≤r of C relative to (ei).
Setting v :=

∑r
i=1 βi fi ∈ C, we therefore obtain nC(u, v) = 1. Thus c := uv̄ satis-

fies tC(c) = 1, nC(c) = nC(u)nC(v) = 0 and hence is an elementary idempotent.
By Prop. 22.7, our composition algebra C is therefore reduced. By Cor. 22.10,
it is split if the rank is 2. But by Prop. 22.13 and Thm. 22.15, the same conclu-
sion holds also in ranks 4 and 8 since finitely generated projective k-modules
are free.

(v)⇒ (i). Obvious □
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The equivalence (i)⇔(v) in 22.19 holds for other classes of integral domains
k, see for example Lemma 57.1 (a) and Cor. 55.8 below. If k is a finitely gen-
erated algebra over a field, the answer can depend on the number of generators
for k, see [16] for results on this and related questions.

22.20 Proposition. Let C be a composition algebra over k and D ⊆ C a
quadratic étale subalgebra. Then CD, the base change of C from k to D, is
reduced.

Proof By Lemma 11.10, we have C = D ⊕ D⊥ as a direct sum of k-modules,
which implies CD = DD⊕ (D⊥)D as a direct sum of D-modules. But DD is split
quadratic étale (Exc. 19.36 (a)), forcing C to be reduced by Prop. 22.9. □

22.21 Corollary. Let C be a composition algebra of rank r > 1 over an LG
ring k. Then for every quadratic étale subalgebra D of C, CD is a split compo-
sition algebra over D.

Proof Because D is a finitely generated module over an LG ring, it is itself
an LG ring (11.23). Since CD is reduced (Prop. 22.20), the claim follows by
Cor. 22.16. □

Note that quadratic étale subalgebras of C as in Cor. 22.21 exist by Theorem
19.16 (b).

Exercises
22.22. Let k+, k− be commutative rings and k = k+ × k− their direct product. Assume
that A± is a k±-algebra and view A := A+ × A− canonically as a k-algebra. Show for
c = (c+, c−) ∈ A that the following conditions are equivalent.

(i) c is an absolutely primitive idempotent in A.
(ii) k , {0} and for both signs ±, either k± = {0} or c± is an absolutely primitive

idempotent in A±.

22.23. Let C be a composition algebra over k and c ∈ C. Use Exc. 16.26 to show that
the following conditions are equivalent.

(i) c is an absolutely primitive idempotent of C.
(ii) k , {0} and there exist a decomposition

k = k(1) × k(2) (1)

as a direct product of ideals, a composition algebra C(1) over k(1) as well as an
elementary idempotent c(1) ∈ C(1) such that

C � C(1) × k(2) (2)

as composition algebras over k and

c = (c(1), 1k(2) )
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under this isomorphism.

Conclude that C is reduced if and only if k , {0} and C allows decompositions as in
(1), (2) such that C(1) is a composition algebra over k(1) that contains an elementary
idempotent.

22.24. Elementary idempotents in reduced quaternion algebras. Let L0 be a line bundle
over k and write

B = Endk(k ⊕ L0) =
(

k L∗0
L0 k

)
for the corresponding reduced quaternion algebra over k. Prove:

(a) For c ∈ B, the following conditions are equivalent.
(i) c is an elementary idempotent.
(ii) c is an idempotent, and viewing c as a linear map k ⊕ L0 → k ⊕ L0,

Lc := Im(c) ⊆ k ⊕ L0

is a line bundle over k.
(iii) There exist a line bundle L over k and an isomorphism

Φ : B
∼
−→ Endk(k ⊕ L) =

(
k L∗
L k

)
such that

Φ(c) =
(
1 0
0 0

)
.

In this case c̄ ∈ B is an elementary idempotent as well and

k ⊕ L0 = Lc ⊕ Lc̄, L0 � Lc ⊗ Lc̄. (1)

Moreover, L in (iii) is unique up to isomorphism and

L � B21(c) � L0 ⊗ L∗⊗2
c , B12(c) � L∗0 ⊗ L⊗2

c . (2)

(b) Two elementary idempotents c, d ∈ B are conjugate under inner automor-
phisms of B if and only if Lc � Ld. They are conjugate under arbitrary au-
tomorphisms of B if and only if L⊗2

c � L⊗2
d .

(c) If L is any line bundle over k, then L � Lc for some elementary idempotent
c ∈ B if and only if L is (isomorphic to) a direct summand of k ⊕ L0.

22.25. Line bundles on two generators. Let L be a line bundle over k.

(a) Let n be a positive integer and suppose there are elements f1, . . . , fn ∈ k such
that k =

∑
k fi and L fi is free (of rank one) over k fi for 1 ≤ i ≤ n. Show that L

is generated by n elements.
(b) Show that the following conditions are equivalent.

(i) L is generated by two elements.
(ii) L ⊕ L∗ is a free k-module of rank two.
(iii) There exists an elementary idempotent c ∈ B := Mat2(k) such that

L � Lc.
(iv) There exist elements f1, f2 ∈ k such that k f1 + k f2 = k and L fi is free

(of rank one) over k fi for i = 1, 2.
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Conclude that if L satisfies one (hence all) conditions (i)–(iv) above, then so
does L⊗n, for all n ∈ Z. In particular, there exists an elementary idempotent
c(n) ∈ Mat2(k), unique up to conjugation by inner automorphisms of B, satisfy-
ing L⊗n � Lc(n) . Describe such an idempotent as explicitly as possible.

Remark. Let k be a Dedekind domain, i.e., a noetherian integral domain such that the
localization of k at each maximal ideal is a principal ideal domain [27, §VII.2]. (For
example, every principal ideal domain is also a Dedekind domain, as is every nonzero
localization of a Dedekind domain.) There is a canonical identification of the class
group of k with its Picard group, and every fractional ideal of k is generated by two
elements (O’Meara [204, 22.5a, 22:5b]). Hence the preceding two exercises yield a bi-
jective correspondence between the set of conjugacy classes of elementary idempotents
in Mat2(k) under inner automorphisms and the class group of k. In particular, for k the
ring of integers of an algebraic number field K, the number of these conjugacy classes
agrees with the class number of K.

22.26. Isomorphisms of reduced quaternion algebras. Let L0, L′0 be line bundles over k
and B = Endk(k⊕L0), B′ = Endk(k⊕L′0) the corresponding reduced quaternion algebras.
Use Exc. 22.24 to show that the following conditions are equivalent.

(i) B � B′.
(ii) Every line bundle L over k that is a direct summand of k ⊕ L0 admits a line

bundle L′ over k that is a direct summand of k ⊕ L′0 and satisfies

L0 ⊗ L′⊗2 � L′0 ⊗ L⊗2. (1)

(iii) There exist line bundles L, L′ over k that are direct summands of k⊕ L0, k⊕ L′0,
respectively, and satisfy (1).

22.27. Let L be a line bundle over k. Prove that the reduced quaternion algebra Endk(k⊕
L) is split if and only if L � L′⊗2 for some line bundle L′ on two generators over k.
Use this to construct examples of reduced quaternion algebras over k that are free as
k-modules but not split.
Remark. When k is a Dedekind domain, the result of this exercise is: Every reduced
quaternion algebra over k is split if and only if every element of Pic(k) is divisible by 2.

22.28. Failure of Witt cancellation. Let L be a line bundle on two generators over k that
is not of period 2 in Pic(k). Put L′ := L⊗2 and show h ⊥ h � h ⊥ hL′ even though hL′ is
not split. (Hint: Use Exc. 22.27 to prove that the reduced quaternion algebra Endk(k⊕L′)
is split.)

22.29. Let M be a finitely generated projective k-module of rank 3 and θ an orientation
of M. Show

(u ×θ v) ×θ w∗ = ⟨w∗, u⟩v − ⟨w∗, v⟩u, (u∗ ×θ v∗) ×θ w = ⟨u∗,w⟩v∗ − ⟨v∗,w⟩u∗

for all u, v,w ∈ M, u∗, v∗,w∗ ∈ M∗.

22.30. Prove that every reduced octonion algebra over a Dedekind domain is split.
(Hint: Use the well-known structure of finitely generated projective modules over a
Dedekind domain, cf. Bourbaki [27, VII.4, Prop. 24].)
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23 Norm equivalences and isomorphisms

One of the most important results in the classical theory of composition alge-
bras is the norm equivalence theorem. It says that composition algebras over
fields are classified by their norms, in other words, two composition algebras
over a field are isomorphic if and only if their norms are equivalent, i.e., iso-
metric. Our first aim in this section will be to establish this result in the more
general setting of LG rings. As in the case of fields, the key ingredient of the
proof is Witt cancellation of regular quadratic forms, which fails over arbitrary
commutative rings (see Exc. 22.28 above) but is valid over LG rings. As an
application, we classify composition algebras over special fields, like the re-
als and the complexes, finite fields, the p-adics and algebraic number fields,
as well as over Z. The section also contains a few general comments on norm
equivalence over arbitrary commutative rings.

Let k be a commutative ring. We begin by introducing the concept of norm
equivalence and some useful modifications.

23.1 Norm similarities. Let C, C′ be conic algebras over k. A norm similarity
from C to C′ is a bijective k-linear map f : C → C′ such that there exists a
scalar µ f ∈ k× satisfying nC′ ◦ f = µ f nC; in this case, µ f = nC′ ( f (1C)) is
unique and called the multiplier of f . Norm similarities with multiplier 1 are
called norm isometries or norm equivalences. We say that C and C′ are norm
similar (resp. norm equivalent) if there exists a norm similarity (resp. a norm
equivalence) from C to C′. Norm similarities f : C → C′ preserving units
(so f (1C) = 1C′ ) automatically have multiplier 1; we speak of unital norm
equivalences in this context.

It is clear that the preceding notions are stable under base change. The prin-
cipal objective of the present section is to understand the connection between
unital norm equivalences and isomorphisms (resp. anti-isomorphisms) of com-
position algebras.

23.2 Proposition. Let C, C′ be conic alternative k-algebras.

(a) If C is multiplicative, then for any a ∈ C×, the left and right multipli-
cation operators La,Ra : C → C are norm similarities, with multipliers
µLa = µRa = nC(a).

(b) Let f : C → C′ be a norm similarity. Then f (C×) = C′×. Moreover, if
f is even a unital norm equivalence, then f preserves norms, traces,
conjugations and inverses.

Proof (a) follows from the property of nC permitting composition combined
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with Prop. 17.5. In order to establish (b), it suffices to combine Prop. 17.5 with
(16.5.2), (16.5.4). □

23.3 Corollary. Multiplicative conic alternative algebras C,C′ over k are
norm similar if and only if there exists a unital norm equivalence from C to
C′.

Proof Let f : C → C′ be a norm similarity. By Prop: 23.2 (b), the element
a′ := f (1C) is invertible in C′×, and La′−1 ◦ f : C → C′ is a unital norm equiva-
lence. □

23.4 Proposition. (a) Let C, C′ be conic algebras over k that are projective
as k-modules. Then every isomorphism or anti-isomorphism from C to C′ is a
unital norm equivalence.

(b) A unital norm equivalence from one quadratic k-algebra onto another is
an isomorphism.

Proof (a) follows immediately from Exc. 16.19.
(b) Let R, R′ be quadratic k-algebras and f : R → R′ a unital norm equiva-

lence. In order to show that f is an isomorphism, we may assume that k is a
local ring, which implies R = k[u] for some u ∈ R such that 1R, u is a basis
of R over k. Then R′ = k[u′], u′ := f (u), and since f preserves units, norms
and traces by Prop. 23.2 (b), we have f (u2) = u′2 = f (u)2 and f is an isomor-
phism. □

The following result is well known in the case where k is a field, see for
example Jacobson [132] or Van der Blij-Springer [286]. Over local rings, it is
due to Bix [24, Lemma 1.1].

23.5 Norm Equivalence Theorem. Let k be an LG ring and C, C′ be compo-
sition algebras over k. Then the following conditions are equivalent.

(i) C and C′ are isomorphic.
(ii) C and C′ are norm equivalent.
(iii) C and C′ are norm similar.

Proof (i)⇒ (ii). Prop. 23.4 (a).
(ii)⇒ (iii). Cor. 23.3.
(iii) ⇒ (i). By the rank decomposition of Exc. 9.31, we may assume that

C,C′ both have constant rank r ∈ {1, 2, 4, 8}. There is nothing to prove for
r = 1, so let us assume r > 1. Thm. 19.16 (b) yields a regular composition
subalgebra D ⊆ C of rank 2. By Cor. 23.3, there exists a unital norm equiva-
lence f : C → C′. Since f preserves units, norms and traces by Prop. 23.2 (b),
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we conclude from the characterization of Prop. 19.8 that D′ := f (D) is also
a regular composition subalgebra of C′ and f : D → D′ is an isomorphism
(Prop. 23.4 (b)). Now suppose B ⊂ C, B′ ⊂ C′ are regular composition sub-
algebras of rank s, 1 < s < r, and g : B → B′ is an isomorphism. Combining
Lemma 11.26 with the Witt cancellation theorem (11.27), we find invertible
elements l ∈ B⊥ ⊆ C, l′ ∈ B′⊥ ⊆ C′ such that nC(l) = nC′ (l′) ∈ k×. There-
fore B, l (resp. B′, l′) generate regular composition subalgebras B1 ⊆ C (resp.
B′1 ⊆ C′) of rank 2s that are isomorphic (Cor. 18.9). Continuing in this manner,
we eventually obtain an isomorphism from C to C′. (Actually, we do so after
at most two steps.) □

23.6 Corollary. Let B be a regular associative composition algebra over an
LG ring k and µ, µ′ ∈ k×. Then

Cay(B, µ) � Cay(B, µ′) ⇐⇒ µ ≡ µ′ mod nB(B×).

Proof Put C := Cay(B, µ) = B ⊕ B j, C′ := Cay(B, µ′) = B ⊕ B j′ as in
18.3. By Thm. 23.5, C � C′ implies nC � nC′ , and Remark 18.5 combines
with Witt cancellation (11.27) to yield an isometry φ : µnB

∼
→ µ′nB. But then

µ = µ′nB(u), u = φ(1B) ∈ B×. Conversely, suppose µ = µ′nB(u) for some
u ∈ B×. Since B is associative, the assignment x + y j 7→ x + (uy) j′ gives an
isomorphism from C onto C′ (Exc. 18.19). □

23.7 Remark. Cor. 23.6 fails if B is singular. For example, let k be a field
of characteristic 2 and µ, µ′ ∈ k. Then one checks easily that Cay(k, µ) and
Cay(k, µ′) are isomorphic if and only if µ = α2 + β2µ′ for some α ∈ k, β ∈ k×.

23.8 Comments. Apart from its potential for a great many important applica-
tions, some of which will be dealt with in the remainder of this section, the
norm equivalence theorem enjoys a few remarkable properties of a different
kind. Here are some examples.

(a) The norm equivalence theorem does not claim that every unital norm equiv-
alence between composition algebras over a field (or an LG ring) is an isomor-
phism or an anti-isomorphism. While this is certainly true for quadratic étale
algebras over any ring (Prop. 23.4 (b)) and, as will be seen in 23.30 below (see
also Knus [157, V, (4.3.2)] or Gille [97, Thm. 2.4]), is basically true for quater-
nion algebras, again over any ring, it fails in the octonionic case. The reader
may either consult Exc. 23.32 below to see this or turn to the octonion algebra
O over k = R: in the latter case, the automorphisms or anti-automorphisms of
O form a closed subset of GL(O) that may be written as the union of two 14-
dimensional pieces (2.6.1), while the unital norm equivalences of O identify
canonically with the Lie group O7, which has dimension 21.
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(b) The norm equivalence theorem was anticipated already by Zorn in [299,
p. 399], where one finds the following remarkable statement, which we repro-
duce with the same emphasis as in the original:

Das System wurde allein aus der quadratischen Form x ◦ x gewonnen,
die Äquivalenz der Formen ist also mit der Äquivalenz der Systeme
gleichbedeutend.

By “das System” (resp. the expression “x◦ x”), Zorn is referring to an octonion
algebra (resp. to its norm). However, the reason given by him for the validity
of the norm equivalence theorem is not convincing since, e.g., it would imply
that any unital norm equivalence would be an isomorphism. A more profound
reason why Zorn’s argument cannot be valid will now be addressed.

(c) It is a natural question to ask whether the norm equivalence theorem holds
over an arbitrary commutative ring. By (a), the answer is yes for composition
algebras of rank 2 or 4. In rank 8, however, i.e., for octonion algebras, the norm
equivalence theorem does not hold. In fact, there is a profound connection
between this fundamental fact and the isotopy-versus-isomorphism problem
for alternative algebras discussed in 15.12. This connection can be read off
from the following two results.

23.9 Theorem (Gille [97, Thm. 3.3 and p. 308]). There exists a ring k that
is finitely generated as a C-algebra such that there exist non-isomorphic octo-
nion k-algebras whose norms are isometric. More specifically, there exists an
octonion k-algebra that is not split but whose norm is split hyperbolic. □

23.10 Theorem (Alsaody-Gille [15, Cor. 6.7]). Let C, C′ be octonion alge-
bras over an arbitrary commutative ring. Then the following conditions are
equivalent.

(i) C and C′ are norm-equivalent.
(ii) C and C′ are norm-similar.
(iii) There exist p, q ∈ C× such that C′ � C(p,q).
(iv) There exists p ∈ C× such that C′ � Cp.
(v) There exists p ∈ C such that nC(p) = 1 and C′ � Cp. □

23.11 Corollary. There exist a ring k that is finitely generated as a C-algebra
and an invertible element p in the split octonion algebra C := Zor(k) over k
such that C and Cp are not isomorphic. No such p can be embedded into a
quaternion subalgebra of C.

Proof The first part follows immediately from the preceding theorems. The
final assertion is implied by Exc. 19.31. □
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One reason for the importance of the norm equivalence theorem is that
we know a lot about quadratic forms over special fields, and this knowledge
may be used to classify composition algebras over these fields. Recall from
Cor. 22.18 that composition algebras over any field are either split or division
algebras. We can subdivide the classification problem into separate problems
for each of the possible dimensions 2, 4, or 8, since the classification problem
for rank 1 is trivial.

23.12 Algebraically closed fields and similar. Suppose first that F has no
separable quadratic field extensions. This is equivalent to requiring that every
rank 2 composition algebra is split. For example, this holds trivially if F is
separably closed, meaning that it has no finite separable field extensions. For
such an F, there is a unique isomorphism class of composition F-algebras in
each dimension 2, 4, 8, namely the split one. For dimensions 4 and 8 it is by
Cor. 19.17 and 22.9.

Alternatively, suppose that F is a field such that every element of F has a
square root in F. (We may as well suppose further that F has characteristic
2, for otherwise this case is the same as the one considered in the previous
paragraph.) For every quadratic étale F-algebra K, the norm nK : K → F is
surjective, so Cor. 19.17 and Example 22.11 imply that every quaternion or
octonion F-algebra is split, i.e., there is a unique isomorphism class of com-
position F-algebras in each dimension 4 and 8.

23.13 The reals. Thanks to Sylvester’s Law of Inertia, quadratic spaces over
R (or, more generally, over any real closed field) are classified by their di-
mension and their signature, see, for example, [204, §61.A] or [255, Theorem
2.4.4]. In particular, in each dimension there are precisely two isometry classes
of anisotropic quadratic forms, a positive definite and a negative definite one.
Hence each dimension r = 1, 2, 4, 8 allows exactly one isomorphism class
of composition division algebras over R: uniqueness follows from the norm
equivalence theorem 23.5, while existence is provided by the classical exam-
ples R, C, H, O of §1.

23.14 Finite fields. The key fact to be used here is the Chevalley-Warning
theorem proved in, for example, [102, Thm. 6.2.6]: every form of degree d in
n > d indeterminates over a finite field k = Fq, q a prime power, has a non-
trivial zero in Fn

q. It follows that every quadratic form in at least three variables
over Fq is isotropic. In particular, quaternion and octonion algebras over Fq are
all split (Cor. 22.18). The only non-split composition algebra of dimension 2
over Fq up to isomorphism is the unique quadratic field extension Fq2 of Fq.

23.15 Local fields. We say a field K is local if it is complete with respect to a
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discrete valuation v and the residue field of K at v is finite. Such fields include
the completion Qp of Q relative to its p-adic valuation for a prime p as well as
the completion Fq((t)) of the rational function field Fq(t) for a finite field Fq.
Every local field is isomorphic to Fq((t)) for some q or a finite extension of Qp

for some p [196, p. 127, Remark 7.49].
We have the following classical results concerning a local field K:

(i) Every finite extension of K is local [204, 32:3].
(ii) Every quadratic form in at least five variables over K is isotropic. In

case K has characteristic , 2, this can be found in [204, 63:19]. In
case K has characteristic , 0, it is [104, Thm. 4.8]. It follows that all
octonion algebras over K are split.

(iii) Up to isomorphism, there is a unique quaternion division algebra over
K. This is [204, 63:11b] if K has characteristic , 2, [102, Prop. 6.3.9]
if K has characteristic , 0, and [260, §XIII.3, Prop. 6] in general.

To complete the picture, it remains to classify composition algebras of dimen-
sion 2 over K. If K has characteristic , 2, these are parameterized by the group
K×/K×2. Describing this group is pretty straightforward if the residue field has
odd characteristic, but requires some care for when it has characteristic 2; again
we refer to Scharlau [255, Chap. 5, §6] and O’Meara [204, §63 A, particularly
63:9] for details.

We refer the reader to [212] and [92] for more results on composition alge-
bras and discrete valuations.

23.16 Global fields. In this subsection, we assume some familiarity with the
foundations of algebraic number theory. Let K be a global field, i.e., a finite
extension of Q (an algebraic number field), or of Fp(t) for some prime p (an
algebraic function field). We write Ω for the set of places of K, including the
infinite ones (which exist only if K has characteristic zero), and by Kv the
completion of K at the place v ∈ Ω; the natural embedding λv : K → Kv makes
the image λv(K) a dense subfield of Kv relative to the v-adic topology. The set
of real places of K will be denoted by S , so we have a natural identification
Kv = R for v ∈ S ; in fact, the assignment v 7→ λv determines a bijective
correspondence between S and the set of embeddings K → R. Note that S is
empty unless K has characteristic zero. Given an algebra A (resp. a quadratic
form Q) over K, we abbreviate Av = A ⊗K Kv (resp. Qv = Q ⊗K Kv) for v ∈ Ω.

The key to understand composition algebras over K is provided by the Hasse-
Minkowski theory of quadratic forms:

23.17 Theorem (Hasse-Minkowski). With the notation of 23.16, the following
statements hold.
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(a) A quadratic form Q over K is isotropic if and only if Qv is isotropic
over Kv for all v ∈ Ω.

(b) Regular quadratic forms Q, Q′ over K are isometric if and only if Qv,
Q′v are isometric over Kv for all v ∈ Ω.

References See O’Meara [204, 66:1, 66:4] or Scharlau [255, Chap. 5, 7.2,
7.3] for K of characteristic , 2. For K of characteristic 2, see [236, Thm. 3.2]

□

Since a regular quadratic form Q over a field represents a scalar α if and only
if the form ⟨−α⟩quad ⊥ Q is isotropic, the first part of the Hasse-Minkowski
theorem immediately implies:

23.18 Corollary. A regular quadratic form Q over K represents an element
α ∈ K if and only if Qv represents λv(α) ∈ Kv for all v ∈ Ω. □

Combining the second part of Thm. 23.17 with the norm equivalence the-
orem 23.5, it follows that composition algebras over number fields are com-
pletely determined by their local behavior:

23.19 Corollary. Composition algebras C and C′ over K are isomorphic if
and only if Cv and C′v are isomorphic over Kv for all v ∈ Ω. □

Corollary 23.19 may be regarded as the first step towards the classification
of composition algebras over number fields. In order to complete this clas-
sification, it seems natural to invoke another fundamental fact from Hasse-
Minkowski theory: every “local family” of regular quadratic forms Q(v) over
Kv, v ∈ Ω, has a “global realization” by a regular quadratic form Q over K
satisfying Qv � Q(v) for all v ∈ Ω if and only if a certain obstruction, based
on Hilbert’s reciprocity law and involving Hasse symbols, vanishes. But since
there is no a priori guarantee that the property of being the norm of a composi-
tion algebra descends from the totality of forms Qv, v ∈ Ω, to the form Q, one
has to argue in a different manner.

For simplicity, we confine ourselves to quaternion and octonion algebras.
The classification of the former is accomplished by the following result from
class field theory, which we record (again) without proof.

23.20 Theorem. With the notation of 23.16, let T ⊆ Ω be a finite set consisting
of an even number of real or finite places of K. Then there exists a quaternion
algebra B over K, unique up to isomorphism, such that Bv is split for all v ∈
Ω \ T and a division algebra for all v ∈ T.

References See O’Meara [204, 71:19] if K has characteristic 0 and [102,
Cor. 6.5.4] if K has characteristic , 0.
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Recall from 23.13 and 23.15 (iii) that Kv, for v ∈ T , admits precisely one
quaternion division algebra, so uniqueness of B in the theorem follows from
Cor. 23.19. □

The classification of octonion algebras over algebraic function fields is an
easy consequence of Cor. 23.19 since there are no infinite places. Indeed, we
have the following.

23.21 Corollary. For a global field K, we have: If there are no homomor-
phisms K → R, then every octonion algebra over K is split. □

Over algebraic number fields, the classification of octonion algebras is only
slightly more complicated.

23.22 Theorem (Albert-Jacobson [11, Thm. 11]). Let K be a number field,
and write B := Cay(K;−1,−1) as a quaternion algebra over K. Then every oc-
tonion algebra over K is isomorphic to Cay(B, µ) for some µ ∈ K×. Moreover,
given µ, µ′ ∈ K×, the following conditions are equivalent.

(i) Cay(B, µ) � Cay(B, µ′).
(ii) λv(µµ′) > 0 for all v ∈ S with the notation of 23.16.

There is no conflict between the theorem and Cor. 23.21. In the case where
the two results overlap, i.e., where K is a number field with no real places,
condition (ii) of the theorem holds vacuously, and (i) says that every octonion
algebras is isomorphic to the split one, Cay(B, 1).

Proof For the first part, it will be enough to prove that every octonion algebra
C over K contains a unital subalgebra isomorphic to B. To this end, we claim
that every regular sub-form of nC having dimension at least 5 represents the
element 1 ∈ K.

Indeed, let Q be such a sub-form. By Cor. 23.18, it suffices to show for all
v ∈ Ω that Qv represents the element 1 ∈ Kv. If Cv is split, nCv has maxi-
mal Witt index, and a dimension argument shows that every maximal totally
isotropic subspace of Cv relative to nCv intersects Qv non-trivially. Thus Qv is
isotropic, hence universal and so represents 1. On the other hand, if Cv is a
division algebra, v ∈ S must be real (23.12, 23.15), forcing nCv to be positive
definite. But then so is Qv, which therefore again represents 1. This proves our
claim. We first apply the claim to n0

C , the restriction of nC to the pure octonions
C0 = Ker(tC), and find an element j1 ∈ C satisfying tC( j1) = 0, nC( j1) = 1.
By Cor. 18.9 and Prop. 19.8, D := K[ j1] � Cay(K,−1) is a quadratic étale
subalgebra of C. Applying our claim once more, this time to the restriction
of nC to D⊥, yields an element j2 ∈ D⊥ satisfying nC( j2) = 1, and invoking
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Corollary 18.9 again, we see that the subalgebra of C generated by D and j2
is isomorphic to B, giving the first part of the theorem. As to the second, we
conclude Cv � Cay(H, λv(µ)), C′v � Cay(H, λv(µ′)) for all v ∈ S , and since
Cv,C′v are both split for v ∈ Ω \ S (23.12, 23.15), we can apply Corollaries
23.19, 23.6 to obtain the following chain of equivalent conditions.

C � C′ ⇐⇒ ∀v ∈ S : Cv � C′v
⇐⇒ ∀v ∈ S : Cay

(
H, λv(µ)

)
� Cay

(
H, λv(µ′)

)
⇐⇒ ∀v ∈ S : λv(µµ′) ∈ nH(H×) = R×+.

□

23.23 Corollary (Zorn [299]). With the notation of 23.16, there are precisely
2|S | isomorphism classes of octonion algebras over K.

Proof Adopting the notation of Thm. 23.22, let T ⊆ S . We apply the weak
approximation theorem (O’Meara [204, 11:8]) and find an element µT ∈ K
satisfying

|λv(µT ) + 1| < 1 (v ∈ T ), |λv(µT ) − 1| < 1 (v ∈ S \ T ).

Up to isomorphism, the octonion algebra CT := Cay(B, µT ) does not depend on
the choice of µT (Thm. 23.22), so the assignment T 7→ CT gives a well-defined
map from 2S to the set of isomorphism classes of octonion algebras over K.
Conversely, let C be an octonion algebra over K. Then TC := {v ∈ S | Cv � O}

is a subset of S , and C 7→ TC gives a map in the opposite direction. Since the
two maps thus defined are easily seen to be inverse to one another, the assertion
follows. □

23.24 Remark. Given a family of octonion algebras C(v) over Kv, v ∈ Ω,
Cor. 23.23 shows that there always exists an octonion algebra C over K, unique
up to isomorphism, which satisfies Cv � C(v) for all v ∈ Ω, so the Hilbert reci-
procity law yields no obstructions when dealing with octonion norms.

Finally, we turn to the classification of composition algebras over Z. The
proof of the following result will use some standard facts about the valuation
theory of the p-adics.

23.25 Theorem. Composition algebras over the integers are either split or
isomorphic to the Dickson-Coxeter octonions.

Proof If the rank is 1, the assertion is obvious. If the rank is 2 or 8, it will
be verified in Exercises 23.38 and 23.39 below. Hence it remains to show that
any quaternion algebra C over Z is split. For sake of contradiction, suppose
C is not split, which by Cor. 22.19 and the Hasse-Minkowski Theorem 23.17
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implies that C ⊗Z Qv is division for some place v of Q. Note that C is a free
Z-module, so C is naturally contained in C ⊗Z R for every ring R containing Z.

If v = ∞ is the infinite place, then Qv = R, C ⊗ Qv � H is the Hamiltonian
quaternions, and (C, nC) is a unimodular positive definite integral quadratic
lattice. But, as we have noted in 4.6, such lattices exist only in ranks divisible
by 8 while (C, nC) has rank 4.

Therefore, v = vp is the p-adic place of Q for some prime p ∈ Z, we have
Qv = Qp and put Dp := C ⊗Z Qp. Since Dp has no zero divisors, by [212,
Prop. 1] the assignment x 7→ 1

2 vp(nDp (x)) yields the unique extension of the
p-adic valuation vp of Qp to a discrete valuation of Dp, with corresponding
valuation ring op = {x ∈ Dp | vp(nDp (x)) ≥ 0} and valuation ideal mp =

{x ∈ Dp | vp(nDp (x)) > 0} making op/mp a division algebra over Fp. Regarding
Cp := C⊗ZZp canonically as a Zp-subalgebra of Dp (which we may do because
C is a flat Z-module and Zp ⊂ Qp), we clearly have Cp ⊆ op. Conversely, let
u ∈ op. Then nDp (u,−) : Cp → Zp is a linear form, and since Cp is a regular
composition algebra over Zp (C being one over Z), we find an element u′ ∈ Cp

such that nDp (u,−) = nCp (u′,−) on Cp. But Cp generates Dp as a Qp-algebra,
and we obtain u = u′, hence Cp = op. On the other hand, op/pop = Cp/pCp =

Cp ⊗Zp Fp = C ⊗Z Fp is a quaternion algebra over the finite field Fp, hence split
(23.14) and simple. This implies mp = pop, and we conclude that op/pop is a
division algebra, a contradiction. □

23.26 Vista: splitting fields of composition algebras. Suppose C is a com-
position algebra over a field F. We say that a field K ⊇ F is a splitting field
of C if the base change CK is split over K. In this subsection, we assemble a
few observations about splitting fields of C. We may of course assume that C
itself is not split, i.e., C is a division algebra; we may also assume that it has
dimension at least 2.

(a) The smallest nontrivial case, where K is a quadratic field extension of F,
is handled by Exc. 23.40 (a). It says: K is a splitting field of C if and only if C
contains a subalgebra isomorphic to K.

(b) If [K : F] is odd, then (by Springer’s theorem for quadratic forms under
odd-degree extensions [72, Cor. 18.5]) (nC)K is anisotropic because nC is, so
CK is a division algebra.

(c) For dimension 4, Detlev Hoffmann provides the following example of a
quaternion algebra C and K of degree 4 over F such that CK is split yet the
largest F-subalgebra of K that embeds in C is F itself. Take F = Q and C :=
Ga(H)Q = Cay(Q;−1,−1). It is a division algebra because CR is the division
algebraH. Now, the polynomial f := t4−t+1 is irreducible inQ[t] with Galois
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group the symmetric group S4 (exercise), so K := Q[t]/( f ) is a field of degree
4 over Q and there are no fields — hence no finite-dimensional Q-algebras —
properly lying between Q and K. In particular, the largest subalgebra of K that
embeds in C is Q itself. Yet in Q[t] we have

(t3 + t2 − 1)2 + (t3)2 + (t2 + 1)2 = 2(1 + t + t2) f ,

so the norm of CK is isotropic, i.e., CK is split. See Exc. 23.42 for another
example over Q, and see Hoffmann’s paper [122] for examples where F has
characteristic 2 and K is purely inseparable.

23.27 Vista: relations between pairs of composition algebras. Continuing to
talk about composition algebras over a field F, the paper [238] asked whether
two composition F-algebras of the same dimension are determined by the
quadratic fields extensions that they contain. That is, if two quaternion or octo-
nion division algebras contain the same quadratic extensions, are the algebras
themselves isomorphic? It is true for quaternion algebras and many fields such
as a rational function field (in a finite number of variables) over a local field,
global field, real closed field, or algebraically closed field, but not for some
fields that are not finitely generated over such a field, see [93], [246], [48].
(See [163] for the related problem about quaternion algebras with the same
splitting fields.) There even exist fields F such that there are infinitely many
non-isomorphic quaternion or octonion division F-algebras that all share the
same quadratic extensions, see [194] and [23, Rem. 3.5].

From another perspective, Burt Totaro posed in [285] a question in the lan-
guage of algebraic groups that asks: If C and C′ are both quaternion or octonion
algebras, and CKi � C′Ki

for fields Ki, does there exist a field extension K of F
such that [K : F] divides [Ki : F] for all i and CK � C′K? The answer is “yes”
for quaternion algebras (classical) and for octonion algebras it is in [90]. To-
taro’s question is quite general and also applies to the Albert algebras studied
later in the book. The answer is “yes” for reduced Albert algebras by [90], and
the question remains open for Albert algebras that are not reduced.

Exercises
23.28. The Skolem-Noether theorem for composition algebras. Let k be an LG ring, C
a composition algebra of rank r over k and B, B′ ⊆ C two composition subalgebras of
the same rank s ≤ r. Show that every isomorphism from B to B′ can be extended to
an automorphism of C. Conclude that, up to conjugation by automorphisms of O (the
Graves-Cayley octonions), the only non-zero subalgebras of O are R,C,H and O.

23.29. Unital norm equivalences of conic alternative algebras (à la Jacobson-Rickart
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[145]). Let C, C′ be conic alternative k-algebras and suppose f : C → C′ is a unital
norm equivalence.

(a) Show

f (Uxy) = U f (x) f (y), (1)(
f (xy) − f (x) f (y)

)(
f (xy) − f (y) f (x)

)
= [ f (x), f (xy), f (y)] (2)

for all x, y ∈ C. In particular, the left-hand side of (2) is symmetric in x, y.
(b) Conclude from (1) and its linearizations that if c ∈ C is an elementary idempo-

tent, so is c′ := f (c) ∈ C′ and

f
(
C12(c) +C21(c)

)
= C′12(c′) +C′21(c′).

23.30. Unital norm equivalences of quaternion algebras (Petersson [221]). (a) Show
for quaternion algebras B, B′ over k: if f : B → B′ is a unital norm equivalence, then
there exists a decomposition k = k+ × k− of k as a direct product of ideals such that,
with the corresponding decompositions

B = B+ × B−, B± = Bk± , B′ = B′+ × B′−, B′± = B′k± , (1)

f = f+ × f−, f± = fk± ,

f+ : B+ → B′+ is an isomorphism of quaternion algebras over k+, and f− : B− → B′− is
an anti-isomorphism of quaternion algebras over k−. Reduce to the case that k is a local
ring by applying Exc. 9.29. Then imitate the beginning of the proof of the implication
(iii)⇒ (i) in the norm equivalence theorem.

(b) Use (a) to prove a slightly weakened version of Knus’s theorem [157, V, (4.3.2)]
(see also Gille [97, 2.4]): for quaternion algebra B, B′ over k, the following conditions
are equivalent.
(i) B and B′ are isomorphic.
(ii) B and B′ are norm equivalent.
(iii) B and B′ are norm similar.

23.31. Elementary idempotents and unital norm equivalences. Write ei j (i, j = 1, 2) for
the usual matrix units in the split quaternion algebra B = Mat2(k) and prove for any
element c ∈ B that there exists an automorphism of B sending e11 to c if and only if
there exists a unital norm equivalence of B sending e11 to c.

23.32. Octonionic norm equivalences. Let C be an octonion algebra over k and p ∈ C×.
Show that LpRp−1 is

(a) always a unital norm equivalence of C,
(b) an automorphism of C if and only if p3 ∈ k1C ,
(c) never an anti-automorphism of C.

(Hint: Use Exercise 15.17 (c).)

23.33. Isotopes of composition algebras. Show that isotopes of a composition algebra
C over k are composition algebras that are regular if C is, and that they are isomorphic
to C if C is associative or k is an LG ring.

23.34. Zero-divisor pairs of the real sedenions. Recall that the real sedenions S =
Cay(O,−1) = O ⊕ O j as defined in Exc. 19.29 form a conic real algebra with norm
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nS canonically isometric to nO ⊥ nO. By a zero-divisor pair of S we mean a pair (x, y)
of non-zero elements in S such that xy = 0. Note that if (x, y) is a zero-divisor pair of S,
then so is (αx, βy) for all α, β ∈ R×. Thus the study of arbitrary zero-divisor pairs in S is
equivalent to the one of zero-divisor pairs with pre-assigned norm. With this in mind,
we define

Zer(S) := {(x, y) ∈ S × S | xy = 0, nS(x) = nS(y) = 2} (1)

and let G := Aut(O) act diagonally first on S and then on Zer(S) via

G × Zer(S) −→ Zer(S),
(
σ, (x, y)

)
7−→

(
σ(x), σ(y)

)
.

Use Exc. 19.29 and Exc. 2.8 to show that Zer(S) becomes a principal homogeneous
G-space in this way , i.e., the action of G on Zer(S) is simply transitive.
Remark. This result is a refined version of Moreno’s theorem [199, Cor. 2.14], which
says that Zer(O) ⊆ S × S is a closed subset homeomorphic to Aut(O).

The following sequence of exercises is designed to put the units of the Coxeter
octonions (Exc. 4.13) in a broader perspective.

23.35. Let q be a prime power and C := Zor(Fq) the unique octonion algebra over the
field with q elements. Show

|C×| = q3(q − 1)(q4 − 1), |{x ∈ C | nC(x) = 1}| = q3(q4 − 1),

23.36. Positive definite integral quadratic modules and minimal vectors. By a positive
definite integral quadratic module we mean a quadratic module (M,Q) over Z such
that M is a finitely generated free abelian group and the quadratic form Q : M → Z
is positive definite. Then M is an integral quadratic lattice in the positive definite real
quadratic space (MR,QR) in the sense of 3.6 and, conversely, every integral quadratic
lattice in a positive definite real quadratic space becomes a positive definite integral
quadratic module in a natural way.The discriminant of a positive definite integral quad-
ratic module may be defined as in 3.12. A positive definite integral quadratic module
is called indecomposable if it cannot be written as the sum of two orthogonal non-zero
submodules.

Now let (M,Q) be a positive definite integral quadratic module over Z. A vector x ∈
M is said to be minimal if cannot be written as the sum of two vectors of strictly shorter
length: x = y + z with y, z ∈ M and Q(y) < Q(x), Q(z) < Q(x) is impossible. The set of
minimal vectors in (M,Q) will be denoted by Min(M,Q). Two minimal vectors x, y ∈ M
are said to be equivalent if there exists a finite sequence x = x0, x1, . . . , xk−1, xk = y of
minimal vectors in M such that Q(xi−1, xi) , 0 for 1 ≤ i ≤ k.

(a) Show that Min(M,Q) generates the additive group M.
(b) Show that equivalence of minimal vectors defines an equivalence relation on

Min(M,Q).
(c) Denoting by [x] the equivalence class of x ∈ Min(M,Q) with respect to the

equivalence relation defined in (b), and setting M[x] :=
∑

y∈[x] Zy, prove Eich-
ler’s theorem: (M,Q) splits into the orthogonal sum of indecomposable inte-
gral quadratic submodules M[x], where [x] varies over the equivalence classes
of Min(M,Q).

23.37. Let C be a multiplicative conic alternative algebra over Z such that the following
conditions are fulfilled.
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(a) C is free of rank 8 as a Z-module.
(b) The norm of C is positive definite.
(c) The discriminant of the integral quadratic module (C, nC) is odd.

Prove that |C×| ≤ 240, and that if |C×| = 240, then (C, nC) is an indecomposable pos-
itive definite integral quadratic module. (Hint: Reduce C mod 2 to obtain an octonion
algebra C† over F2 and show that the fibers of the natural map C× → C†× consist of two
elements. Then apply Exercises 23.35–23.36.)

23.38. Show that a quadratic étale algebra over the integers is split. Conclude that
the algebra of Hurwitz quaternions cannot be obtained from the Cayley-Dickson con-
struction: there does not exist a quadratic Z-algebra R and a scalar µ ∈ Z such that
Hur(H) � Cay(R, µ).

23.39. Classification of octonion algebras over the integers (Van der Blij-Springer
[286]). Show that an octonion algebra over Z is either split or isomorphic to the Dickson-
Coxeter octonions. In order to do so, let C be a non-split octonion algebra over Z with
product x · y, write xy for the product in DiCo(O) and perform the following steps.

(a) Reduce to the case that C = DiCo(O) as additive groups, 1C = 1O and nC =
nDiCo(O). (Hint: Use 4.6 and Cor. 22.19.)

(b) Show that there is an isomorphism ψ : C⊗ZF2
∼
→ DiCo(O)⊗ZF2 and use the fact

that the orthogonal group of nC ⊗Z F2 is generated by orthogonal transvections
(Dieudonné [67, Prop. 14]) to lift ψ to an orthogonal transformation φ : C →
DiCo(O) such that φ(x · y) = ±φ(x)φ(y) for all x, y ∈ C×. (Hint: Use the fact,
known from the solution to Exc. 23.37, that the map C× → (C ⊗Z F2)× induced
by the natural surjection C → C ⊗Z F2 is itself surjective and that each fiber
consists of two elements.)

(c) Now prove that φ or −φ is an isomorphism.

23.40. Splitting fields of composition algebras. Let C be a composition algebra over a
field F. Prove:

(a) (Ferrar [81, Lemma 5], Petersson-Racine [223, Prop. 4.3]). For a quadratic field
extension K of F to be a splitting field of C it is necessary and sufficient that
one of the following hold.
(i) C � F.
(ii) C is split quadratic étale.
(iii) There exists an F-embedding K ↪→ C.

(b) Suppose F has characteristic , 2, so K � F[
√
α] for some non-square α ∈ F×,

and suppose that C , F. Show: K is a splitting field for C if and only if the
quadratic form ⟨α⟩quad ⊥ nC |C0 is isotropic over F.

23.41. Let C be a field extension of F of degree 2 or 3, and let K be any field containing
F. Prove: C ⊗F K is not a field if and only if there is an F-embedding C ↪→ K.

23.42 (Hoffmann). Take C := Cay(Q;−7,−15), a quaternion algebra, and define K :=
Q(
√
−1,
√

5). Verify that C is a division algebra, CK is split, and no subalgebra E lying
properly between Q and K embeds in C.
Remark. If F has characteristic 2 and C is a quaternion F-algebra split by a biquadratic
extension K = F(

√
a,
√

b), D. Hoffmann proved that there is a quadratic extension E :=
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F(
√

c) contained in K such that CE is split, see [122, Cor. 4.3]. This is a stark contrast
to the example provided in this exercise. It is interesting also to compare Hoffmann’s
result with Albert’s theorem [102, Thm. 9.1.1] on p-algebras split by purely inseparable
extensions.

24 Affine schemes

A treatment of octonions and Albert algebras over commutative rings would be
incomplete without taking advantage of, and giving applications to, the theory
of affine group schemes. Our aim in the present section will be to carry out a
first thrust into this important topic. We do so by explaining the most elemen-
tary and basic notions from scheme theory and by illustrating them through a
number of simple examples. We always focus attention on what is absolutely
essential for the intended applications. Though a considerable amount of what
we will be doing here retains its validity under much more general circum-
stances (e.g., in the setting of category theory), generalizations of this sort will
be completely ignored.

Throughout we let k be an arbitrary commutative ring. In our treatment of
affine k-schemes, we follow Demazure-Gabriel [61] by adopting the functorial
point of view. However, in order to keep matters simple, the delicate formalism
developed by loc. cit. in order to stay within a consistent framework of set
theory will be avoided; instead, we favor a more stream-lined “naive” approach
as given, e.g., by Jantzen [146]. Our notation will combine that of Jantzen [146]
and Loos [174].

24.1 k-functors, subfunctors and direct products. By a k-functor we mean
a functor X from the category of unital commutative associative k-algebras to
the category of sets:

X : k-alg −→ set.

Morphisms of k-functors are defined as natural transformations, so if X,X′ are
k-functors, a morphism f : X → X′ is a family of set maps f (R) : X(R) →
X′(R), one for each R ∈ k-alg, such that, for each morphism ϱ : R → R′ in
k-alg, the diagram

X(R)
f (R) //

X(ϱ)
��

X′(R)

X′(ϱ)
��

X(R′)
f (R′)
// X′(R′)

(1)
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commutes. We write k-fct for the category of k-functors. Given k-functors X,
X′, we will write Mor(X,X′) for the totality of morphisms from X to X′. Note
that a morphism f : X → X′ is an isomorphism if and only if the set maps
f (R) : X(R)→ X′(R) are bijective for all R ∈ k-alg.

By a subfunctor of a k-functor X we mean a k-functor Y such that Y(R) ⊆
X(R) for all R ∈ k-alg and the inclusion maps i(R) : Y(R) ↪→ X(R) give rise to
a morphism i : Y→ X of k-functors; in other words, for any morphism ϱ : R→
R′ in k-alg, we have X(ϱ)(Y(R)) ⊆ Y(R′), and the set map Y(ϱ) : Y(R)→ Y(R′)
is induced by X(ϱ) via restriction. We sometimes write Y ⊆ X for Y being a
subfunctor of X.

Let X1,X2 be k-functors. Then we define a k-functor X1 × X2, called their
direct product, by setting (X1 ×X2)(R) := X1(R) ×X2(R) for all R ∈ k-alg and
(X1×X2)(ϱ) := X1(ϱ)×X2(ρ) for all morphisms ϱ : R→ R′ in k-alg. The direct
product comes equipped with two projection morphisms pi : X1 ×X2 → Xi for
i = 1, 2 such that pi(R) is the projection from X1(R) × X2(R) onto the i-th
factor, for each R ∈ k-alg. It then follows that X1 × X2 together with p1, p2 is
an honest-to-goodness direct product in the category k-fct because it satisfies
the corresponding universal property.

24.2 The concept of an affine k-scheme. Let R ∈ k-alg. We define

Spec(R) := Homk-alg(R,−) : k-alg −→ set, (1)

so Spec(R) is the k-functor given by

Spec(R)(S ) = Homk-alg(R, S ) (2)

for all S ∈ k-alg and

Spec(R)(σ) : Homk-alg(R, S ) −→ Homk-alg(R, S ′), (3)

Homk-alg(R, S ) ∋ φ 7−→ Spec(R)(σ)(φ) := σ ◦ φ ∈ Homk-alg(R, S ′)

for all morphisms σ : S → S ′ in k-alg. By an affine k-scheme or an affine
scheme over k we mean a k-functor that is isomorphic to Spec(R), for some
R ∈ k-alg. We view affine k-schemes as a full subcategory of k-fct, denoted by
k-aff.

Let φ : R′ → R be a morphism in k-alg. Then

Spec(φ) := Homk-alg(−, φ) : Spec(R) −→ Spec(R′) (4)

is a morphism of k-functors, explicitly given by

Spec(φ)(S ) : Spec(R)(S ) −→ Spec(R′)(S ), (5)

Homk-alg(R, S ) ∋ ψ 7−→ Spec(φ)(S )(ψ) := ψ ◦ φ ∈ Homk-alg(R′, S )



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

206 Composition algebras

for all S ∈ k-alg. If φ′ : R′′ → R′ is another morphism in k-alg, we have

Spec(1R) = 1Spec(R), Spec(φ ◦ φ′) = Spec(φ′) ◦ Spec(φ). (6)

Summing up we conclude that the data presented in (1), (4) define a contra-
variant functor

Spec : k-alg −→ k-fct, (7)

which may also be regarded as a contra-variant functor

Spec : k-alg −→ k-aff. (8)

In the latter capacity, it will be seen in due course to induce an anti-equivalence
of categories.

24.3 Affine n-space. Let n be a positive integer. We define a k-functor An
k ,

called affine n-space, by setting An
k(R) := Rn as a set and

An
k(ϱ) := ϱn : Rn −→ R′n, (1)

Rn ∋ (r1, . . . , rn) 7−→
(
ϱ(r1), . . . , ϱ(rn)

)
∈ R′n

for a morphism ϱ : R→ R′ in k-alg as a set map. With independent indetermi-
nates t1, . . . , tn, we claim that

An
k � Spec(k[t1, . . . , tn]) (2)

and, in particular, that An
k is an affine scheme over k. Indeed, letting R ∈ k-alg

and r1, . . . , rn ∈ R, write

εn(R)(r1, . . . , rn) : k[t1, . . . , tn] −→ R

for the morphism in k-alg given by

εn(R)(r1, . . . , rn)(g) := g(r1, . . . , rn) (g ∈ k[t1, . . . , tn]). (3)

Note that εn(R)(r1, . . . , rn) is uniquely determined by the condition of sending
ti to ri for 1 ≤ i ≤ n. In this way we obtain a bijective set map

εn(R) : Rn ∼
−→ Homk-alg

(
k[t1, . . . , tn],R) = Spec

(
k[t1, . . . , tn]

)
(R)

varying functorially with R. Hence

εn : An
k
∼
−→ Spec

(
k[t1, . . . , tn]

)
is an isomorphism of k-functors.
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24.4 Proposition (Yoneda Lemma). Let X be a k-functor and R ∈ k-alg. Then
the assignment

Mor
(
Spec(R),X

)
∋ f 7−→ ΦR,X( f ) := f (R)(1R) ∈ X(R) (1)

defines a bijection

ΦR,X : Mor
(
Spec(R),X

) ∼
−→ X(R), (2)

and we have

Φ−1
R,X(x)(S )(φ) = X(φ)(x) (3)

for all x ∈ X(R), S ∈ k-alg, φ ∈ Homk-alg(R, S ).

Proof Given x ∈ X(R), S ∈ k-alg, we define a set map

Θ(x)(S ) : Spec(R)(S ) −→ X(S )

by

Θ(x)(S )(φ) := X(φ)(x)
(
φ ∈ Homk-alg(R, S )

)
. (4)

For a morphism σ : S → S ′ in k-alg it follows easily from (24.2.3) that the
diagram

Spec(R)(S )
Θ(x)(S ) //

Spec(R)(σ)
��

X(S )

X(σ)
��

Spec(R)(S ′)
Θ(x)(S ′)

// X(S ′)

commutes. Thus Θ(x) ∈ Mor(Spec(R),X), and we have obtained a map

Θ : X(R) −→ Mor
(
Spec(R),X

)
.

It is now straightforward to verify that the composition Θ ◦ ΦR,X is the iden-
tity on Mor(Spec(R),X) and ΦR,X ◦ Θ is the identity on X(R). Hence ΦR,X is
bijective with inverse Θ. □

24.5 Corollary. Let R,R′ ∈ k-alg.

(a) The map

Mor
(
Spec(R),Spec(R′)

) ∼
−→ Homk-alg(R′,R), (1)

f 7−→ ΦR,Spec(R′)( f ) = f (R)(1R)

is a bijection with inverse

Homk-alg(R′,R)
∼
−→ Mor

(
Spec(R),Spec(R′)

)
, φ 7−→ Spec(φ). (2)
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(b) φ ∈ Homk-alg(R′,R) is an isomorphism if and only if

Spec(φ) ∈ Mor(Spec(R),Spec(R′))

is an isomorphism, and in this case Spec(φ)−1 = Spec(φ−1).

Proof Specializing Prop. 24.4 to X := Spec(R′) and applying (24.2.3) and
(24.2.5), we obtain (a). It remains to establish (b). If φ is an isomorphism,
then so is Spec(φ), by (24.2.6), with Spec(φ)−1 = Spec(φ−1). Conversely, sup-
pose Spec(φ) is an isomorphism. Then there exists a morphism g : Spec(R′)→
Spec(R) such that g ◦ Spec(φ) = 1Spec(R), Spec(φ) ◦ g = 1Spec(R′). Here (a) im-
plies g = Spec(φ′) for some morphism φ′ : R→ R′ in k-alg. From (24.2.6) we
therefore deduce Spec(φ ◦φ′) = 1Spec(R), Spec(φ′ ◦φ) = 1Spec(R′), and (a) again
shows that φ is an isomorphism with inverse φ′. □

24.6 Regular functions. With affine 1-space A1
k , also called the affine line, we

consider the contra-variant functor

k[−] := Mor(−,A1
k) : k-fct −→ set, (1)

so we have

k[X] := Mor(X,A1
k) (2)

for all k-functors X and

k[ f ] : k[X′] −→ k[X], (3)

Mor(X′,A1
k) ∋ f ′ 7−→ k[ f ]( f ′) := f ′ ◦ f ∈ Mor(X,A1

k)

for all morphisms f : X→ X′ of k-functors. Since A1
k(R) = R for all R ∈ k-alg,

the set k[X], for any k-functor X, carries the structure of a unital commutative
associative k-algebra by defining the scalar multiple α f ∈ k[X], the sum f1 +
f2 ∈ k[X] and the product f1 f2 ∈ k[X] according to the rules

(α f )(R)(x) := α f (R)(x),

( f1 + f2)(R)(x) := f1(R)(x) + f2(R)(x), (4)

( f1 f2)(R)(x) := f1(R)(x) f2(R)(x)

for α ∈ k, f , f1, f2 ∈ k[X], R ∈ k-alg and x ∈ X(R). Thus k[X] ∈ k-alg, with

1k[X](R)(x) = 1R
(
R ∈ k-alg, x ∈ X(R)

)
. (5)

We call k[X] the k-algebra of regular functions on X. Note for R ∈ k-alg that
the bijection

ΦR,A1
k
: k[Spec(R)]

∼
−→ R (6)
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of Prop. 24.4 is an isomorphism of k-algebras.
If f : X→ X′ is a morphism of k-functors, then one checks easily that

k[ f ] : k[X′] −→ k[X]

is a morphism of unital commutative associative k-algebras. Thus the functor
(1) may actually be viewed as a contra-variant functor

k[−] = Mor(−,A1
k) : k-fct −→ k-alg, (7)

from which we recover (1) by composing (7) with the forgetful functor k-alg→
set. On the other hand, restricting the functor (7) to the category of affine k-
schemes, we obtain a contra-variant functor

k[−] = Mor(−,A1
k) : k-aff −→ k-alg. (8)

The fact that all these functors are denoted by the same symbol should not
cause any confusion.

24.7 Example. Let n be a positive integer. For g ∈ k[t1, . . . , tn], the set maps

g̃(R) : Rn −→ R, (r1, . . . , rn) 7−→ g̃(R)(r1, . . . , rn) := g(r1, . . . , rn) (1)

vary functorially with R ∈ k-alg, which therefore give rise to an element g̃ ∈
Mor(An

k ,A
1
k) = k[An

k]. On the other hand, g determines a unique morphism
g∗ : k[t]→ k[t1, . . . , tn] in k-alg given by

g∗(h) := h(g) (h ∈ k[t]), (2)

and one checks that the diagram

Rn g̃(R) //

εn(R) �
��

R

� ε1(R)
��

Spec(k[t1, . . . , tn])(R)
Spec(g∗)(R)

// Spec(k[t])(R)

(3)

commutes. Hence, by Cor. 24.5 (a), since every morphism k[t]→ k[t1, . . . , tn]
in k-alg has the form g∗ for a unique g ∈ k[t1, . . . , tn],

k[t1, . . . , tn]
∼
−→ k[An

k], g 7−→ g̃ (4)

is an isomorphism of k-algebras. We usually identify

k[t1, . . . , tn] = k[An
k], k[t1, . . . , tn] ∋ g = g̃ ∈ k[An

k] (5)

accordingly.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

210 Composition algebras

24.8 Proposition. The contra-variant functors

Spec : k-alg −→ k-fct, k[−] : k-fct −→ k-alg

are adjoint to one another in the sense that, for all k-functors X and all R ∈
k-alg, there exists a bijection

ΨX,R : Mor
(
X,Spec(R)

) ∼
−→ Homk-alg(R, k[X]),

natural in X and R, given by

ΨX,R( f )(r)(S )(x) = f (S )(x)(r) (1)

for all f ∈ Mor(X,Spec(R)), r ∈ R, S ∈ k-alg, x ∈ X(S ). Moreover,

Ψ−1
X,R(g)(S )(x)(r) = g(r)(S )(x) (2)

for all g ∈ Homk-alg(R, k[X]), S ∈ k-alg, x ∈ X(S ), r ∈ R.

Proof We define Ψ := ΨX,R by (1). Since f (S )(x) : R → S is a morphism in
k-alg, so will beΨ( f ) : R→ k[X] once we have shown that the left-hand side of
(1) varies functorially with S . Thus, fixing r ∈ R and a morphism σ : S → S ′

in k-alg, we must show with g := Ψ( f ) that the diagram

X(S )
g(r)(S ) //

X(σ)
��

S

σ

��
X(S ′)

g(r)(S ′)
// S ′

(3)

commutes, which follows by a straightforward computation from (1) and the
commutativity of

X(S )
f (S ) //

X(σ)
��

Spec(R)(S )

Spec(R)(σ)
��

X(S ′)
f (S ′)
// Spec(R)(S ′).

Conversely, define Ψ′ : Homk-alg(R, k[X])→ Mor(X,Spec(R)) by

Ψ′(g)(S )(x)(r) := g(r)(S )(x) (4)

for g ∈ Homk-alg(R, k[X]), S ∈ k-alg, x ∈ X(S ), r ∈ R. Again we must show
that the set map Ψ′(g)(S ) : X(S )→ Spec(R)(S ) varies functorially with S , i.e.,
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that for a morphism σ : S → S ′ in k-alg the diagram

X(S )
Ψ′(g)(S ) //

X(σ)
��

Spec(R)(S )

Spec(R)(σ)
��

X(S ′)
Ψ′(g)(S ′)

// Spec(R)(S ′)

commutes, which follows from the commutativity of (3) for all r ∈ R. Finally,
the definitions (1), (4) show that the maps Ψ, Ψ′ are inverse to one another. □

24.9 Example. The affine k-scheme Spec(k) satisfies

Spec(k)(R) = Homk-alg(k,R) = {ϑR} (1)

for all R ∈ k-alg, where

ϑR : k −→ R, α 7−→ (ϑR)(α) := α1R (2)

is the unit morphism in k-alg corresponding to R. Hence

Spec(k)(φ)(ϑR) = ϑS (3)

for all morphisms φ : R→ S in k-alg.
Now let X be any k-functor. By Prop. 24.8, there is a unique morphism

σX : X → Spec(k), called the structure morphism of X, and (1), (3) imply for
all R ∈ k-alg that

σX(R) : X(R) −→ Spec(k)(R) = {ϑR}

is the constant map

X(R) ∋ x 7−→ ϑR ∈ Spec(k)(R).

Moreover, every morphism f : X → X′ of k-functors is one over Spec(k) in
the sense that the triangle

X
f

//

σX ##

X′

σX′{{
Spec(k)

commutes. Finally, if X = Spec(R) is an affine k-scheme, then

σX = Spec(ϑR). (4)

24.10 Proposition. (a) Let X be a k-functor. With the notation of Prop. 24.8,

fX := Ψ−1
X,k[X](1k[X]) : X −→ Spec(k[X]) (1)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

212 Composition algebras

is a morphism of k-functors such that

fX(R)(x)(g) = g(R)(x) (2)

for all R ∈ k-alg, x ∈ X(R), g ∈ k[X], and if h : X → X′ is any morphism of
k-functors, then the diagram

X
fX //

h
��

Spec(k[X])

Spec(k[h])
��

X′
fX′
// Spec(k[X′])

(3)

commutes.

(b) With the notation of Prop. 24.4,

fSpec(R) = Spec(ΦR,A1
k
). (4)

(c) A k-functor X is an affine k-scheme if and only if fX is an isomorphism.

Proof (a) That the k-functor fX satisfies (2) follows immediately from (24.8.2).
Using (2), it is now straightforward to verify the commutativity of (3).

(b) Put X := Spec(R). We have noted in (24.6.6) that ΦR,A1
k
: k[X]→ R is an

isomorphism of k-algebras. By Cor. 24.5, therefore,

Spec(ΦR,A1
k
) : X

∼
−→ Spec(k[X]) (5)

is an isomorphism of k-functors. In order to establish (4), let S ∈ k-alg,
x ∈ X(S ), g ∈ k[X]. With Φ := ΦR,A1

k
we must show Spec(Φ)(S )(x)(g) =

fX(S )(x)(g), which follows easily by direct computation since the diagram

Spec(R)(R)
g(R) //

Spec(R)(x)

��

R

x

��
Spec(R)(S )

g(S )
// S

commutes.
(c) follows immediately from (3), (4) and (5). □

24.11 Corollary. The contra-variant functors

k-alg
Spec // k-aff
k[−]

oo

define an anti-equivalence of categories.
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Proof Let X be an affine k-scheme. Then fX : X
∼
→ Spec(k[X]) is an isomor-

phism by Prop. 24.10 (c), and (24.10.3) shows that the family fX, X ∈ k-aff,
determines an isomorphism of functors from 1k-aff to Spec ◦ k[−]. Conversely,
let R ∈ k-alg. Then the bijective map

Φ = ΦR,A1
k
: k[Spec(R)]

∼
−→ R

of Prop. 24.4 by (24.6.6) is an isomorphism of k-algebras. Now let ϱ : R→ R′

be a morphism of k-algebras. Since for all f ∈ k[Spec(R)] the diagram

Spec(R)(R)
f (R) //

Spec(R)(ϱ)
��

R

ϱ

��
Spec(R)(R′)

f (R′)
// R′

commutes, one checks that so does

k[Spec(R)]
ΦR,A1

k

� //

k[Spec(ϱ)]
��

R

ϱ

��
k[Spec(R′)]

ΦR′ ,A1
k

� // R′.

Thus the family ΦR,A1
k
, R ∈ k-alg, determines an isomorphism of functors from

the composition k[−] ◦ Spec to 1k-alg. □

24.12 Notational conventions. (a) Let f : X → X′ be a morphism of k-
functors. If there is no danger of confusion, the set map f (R) : X(R) → X′(R)
for R ∈ k-alg will simply be written as f :

f : X(R) −→ X′(R) (R ∈ k-alg). (1)

For a morphism ϱ : R→ R′ in k-alg and x ∈ X(R), we therefore have

f
(
X(ϱ)(x)

)
= X′(ϱ)

(
f (x)

)
. (2)

(b) Let X be an affine k-scheme. Then we identify

X = Spec(k[X]) (3)

by means of the isomorphism fX of Prop. 24.10. Given R ∈ k-alg, x ∈ X(R)
and f ∈ k[X], an application of (24.10.2) yields x( f ) = fX(R)(x)( f ) = f (R)(x),
hence

x( f ) = f (x). (4)
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(c) Let f : X→ X′ be a morphism of affine k-schemes. By Cor. 24.11, there is
a unique morphism f ∗ : k[X′] → k[X] in k-alg having f = Spec( f ∗). We call
f ∗ the co-morphism of f .

24.13 Direct products of affine schemes. For i = 1, 2, let Xi be an affine
k-scheme. Since the tensor product (over k) is the co-product in the category
k-alg, it should not come as a surprise that the k-functor X1 ×X2 of 24.1 is an
affine k-scheme as well, corresponding to the k-algebra k[X1]⊗ k[X2] ∈ k-alg.
More precisely,

Π : X1 × X2
∼
−→ Spec(k[X1] ⊗ k[X2])

defined by

Π(x1, x2)( f1 ⊗ f2) := x1( f1)x2( f2) = f1(x1) f2(x2)

for R ∈ k-alg, xi ∈ Xi(R), fi ∈ k[Xi], i = 1, 2 is easily checked to be an isomor-
phism of k-functors. Note that the projections pi : X1 × X2 → Xi correspond
to the co-morphisms p∗i : k[Xi] → k[X1] ⊗ k[X2] given by p∗1( f1) = f1 ⊗ 1k[X2]

and p∗2( f2) = 1k[X1] ⊗ f2.

24.14 Remark. The material so far in this section, apart from 24.3 and 24.7, is
not specific to the category k-alg. Speaking roughly, let C be a category that is
locally small in the sense that MorC(A, B) is a set for all objects A, B ∈ C. For
every object A ∈ C, hA defined by hA(B) := MorC(A, B) for B ∈ C defines a
functor C → set. Functors obtained in this way are called representable, and
the Yoneda lemma says that the functor C → Fun(C, set) given by A 7→ hA is
fully faithful, compare Cor. 24.11.

24.15 Closed subfunctors. Let X be an affine k-scheme. For any subset I ⊆
k[X], we use (24.12.4) to define a subfunctor V(I) of X by setting

V(I)(R) :=
{
x ∈ X(R) | x(I) = {0}

}
=

{
x ∈ X(R) | ∀ f ∈ I : f (x) = 0

}
(1)

for all R ∈ k-alg. We call V(I) the closed subfunctor of X determined by I or
simply a closed subfunctor of X. It clearly depends only on the ideal gener-
ated by I. On the other hand, if I ⊆ k[X] is an ideal, with canonical projection
π : k[X] → k[X]/I, then Spec(π) : Spec(k[X]/I) → Spec(k[X]) may be re-
garded as an isomorphism

Spec(π) : Spec(k[X]/I)
∼
−→ V(I). (2)

In particular, closed subfunctors of X are affine k-schemes. If I′ is another ideal
in k[X], with canonical projection π′ : k[X]→ k[X]/I′, then we claim

I ⊆ I′ ⇐⇒ V(I′) ⊆ V(I). (3)
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The implication from left to right being obvious, let us assume V(I′) ⊆ V(I).
Since these are both affine k-schemes, the inclusion V(I′) ↪→ V(I) of closed
subfunctors of X has the form Spec(ϱ) for some morphism ϱ : k[X]/I → k[X]/I′

in k-alg satisfying ϱ ◦ π = π′. Thus I ⊆ Ker(ϱ ◦ π) = Ker(π′) = I′.

24.16 Open subfunctors. Let X be an affine k-scheme. For any subset I ⊆
k[X], we define a subfunctor D(I) of X by setting

D(I)(R) :=
{
x ∈ X(R) | Rx(I) = R

}
=

{
x ∈ X(R) |

∑
f∈I

R f (x) = R
}

(1)

for all R ∈ k-alg. This is indeed a subfunctor of X since, for all morphisms
ϱ : R → R′ in k-alg and all x ∈ X(R), we find finitely many ri ∈ R, fi ∈
I such that

∑
ri fi(x) = 1R, which by (24.12.2) implies

∑
ϱ(ri) fi(X(ϱ)(x)) =∑

ϱ(ri)ϱ( fi(x)) = ϱ(
∑

ri fi(x)) = 1R′ , and we conclude X(ϱ)(x) ∈ D(I)(R′).
Subfunctors of X having the form D(I) for some I ⊆ k[X] are said to be open.

Of particular importance is the case of a principal open subfunctor, defined by
the property that I = { f }, f ∈ k[X], is a singleton. We put X f := D( f ) := D({ f })
and have

X f (R) =
{
x ∈ X(R) | f (x) ∈ R×

}
=

{
x ∈ X(R) | x( f ) ∈ R×

}
. (2)

The elements x ∈ X(R) = Homk-alg(k[X],R) having x( f ) ∈ R× can be charac-
terized by the property that they factor through the localization k[X] f , in which
case they do so uniquely. Thus there is a natural identification

X f = Spec
(
k[X] f

)
(3)

such that the co-morphism of the inclusion X f ↪→ X is the canonical map
k[X]→ k[X] f . In particular, principal open subfunctors of affine k-schemes are
affine. Note, however, that an arbitrary open subfunctor of an affine k-scheme
may not be affine.

24.17 k-group schemes. By a k-group functor we mean a functor from the
category k-alg to the category of groups:

G : k-alg −→ grp.

By composing G with the forgetful functor grp → set, we obtain a k-functor,
also denoted by G, to which the formalism of the preceding subsections ap-
plies. By a subgroup functor of G we mean a subfunctor H of G (viewed as
a k-functor) such that H(R) is a subgroup of G(R) for all R ∈ k-alg. Then H
may be regarded as a k-group functor in its own right. More generally, mor-
phisms of k-group functors are defined as natural transformations. Thus, given
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k-group functors G,G′, a morphism f : G → G′ is nothing else than a mor-
phism of k-functors making f (R) : G(R) → G′(R) a group homomorphism for
all R ∈ k-alg.

By an affine k-group scheme, we mean a k-group functor that, regarded as a
k-functor, is isomorphic to an affine k-scheme, so we have G � Homk-alg(R,−)
as k-functors, for some R ∈ k-alg. From now on, we will drop the prefix
“affine” and just talk about k-group schemes to mean affine k-group schemes.

24.18 Remark. Given a k-group scheme G, we obtain for each R ∈ k-alg maps
G(R) × G(R) → G(R), (x, y) 7→ xy, G(R) → G(R), x 7→ x−1 and a constant
map 1 → G(R) whose image is the identity element of G(R). These maps are
compatible with morphisms in k-alg and so define natural transformations of
functors:

µ : G ×G −→ G, i : G −→ G, ε : Spec(k) −→ G.

(Real Lie groups are sometimes defined in a similar way, as in [292].) By
the Yoneda lemma, these correspond to k-algebra homomorphisms of the co-
ordinate algebra

k[G] ⊗ k[G]←− k[G], k[G]←− k[G], k ← k[G].

Hence µ, i, and ε are morphisms of k-schemes satisfying properties that multi-
plication, inversion, and the identity usually do for groups, such as µ(x, i(x)) =
ε. Here is a simple example.

24.19 Examples. (a) The additive group of k is defined as the k-group functor
Ga given by Ga(R) = R (viewed as an additive group) for all R ∈ k-alg and
Ga(φ) = φ for all morphisms φ : R → S in k-alg. Thus Ga = A

1
k as k-functors

and k[Ga] � k[t] canonically. The map k[t] → k[t] ⊗ k[t] corresponding to
addition in R is given by t 7→ t ⊗ 1 + 1 ⊗ t [293, p. 14].

(b) The multiplicative group of k is defined as the k-group functor Gm given
by Gm(R) = R× (viewed as a multiplicative group) for all R ∈ k-alg and
Gm(φ) : R× → S × induced by a morphism φ : R → S in k-alg via restric-
tion. Thus Gm = (A1

k)t as k-functors and k[Gm] � k[t, t−1] canonically. The
map k[t, t−1] → k[t, t−1] ⊗ k[t, t−1] corresponding to multiplication in R× is
given by t 7→ t ⊗ t [293, §2.2].

24.20 Example: constant group schemes. For a finite set Γ, put EΓ for the
product of |Γ| copies of k, indexed by elements of Γ. Put XΓ := Spec(EΓ). If R
is a non-zero connected k-algebra, then the set of R-points XΓ(R) is naturally
identified with Γ. To see this, for each γ ∈ Γ, write 1γ for the element of EΓ
that has a 1 in the copy of k labeled by γ and 0 elsewhere. The collection of
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elements {1γ | γ ∈ Γ} forms a complete orthogonal system of idempotents in
EΓ. For a given homomorphism ϕ ∈ XΓ(R) = Homk-alg(EΓ,R), at most one
γ ∈ Γ has the property that ϕ(1γ) = 1 ∈ R. Since ϕ(1) = 1, we find that at least
one γ ∈ Γ has this property, so there is a unique γ ∈ Γ such that ϕ(1γ) = 1. In
summary, ϕ is a composition EΓ → k → R where the first arrow is projection
on the γ factor and the second arrow is the unit homomorphism, allowing us to
identify ϕ with the element γ ∈ Γ.

Suppose now that Γ is a group. We define a group operation on XΓ(R) by
specifying the corresponding k-algebra homomorphism EΓ → EΓ ⊗ EΓ, for
which it suffices to specify that

1γ 7→
∑

σ, τ ∈ Γ s.t. στ = γ

1σ ⊗ 1τ,

see [293, §2.3]. One can verify that, when R is connected, the identification
of XΓ(R) with Γ is compatible with the group operation on the two sets. A k-
group scheme XΓ obtained in this manner is called a constant group scheme. It
is common to abuse notation and simply write Γ also for the k-group scheme
XΓ.

24.21 Example. For a k-module M, we obtain a k-group functor Ma by setting
Ma(R) := MR = M ⊗ R (viewed as an additive group) for all R ∈ k-alg and
Ma(φ) := 1M ⊗ φ : Ma(R) → Ma(S ) (viewed as an additive group homomor-
phism) for all morphisms φ : R → S in k-alg; regarded just as a k-functor. Ma

has made its appearance before, in our treatment of polynomial laws (§12).
Writing S (M∗) for the symmetric algebra of the dual of M (Bourbaki [28, III,
§6]), we claim that if M is finitely generated projective, then Ma is a k-group
scheme with k[Ma] � S (M∗) canonically.

Indeed, for any R ∈ k-alg, the universal property of the symmetric algebra
combined with 9.2 and Lemma 9.15 yield the following chain of canonical
isomorphisms.

Homk-alg
(
S (M∗),R

)
� Homk(M∗,R) � HomR(M∗ ⊗ R,R)

� (M∗ ⊗ R)∗ � M∗∗ ⊗ R � M ⊗ R = Ma(R).

Keeping track of how these isomorphisms act on individual elements, we ob-
tain an identification

Ma(R) = Homk-alg
(
S (M∗),R

)
such that u ⊗ r for u ∈ M, r ∈ R is the unique unital k-algebra homomorphism
S (M∗)→ R satisfying

(u ⊗ r)(v∗) = ⟨v∗, u⟩r (1)
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for all v∗ ∈ M∗. It is now easily checked that, for any morphism φ : R →
S in k-alg, this identification matches Ma(φ) with Homk-alg(S (M∗), φ), which
completes the proof. In case M is k itself, Ma is just the additive group Ga

defined in 24.19(a).

24.22 Scalar polynomial laws revisited. Since A1
k , the affine line, is nothing

else than the forgetful functor k-alg→ set, it follows for any k-module M that
k[Ma] = Mor(Ma,A

1
k) agrees with the k-algebra of scalar polynomial laws on

M as defined in 12.2. Thus Example 24.21 combined with Cor. 24.11 implies
Polk(M, k) � S (M∗) as k-algebras provided M is finitely generated projective.

24.23 Example. Given a unital associative k-algebra A, we obtain a k-group
functor GL1(A) by setting GL1(A)(R) := A×R (viewed as a multiplicative group)
for all R ∈ k-alg and by letting GL1(A)(φ) : A×R → A×S be the group homo-
morphism induced from a morphism φ : R → S in k-alg via restriction of
1A ⊗ φ : AR → AS .

We claim that GL1(A) is a group scheme over k provided A is finitely gen-
erated projective as a k-module. Indeed, we know from Example 24.21 that
Aa is a group scheme over k. Let f ∈ k[Aa] be any regular function on Aa

such that x ∈ AR, R ∈ k-alg, is invertible if and only if f (x) is invertible in
R (for instance, one could choose f = det ◦L, where L : A → Endk(A) is the
left multiplication of A and det : Endk(A) → k is the determinant, which are
both compatible with base change). Then GL1(A) = (Aa) f as k-functors and
(24.16.3) shows that GL1(A) is a k-group scheme satisfying

k[GL1(A)] � k[Aa] f . (1)

The preceding construction specializes to Gm = GL1(k) but also to

GLn := GL1
(
Matn(k)

)
, (2)

where we have

k[GLn] � k[ti j | 1 ≤ i, j ≤ n]det. (3)

24.24 Example. Specializing 24.23, we let M be any k-module. Then

GL(M) := GL1
(

Endk(M)
)

(1)

is a k-group functor having GL(M)(R) = GL(MR) for all R ∈ k-alg and

GL(M)(φ) : GL(MR) −→ GL(MS ), GL(MR) ∋ η 7−→ ηS ∈ GL(MS ) (2)

for any morphism φ : R → S in k-alg. Moreover, if M is finitely generated
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projective, then so is Endk(M) as a k-module, and 24.23 implies that GL(M) is
a k-group scheme. Moreover, by (24.23.1),

k[GL(M)] = k[Endk(M)a]det. (3)

24.25 Example. Let A be a non-associative k-algebra. We define a k-group
subfunctor Aut(A) of GL(A) by setting Aut(A)(R) := Aut(AR) for all R ∈ k-alg
and

Aut(A)(φ) : Aut(AR) −→ Aut(AS ), Aut(AR) ∋ η 7−→ ηS ∈ Aut(AS )

for all morphisms φ : R → S in k-alg, where we regard S as an R-algebra via
φ and use (9.4.1) to identify AS = (AR)S as S -algebras. We claim:

(∗) If A is finitely generated projective as a k-module, then Aut(A) is a
closed subfunctor of GL(A) and hence, in particular, a k-group scheme,
called the automorphism group scheme of A.

In order to see this, let u, v ∈ A and w∗ ∈ A∗. For R ∈ k-alg we define a set map

fu,v,w∗ (R) : GL(AR) −→ R

by

fu,v,w∗ (η) := fu,v,w∗ (R)(η) :=
〈
w∗R, η(uRvR) − η(uR)η(vR)

〉
for η ∈ GL(AR). It follows immediately from Lemma 9.15 that these set maps
vary functorially with R. Thus fu,v,w∗ ∈ k[GL(A)]. Moreover, since the canon-
ical pairing A∗ × A → k is regular, η ∈ GL(AR) belongs to Aut(AR) if and
only if fu,v,w∗ (η) = 0 for all u, v ∈ A and all w∗ ∈ A∗. Hence we deduce from
24.15 that Aut(A) is the closed subfunctor of GL(A) determined by the ideal
I ⊆ k[GL(A)] generated by the quantities fu,v,w∗ , u, v ∈ A, w∗ ∈ A∗. In particu-
lar, assertion (∗) follows. Note that, since A and A∗ are both finitely generated
as k-modules, so is I as an ideal in k[GL(A)].

24.26 Example. In a similar vein, let Q := (M, q) be a quadratic module over
k. Then

O(Q) := O(M, q) := {η ∈ GL(M) | q ◦ η = q} (1)

is a subgroup of GL(M), called the orthogonal group of Q. (This group was
defined previously in Exc. 11.41.) It may be converted into a k-group functor
by using Cor. 11.5 to define O(Q)(R) := O(QR), QR := (MR, qR), for all R ∈
k-alg, and

O(Q)(φ) : O(Q)(R) −→ O(Q)(S ), O(QR) ∋ η 7−→ ηS ∈ O(QS ) (2)
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for all morphisms φ : R → S in k-alg,where we employ the same identifica-
tions as in 24.25. If M is finitely generated projective, we let (wi)1≤i≤n be a
finite family of generators for M and define set maps

fi(R), fi j(R) : GL(MR) −→ R

for 1 ≤ i, j ≤ n and all R ∈ k-alg by setting

fi(R)(η) := qR
(
η(wiR)

)
− qR(wiR),

fi j(R)(η) := qR
(
η(wiR), η(w jR)

)
− qR(wiR,w jR)

for η ∈ GL(MR). These set maps vary functorially with R, hence define ele-
ments fi, fi j ∈ k[GL(M)], and writing I ⊆ k[GL(M)] for the ideal they gen-
erate, O(Q) is clearly the closed subfunctor of GL(M) determined by I. In
particular, O(Q) is a k-group scheme, called the orthogonal group scheme of
Q.

24.27 Base change. Let k′ be a fixed commutative associative k-algebra with
1. Under restriction of scalars, every k′-algebra becomes a k-algebra, and every
homomorphism of k′-algebras becomes one of k-algebras. In particular, k′-alg
may be viewed canonically as a subcategory, though not a full one, of k-alg:

k′-alg ⊆ k-alg. (1)

Restricting a k-functor X as defined in 24.1 to k′-alg, we obtain a k′-functor,
denoted by Xk′ and called the base change or scalar extension of X from k
to k′. Similarly, restricting a morphism f : X → Y of k-functors to k′-alg, we
obtain a k′-functor fk′ : Xk′ → Yk′ , called the base change or scalar extension
of f from k to k′.

Most of our preceding constructions commute with base change. For in-
stance, we have

(An
k)k′ = A

n
k′ (2)

for any positive integer n. If M is a k-module, then

(Ma)k′ = (Mk′ )a (3)

under the identification (9.4.1) since (Ma)k′ (R′) = M ⊗ R′ = (M ⊗ k′) ⊗k′ R′ =
(Mk′ )R′ = (Mk′ )a(R′) for all R′ ∈ k′-alg, similarly for morphisms in k′-alg.

Let R ∈ k-alg. For R′ ∈ k′-alg, (9.2.5) yields a bijection

canR(R′) : Homk-alg(R,R′)
∼
−→ Homk′-alg(Rk′ ,R′) (4)
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given by

canR(R′)(ϱ)(r ⊗ α′) = α′ϱ(r) (5)

for all ϱ ∈ Homk-alg(R,R′), r ∈ R, α′ ∈ k′, and this bijection depends functori-
ally on R′. Thus we obtain an isomorphism

canR :
(
Spec(R)

)
k′

∼
−→ Spec(Rk′ ). (6)

Moreover, for a morphism φ : R→ S in k-alg, one checks that the diagram(
Spec(S )

)
k′

�

canS
//(

Spec(φ)
)

k′

��

Spec(S k′ )

Spec(φk′ )

��(
Spec(R)

)
k′

�

canR
// Spec(Rk′ )

(7)

commutes.

24.28 Regular functions under base change. We continue the discussion be-
gun in 24.27. Let X be a k-functor. An element f ∈ k[X] by (24.6.2) is a mor-
phism f : X → A1

k of k-functors, hence gives rise to a morphism fk′ : Xk′ →

(A1
k)k′ = A

1
k′ of k′-functors, and we conclude fk′ ∈ k′[Xk′ ]. By (24.6.4), the

map

k[X] −→ k′[Xk′ ], f 7−→ fk′ , (1)

is a morphism in k-alg and thus gives rise to a morphism

canX : k[X]k′ −→ k′[Xk′ ] (2)

in k′-alg given by

canX( f ⊗ α′) = α′ fk′ (3)

for f ∈ k[X] and α′ ∈ k′-alg. Consulting the morphisms fX (resp. fXk′ ) de-
scribed in (24.10.2) it is now easily checked, using (24.27.5), (24.27.6) and
(3), that the diagram

Xk′ fXk′

//

( fX)k′

��

Spec(k′[Xk′ ])

Spec(canX)

��(
Spec(k[X])

)
k′

�

cank[X]
// Spec(k[X]k′ )

(4)

commutes. Now suppose X is an affine k-scheme. Since ( fX)k′ and fXk′ are both
isomorphisms of k′-functors, by Prop. 24.10 (c), so is Spec(canX) by (4), and
we conclude from Cor. 24.5 (b) that

canX : k[X]k′
∼
−→ k′[Xk′ ]
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is an isomorphism of k′-algebras.

Exercises
24.29. Automorphisms of quadratic étale algebras, revisited. Let D be a quadratic étale
k-algebra. Verify that Aut(D) is the constant group scheme Z/2. (Hint: Use Exercise
19.33.)

24.30. Let G be a k-group scheme endowed with homomorphisms ρi : G → GL(Mi)
for i in some index set I, where each Mi is a finitely generated projective k-module.
Pick mi ∈ Mi for each i and define a k-group functor H via

H(R) := {g ∈ G(R) | ρi(g)mi = mi for all i}

for R ∈ k-alg. Verify that H is a closed subfunctor of G, hence that H is a k-group
scheme.

25 Étale, smooth and fppf algebras

Given a commutative ring k, remaining fixed throughout this section, and a
prime ideal p ⊆ k, it follows immediately from Exc. 23.40 (a) that a com-
position algebra over k becomes split after extending scalars to the separable
closure of k(p). Unfortunately, this observation is as obvious as it is useless.
For example, the base change from k to any field in k-alg trivializes the linear
algebra of k and thus destroys all the relevant information one could possibly
have about this important ingredient.

In order to overcome this deficiency, it will be necessary to focus atten-
tion on special classes of scalar extension, the ones mentioned in the title of
this section being the most appropriate in the present context. They will be
discussed here in fairly great detail. In order to provide the reader with an intu-
itive understanding of the topics at hand, proofs are sometimes included. The
presentation culminates in quoting and explaining a number of fundamental
scheme-theoretic results due to Grothendieck [108].

25.1 Flat and faithfully flat modules. For every k-module N, the functor − ⊗
N : k-mod → k-mod is right exact [28, II.3, Prop. 5], meaning that whenever
we are given an exact sequence

M′
φ
// M

ψ
// M′′ // 0 ,

of k-modules, the induced sequence

M′ ⊗ N
φ⊗1N

// M ⊗ N
ψ⊗1N

// M′′ ⊗ N // 0
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is also exact. We say that N is flat if the functor −⊗N is exact in the sense that
it preserves exact sequences, equivalently, if for every injective k-linear map
φ : M′ → M of k-modules, the induced linear map φ ⊗ 1N : M′ ⊗ N → M ⊗ N
is also injective [27, I.2, Prop. 1]. For example, any localization of k is a flat
k-module [27, II.2, Thm. 1].

Here is a typical application of the notion of flatness. Suppose M has no α-
torsion for some α ∈ k, i.e., multiplication by α is an injection M → M. Then
M ⊗ N also has no α-torsion for every flat k-module N.

We say N is faithfully flat provided a sequence of k-modules is exact if and
only if it becomes so after tensoring with N. A projective k-module M is always
flat, while it is faithfully flat if and only if has full support, i.e., Mp , {0} for
all p ∈ Spec(k). In particular, if k is a field, then every non-zero k-module is
faithfully flat.

25.2 (Faithful) flatness under base change. Let k′ ∈ k-alg and suppose that
N is a k-module.

(a) Generalizing iterated scalar extensions as in 9.4, and in slight modification
of the identifications agreed upon in 12.27, we consider a k′-module M′ and let
k′ act on M′ ⊗ N = M′ ⊗k N through the first factor, making M′ ⊗ N a module
over k′. We then have a natural identification

M′ ⊗k N = M′ ⊗k′ Nk′ (1)

of k′-modules such that

x′ ⊗k y = x′ ⊗k′ yk′ , x′ ⊗k′ (y ⊗ α′) = (α′x′) ⊗k y (2)

for x′ ∈ M′, y ∈ N, α′ ∈ k′. Moreover, for a k′-linear map φ′ : M′ → M′1 of
k′-modules and a k-linear map ψ : N → N1 of k-modules, we obtain

φ′ ⊗k ψ = φ
′ ⊗k′ ψk′ (3)

under this identification.

(b) Let

M′1 φ′1

// M′2 φ′2

// M′3 (4)

be a sequence of k′-modules. Since 1Nk′ = (1N)k′ , we may apply (a) to obtain a
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commutative diagram

M′1 ⊗k′ Nk′
φ′1⊗k′1Nk′

//

1 �

��

M′2 ⊗k′ Nk′
φ′2⊗k′1Nk′

//

1 �

��

M′3 ⊗k′ Nk′

1 �

��
M′1 ⊗k N

φ′1⊗k1N

// M′2 ⊗k N
φ′2⊗k1N

// M′3 ⊗ N.

(5)

Now suppose N is flat over k and assume (4) is exact. Then so is the bottom
row of (5), hence also its top row, and we conclude that Nk′ is flat over k′.
Moreover, if N is faithfully flat over k and the top row of (5) is exact, so is its
bottom row, hence also (4). Thus Nk′ is faithfully flat over k′.

In summary: (faithful) flatness is stable under base change.

25.3 Flat and faithfully flat algebras. By a (faithfully) flat k-algebra we mean
a unital commutative associative algebra over k, i.e., an object of k-alg, that is
(faithfully) flat as a k-module.

We list two elementary but useful properties.

(i) If R ∈ k-alg and S ∈ R-alg are both (faithfully) flat, then so is S ∈ k-alg.
This follows immediately from the definitions and our convention on iterated
scalar extensions (9.4).

(ii) Let R be a flat k-algebra. If M is a k-module and N ⊆ M is a k-submodule,
then the inclusion i : N ↪→ M gives rise to an R-linear injection iR : NR → MR,
which may and always will be used to identify NR ⊆ MR as an R-submodule.
Extending the short exact sequence 0 → N → M → M/N → 0 from k to R,
we obtain

(M/N)R = MR/NR. (1)

Similarly, given any k-linear map f : M → M′ of k-modules and doing the
same with

0 // Ker( f ) // M
f
// M′ // Coker( f ) // 0

yields

Ker( fR) = Ker( f )R, Coker( fR) = Coker( f )R. (2)
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Finally, the factorization

M
f

//

g
""

M′

Im( f )
- 

<<

""
0,

where g : M → Im( f ) is the unique k-linear map induced by f , gives rise to
the commutative diagram

MR fR
//

gR ##

M′R

Im( f )R

- 

;;

##
0

of R-modules, which shows

Im( fR) = Im( f )R. (3)

25.4 Proposition. For all R ∈ k-alg, the following conditions are equivalent.

(i) R is faithfully flat.
(ii) R is flat, and for all k-modules M, the linear map canM := canM,R : M →

MR, x 7→ xR, is injective.
(iii) R is flat, and MR = {0} implies M = {0}, for all k-modules M.

In particular, if R is faithfully flat, then the unit homomorphism ϑ : k → R is
injective.

Proof The final statement is (ii) for M := k.
(i) ⇒ (ii). By definition, R is flat. Put φ := canM . By faithful flatness, it

suffices to show that

φR : M ⊗ R −→ (M ⊗ R) ⊗ R

is injective. But since it is easily checked that the k-linear map

ψ : (M ⊗ R) ⊗ R −→ M ⊗ R, (x ⊗ r1) ⊗ r2 7−→ x ⊗ (r1r2),

satisfies ψ ◦ φR = 1M⊗R, the assertion follows.
(ii)⇒ (iii). Obvious.
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(iii)⇒ (i). Let

M′
φ
//

��

M
ψ
//

��

M′′

��
M′R φR

// MR ψR

// M′′R

(1)

be a commutative diagram, with the top row being given as any sequence in
k-mod, and the bottom row assumed to be exact. We must show that the top
row is exact as well. The k-linear map f := ψ ◦ φ : M′ → M′′ satisfies fR =
0, hence by (25.3.3) Im( f )R = Im( fR) = {0} and then f = 0 by (iii). Thus
Im(φ) ⊆ Ker(ψ). On the other hand, (25.3.2), (25.3.3) and exactness of the
bottom row imply Im(φ)R = Im(φR) = Ker(ψR) = Ker(ψ)R. From (25.3.1)
we therefore deduce (Ker(ψ)/ Im(φ))R = {0}, and (iii) again shows Im(φ) =
Ker(ψ), as claimed. □

25.5 Remark. Here are some other examples of results concerning faithfully
flat k-algebras. Suppose M is a k-module.

(i) Suppose R ∈ k-alg is faithfully flat. If MR is (a) finitely generated,
(b) finitely presented or (c) projective, then M is also. See [27, I.3,
Prop. 11], [158, p. 13, Lemme I.3.6], or [271, Tags 03C4, 05A9].

(ii) If M is finitely generated projective of constant rank, then there is a
faithfully flat R ∈ k-alg such that MR is a free R-module. This is Exc. 8
in [27, II.5]. To see this, note that there are f1, . . . , fn ∈ k for some n that
generate k as a k-module and such that Mk fi

is a free k fi -module for all
i (9.8 (iv)), all of the same finite rank. Take R := k f1 × · · · × k fn and note
that MR is a free R-module because of the constant rank hypothesis.
Moreover, R is faithfully flat by [27, II.5, Prop. 3] .

We can strengthen property (ii) slightly: If M1, . . . ,Mn are finitely generated
projective k-modules, each of constant rank, then there is a faithfully flat R ∈
k-alg such that (Mi)R is a free R-module for all i. One can see this by induction
from (ii) leveraging that faithfully flat over faithfully flat is faithfully flat, or by
repeating the proof of (ii).

Leveraging these results, the following is proved in [95, Lemma 3.3]:

(iii) Let M and N be finitely generated projective k-modules and suppose
R ∈ k-alg is flat. Writing Poldk (M,N) for the k-module of polynomial
laws M → N that are homogeneous of degree d ∈ N, the natural map

Poldk (M,N) ⊗ R→ PoldR(MR,NR)

is an isomorphism.
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25.6 Equalizers. Let C be a category. By an equalizer of morphisms f , g : X →
Y in C we mean a morphism e : E → X in C such that f ◦e = g◦e and, for any
morphism u : U → X in C such that f ◦ u = g ◦ u, there is a unique morphism
h : U → E in C such that the diagram

E e
// X

f //
g
// Y

U

∃!h

OO

u

??

commutes. Clearly, if an equalizer exists, it is unique up to a unique isomor-
phism. For more details on this concept, see D. Pumplün [240, 4.2].

It is sometimes important to realize the linear map canM in condition (ii) of
Prop. 25.4 as an equalizer. To this end, we consider an arbitrary R ∈ k-alg and
two morphisms

di = di
R : R −→ S := R ⊗ R (i = 0, 1) (1)

in k-alg defined by

d0(r) := 1R ⊗ r, d1(r) := r ⊗ 1R (r ∈ R). (2)

Given a k-module M, we also put

di
M := di

R,M := 1M ⊗ di : MR −→ MS . (3)

25.7 Proposition. Let M be a k-module and suppose R ∈ k-alg is faithfully
flat. With the notation of 25.6, the sequence

0 // M canM
// MR

d0
M //

d1
M

// MS (1)

is exact. Moreover, the natural map canM : M → MR is an equalizer of d0
M , d1

M
in the category k-mod.

Proof The final statement follows immediately from the exactness of (1). By
faithful flatness of R, it therefore suffices to show that

0 // M ⊗ R
canM ⊗1R

// MR ⊗ R
d⊗1R

// MS ⊗ R (2)

is exact, where d := d1
M − d0

M . Since canM is injective by Proposition 25.4, so
is canM ⊗1R by flatness of R, and we have exactness of (2) at M ⊗ R. Since,
obviously, d◦canM = 0, we conclude (d⊗1R)◦(canM ⊗1R) = (d◦canM)⊗1R = 0,
hence Im(canM ⊗1R) ⊆ Ker(d⊗ 1R), and exactness of (2) at MR ⊗R will follow
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once we have shown the reverse inclusion. For this purpose, we define a k-
linear map φ : MS ⊗ R→ MR ⊗ R by

φ
((

x ⊗ (r1 ⊗ r2)
)
⊗ r3

)
:= (x ⊗ r1) ⊗ (r2r3)

for all x ∈ M and all r1, r2, r3 ∈ R. A straightforward verification shows

φ ◦ (d1
M ⊗ 1R) = 1MR⊗R, Im

(
φ ◦ (d0

M ⊗ 1R)
)
⊆ Im(canM ⊗1R).

For z ∈ Ker(d ⊗ 1R), we therefore conclude z = φ((d1
M ⊗ 1R)(z)) = φ((d0

M ⊗

1R)(z)) ∈ Im(canM ⊗1R), which completes the proof. □

25.8 Proposition. Let R ∈ k-alg and p ∈ Spec(k). Writing ϑR : k → R for
the unit homomorphism corresponding to R as in 24.9, k(p) for the algebraic
closure of the field k(p) and setting X := Spec(R) as an affine k-scheme, we
consider the following conditions on R and p.

(i) Spec(ϑR)−1(p) , ∅.
(ii) R ⊗ k(p) , {0}.
(iii) X

(
k(p)

)
, ∅.

Then the implications

(i) ⇐⇒ (ii) ⇐= (iii) (1)

hold. Moreover, if R is finitely generated as a k-algebra, then all three condi-
tions are equivalent.

Proof Put K := k(p).
(i)⇔ (ii). Exc. 9.27.
(iii) ⇒ (ii). If X(K) , ∅, then there exists a morphism R → K in k-alg,

which in turn induces a unital homomorphism R ⊗ k(p)→ K of k(p)-algebras.
Hence (ii) holds.

We have thus shown (1). Assuming that R is finitely generated as a k-algebra,
it remains to verify the implication (ii)⇒ (iii). If (ii) holds, then R ⊗ k(p) is a
non-zero finitely generated k(p)-algebra. By [27, V.3, Prop. 1], therefore, we
find a morphism R ⊗ k(p) → K in k(p)-alg. Composing with the natural map
R→ R ⊗ k(p) yields an element of X(K). Hence (iii) holds. □

25.9 Proposition. For a flat k-algebra R, the following conditions are equiva-
lent.

(i) R is faithfully flat.
(ii) R ⊗ k(p) , {0} for all p ∈ Spec(k).
(iii) The natural map Spec(R) → Spec(k) induced by the unit homomor-

phism k → R is surjective.
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(iv) mR , R for all maximal ideals m ⊆ k.

Proof (i)⇒ (ii). Apply Prop. 25.4.
(ii)⇒ (iii). Apply Prop. 25.8.
(iii)⇒ (iv). By (ii), some prime ideal q ⊆ R lies above m. Hence mR ⊆ q ⊂

R.
(iv) ⇒ (i). By Prop. 25.4 we have to show MR , {0} for all k-modules

M , {0}. Let 0 , x ∈ M and I := {α ∈ k | αx = 0} ⊂ k. Then kx � k/I
as k-modules, so we have an exact sequence 0 → k/I → M. Since R is flat,
this implies that the sequence 0 → (k/I) ⊗ R = R/IR → MR is also exact. Let
m ⊆ k be a maximal ideal in k containing I. Then IR ⊆ mR ⊂ R by (iv), which
implies R/IR , {0} and then MR , {0}. □

25.10 Remark. Condition (iii) in the proposition says that R is a cover of k in
the sense of Exc. 9.26. By the equivalence of (i) and (iii), therefore, R ∈ k-alg
is faithfully flat if and only if it is a flat cover of k. As an illustration, for any
maximal idealm of k, the localization km is a flat k-algebra which is a flat cover
of k if and only if k is a local ring.

25.11 Convention. It is sometimes convenient to use notions originally de-
fined for unital commutative associative k-algebras also for affine k-schemes
and vice versa. This convention is justified by the anti-equivalence of these cat-
egories established in Cor. 24.11. For example, an affine k-scheme X is (faith-
fully) flat if and only if k[X] ∈ k-alg has this property. In particular, the affine
k-schemes Ga, Gm, An

k are faithfully flat. Moreover, if M is a projective k-
module of finite type, then so is M∗, forcing S (M∗) to be projective as well
[28, III.6, Cor. of Thm. 1], and we conclude that the affine k-scheme Ma is flat.

25.12 Geometric fibers. For an affine k-scheme X, the sets X(K), where K
varies over the algebraically closed fields in k-alg, are called the geometric
fibers of X. In particular, if k is a field and X is of finite type in the sense
that k[X] is a finitely generated k-algebra, then X has non-empty geometric
fibers if and only if k[X] is not the zero ring. (This is one formulation of the
Nullstellensatz as in [27, V.3, Prop. 1] or [271, Tag 00FV].)

25.13 Corollary. Consider the following conditions, for any affine k-scheme
X.

(i) X is flat and has non-empty geometric fibers.
(ii) X is faithfully flat.

Then (i) implies (ii), and both conditions are equivalent if k[X] is finitely gen-
erated as a k-algebra.

https://stacks.math.columbia.edu/tag/00FV
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Proof If condition (i) holds, so does condition (iii) of Prop. 25.8, for R :=
k[X] and any p ∈ Spec(k), and then also condition (ii). Hence that proposition
combined with Prop. 25.9 shows that X is faithfully flat. Conversely, suppose
X is faithfully flat and R is finitely generated as a k-algebra. If K ∈ k-alg is an
algebraically closed field, the kernel of the unit homomorphism ϑK : k → K is
some prime ideal p ∈ Spec(k), making K a k(p)-algebra in a natural way. Hence
the unit homomorphism ϑK factors uniquely through the unit homomorphism

ϑL : k −→ L, L := k(p).

On the other hand, since Spec(ϑR) : Spec(R)→ Spec(k) is surjective by Propo-
sition 25.9, we have X(L) , ∅ by Prop. 25.8. Therefore X(K) , ∅, and X has
non-empty geometric fibers. □

The property of an algebra to be finitely generated, which shows up as an
important ingredient of Prop. 25.8, is sometimes not enough for the intended
applications and has to be replaced by the following refinement.

25.14 Finitely presented k-algebras. By a presentation of a k-algebra R ∈
k-alg, we mean a short exact sequence

0 // I
i
// k[T]

π
// R // 0, (1)

where T = (t1, . . . , tn) is a finite chain of independent indeterminates, π is a
morphism in k-alg and I ⊆ k[T] is an ideal. For a presentation of R to exist
it is necessary and sufficient that R be finitely generated as a k-algebra. The
presentation (1) of R is said to be finite if the ideal I ⊆ k[T] is finitely generated.
We say a k-algebra R (the condition R ∈ k-alg being understood) is finitely
presented if a finite presentation of R exists. If k is noetherian (e.g., if k is
a field), then the property of being finitely presented is equivalent to being
finitely generated by Hilbert’s Basis Theorem.

25.15 Properties of finitely presented algebras. (a) The property of a k-
algebra to be finitely presented is stable under base change. Indeed, tensoring
(25.14.1) with any k′ ∈ k-alg, we obtain a commutative diagram

Ik′ ik′
//

jk′
��

k′[T]
πk′
// Rk′ // 0

0 // I′
i′

<<

��
0,

where I′ := ik′ (Ik′ ) ⊆ k′[T] and jk′ is induced by ik′ . Since this diagram is
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everywhere exact and I′ ⊆ k′[T] is obviously a finitely generated ideal if I ⊆
k[T] is, the assertion follows.

(b) If R ∈ k-alg and S ∈ R-alg are both finitely presented, then so is S ∈ k-alg,
see [108, 1.4, p. 230] or [271, Tag 00F4].

25.16 Proposition. Every presentation of a finitely presented k-algebra is fi-
nite.

Proof Let R ∈ k-alg be finitely presented and let

0 // I // k[T]
π
// R // 0 (1)

be any presentation of R as in (25.14.1). By hypothesis, there exists a finite
presentation

0 // J // k[S]
µ
// R // 0 (2)

of R, so J ⊆ k[S] is a finitely generated ideal. We must show that I ⊆ k[T] is
a finitely generated ideal as well. Writing S = (s1, . . . , sm), T = (t1, . . . , tn), the
quantities π(t j) ∈ R by (2) have a lift under µ to polynomials g j ∈ k[S]. Thus

µ(g j) = π(t j) (1 ≤ j ≤ n). (3)

The morphism

φ : k[S,T] = k(S) ⊗ k[T]
µ⊗π
// R ⊗ R

multR
// R (4)

is surjective satisfying, in obvious notation,

φ(S) = µ(S), φ(T) = π(T). (5)

We now claim

Ker(φ) = J +
n∑

j=1

k[S,T](t j − g j). (6)

Consulting (2), (3), (5), we see that the right-hand side is contained in the left.
Conversely, let f ∈ Ker(φ), write g := (g1, . . . , gn) ∈ k[S]n and regard f as a
polynomial h(T) ∈ k[S][T]. Then (5), (3), (2) imply

h
(
g(S)

)
= f

(
S, g(S)

)
∈ J, (7)

while the Taylor expansion (cf. (12.15.3)) yields

h(T) = h
(
g(S) + T − g(S)

)
= h

(
g(S)

)
+

∑
r≥1

(Drh)
(
g(S),T − g(S)

)
,

where the first summand on the right by (7) belongs to J. On the other hand,

https://stacks.math.columbia.edu/tag/00F4
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(Drh)(g(S),T) for r ≥ 1 is homogeneous of degree r in T and thus belongs to
the ideal in k[S,T] generated by t1, . . . , tn. We therefore conclude

(Drh)
(
g(S),T − g(S)

)
∈

n∑
j=1

k[S,T](t j − g j),

which completes the proof of (6). Now let hi ∈ k[T] for 1 ≤ i ≤ m be lifts of
µ(si) under π, so

π(hi) = µ(si) (1 ≤ i ≤ m). (8)

Setting h := (h1, . . . , hm) ∈ k[T]m, we consider the surjective homomorphism

ψ : k[S,T]→ k[T]

of unital k-algebras given by

ψ(S) = h, ψ(T) = T. (9)

Since Ker(φ) ⊆ k[S,T] is a finitely generated ideal by (6), the proof will be
complete once we have shown

ψ
(
Ker(φ)

)
= I. (10)

By (2), (3), (6), (8), (9), the left-hand side is clearly contained in the right.
Conversely, let f (T) ∈ I. Then (1), (3) show f (g(S)) ∈ J, hence

f (T) = f
(
g(S) + T − g(S)

)
= f

(
g(S)

)
+

∑
r≥1

(Dr f )
(
g(S),T − g(S)

)
∈ J +

∑
r≥1

k[S,T](t j − g j).

Now (6) implies f (T) ∈ Ker(φ) ∩ k[T], and from (9) we deduce f (T) =
ψ( f (T)) ∈ ψ(Ker(φ)), which completes the proof of (10). □

25.17 Corollary. Let R, k′ ∈ k-alg and suppose k′ is faithfully flat. If Rk′ is
finitely generated (resp. finitely presented) over k′, then so is R over k.

Proof Assume first that Rk′ is finitely generated over k′. Then there exists an
exact sequence

k′[T′]
π′
// Rk′ // 0 (1)

in k′-alg with T′ = (t′1, . . . , t
′
n), and the quantities π′(t′j) ∈ Rk′ for 1 ≤ j ≤ n

may be written as

π′(t′j) =
m∑

i=1

ri j ⊗ α
′
i j, ri j ∈ R, α′i j ∈ k′ (1 ≤ i ≤ m, 1 ≤ j ≤ n). (2)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

25 Étale, smooth and fppf algebras 233

Let T = (ti j)1≤i≤m,1≤ j≤n be a collection of independent indeterminates and
π : k[T] → R be the morphism in k-alg given by π(ti j) = ri j for 1 ≤ i ≤ m,
1 ≤ j ≤ n. Since the π′(t′j), 1 ≤ j ≤ n, generate Rk′ as a k′-algebra, so do the
(ri j)k′ , 1 ≤ i ≤ m, 1 ≤ j ≤ n, by (2). Thus the sequence

k[T]
π
// R // 0 (3)

in k-alg becomes exact after tensoring with k′, hence must have been so all
along since k′ is faithfully flat over k. Thus it follows from the exactness of (3)
that R is a finitely generated k-algebra.

Now suppose Rk′ is finitely presented over k′. By what we have just seen, R
is finitely generated over k, so we have a presentation

0 // I // k[T]
π
// R // 0 (4)

of R as in (25.14.1). By faithful flatness of k′, the extended sequence

0 // I ⊗ k′ // k′[T]
πk′
// Rk′ // 0

continues to be exact. By Prop. 25.16, therefore, I⊗k′ ⊆ k′[T] is a finitely gen-
erated ideal, i.e., a finitely generated k′[T]-module. On the other hand, from
(25.2.1) we deduce I ⊗ k′ = I ⊗k[T] k′[T] as k′[T]-modules, and by 25.2 (b)
k′[T] = k′ ⊗ k[T] is a faithfully flat k[T]-algebra. Applying 25.5 (i), we con-
clude that I ⊆ k[T] is a finitely generated ideal. Hence R is finitely presented
as a k-algebra. □

25.18 Étale k-algebras. The notion of a finite étale algebra as defined in
19.19 will now be generalized as follows. A k-algebra R is said to be étale
if it is finitely presented and satisfies one of the following equivalent condi-
tions (see [108, (17.1.1), (17.3.1), (17.6.2)], applied to the structure morphism
Spec(R)→ Spec(k) of 24.9, and apply Exc. 8.14)

(i) For all k′ ∈ k-alg and all ideals I′ ⊆ k′ satisfying I′2 = {0}, the set map

Homk-alg(R, k′)
Homk-alg(R,π)

// Homk-alg(R, k′/I′)

induced by the projection π : k′ → k′/I′ is bijective.
(ii) R is flat over k, and for all p ∈ Spec(k), the extended algebra R(p) =

R ⊗ k(p) over the field k(p) is a finite direct product of finite separable
extension fields of k(p).

In accordance with convention 25.11, an affine k-scheme X is said to be étale
if k[X] is an étale k-algebra.

If R is an étale k-algebra that is finite in the sense of 11.23, then [271, Tag

https://stacks.math.columbia.edu/tag/0564
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0564] and [27, II.5, Cor. 2] imply that R is a projective k-module. In particular,
R is a finite étale algebra in the sense of 19.19.

25.19 Examples of étale algebras. (i) For all r ∈ N, a product of r copies of
k is an étale k-algebra, known as the split étale k-algebra of rank r. (This is
the same as the algebra EΓ defined in Example 24.20, where Γ is a set with r
elements.)

(ii) The zero ring is an étale k-algebra.

(iii) For each f ∈ k, the localization k f is an étale k-algebra.

(iv) If R and S are étale k algebras, then so is R × S .

(v) If R is an étale k-algebra and S is an étale R-algebra, then S is an étale
k-algebra [108, Prop. 17.3.3(ii)].

(vi) By Prop. 25.9, an étale k-algebra R is faithfully flat if and only if the
function Spec(R) → Spec(k) is surjective. When these equivalent conditions
hold, we say that R is an étale cover of k.

(vii) If R is an étale k-algebra that is finite in the sense of 11.23 (i.e., R is a
finite étale algebra) and R ⊇ k, then R is an étale cover of k.

(viii) If R is a smooth k-algebra (in the sense of 25.20) that is finite in the sense
of 11.23, then R is an étale k-algebra by [108, 17.6.2].

(ix) Let K be a number field and put OK for its ring of integers. Consider
k := OK[1/n] for some nonzero n ∈ OK , and let R be the integral closure of k
in a finite extension L of K. (Note that R = OL[1/n] by [27, V.1, Prop. 16].)
We leverage some facts from commutative algebra to give conditions for R to
be an étale cover of k.

First, OK is a Dedekind domain, hence so also are k and R and in particular
they are integrally closed. It follows by [271, Tag 032L] that R is a finitely
generated k-module and, since k is noetherian, it is clear from the definition
that R is finitely presented. It is also torsion free as a module over the Dedekind
domain k, so it is projective hence flat [27, VII.4, Prop. 22]. And the map
Spec R → Spec k is surjective because R is the integral closure of k, so we
have shown that R is a faithfully flat k-algebra.

To check whether R is étale, we use condition 25.18(ii). For p = 0, k(p) = K
and R ⊗ k(p) = L, a finite separable field extension. For a nonzero prime p ∈
Spec k, we write Rp =

∏
q

e(i)
i where the qi are distinct prime ideals in R and

each e(i) ≥ 1. By the Chinese Remainder Theorem, R ⊗ k(p) �
∏

R/qe(i)
i . If

e(i) > 1, then R/qe(i)
i is not a field; if e(i) = 1, then it is a finite extension of

the finite field k/p and so is separable. We conclude that R is étale over k (in

https://stacks.math.columbia.edu/tag/0564
https://stacks.math.columbia.edu/tag/0564
https://stacks.math.columbia.edu/tag/0564
https://stacks.math.columbia.edu/tag/0564
https://stacks.math.columbia.edu/tag/032L
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which case it is an étale cover) if and only if every prime of K that ramifies in
L divides n.

25.20 Smooth affine schemes. Since the original definition of smoothness as
given in [61, I, 4.1] is rather technical, although more akin to what one expects
from the study of classical algebraic varieties or differentiable manifolds, we
prefer to recall the one of [108, (17.1.1), (17.3.1)] (see also the characteriza-
tion in [61, I, 4.6]) because it is more easily accessible in the present context.
Accordingly, an affine k-scheme X is said to be smooth if X is finitely pre-
sented and, for all R ∈ k-alg and all ideals I ⊆ R having I2 = {0}, the set map
X(R)→ X(R/I) induced by the projection from R to R/I is surjective.

25.21 Properties of smooth affine schemes. (a) Smoothness is stable under
base change [108, (17.3.3) (iii)]: if X is a smooth affine k-scheme, then XR is
a smooth affine R-scheme, for all R ∈ k-alg.

(b) Smoothness is transitive [108, (17.3.3) (ii)]: Keeping in mind Conven-
tion 25.11, assume R ∈ k-alg and S ∈ R-alg are both smooth, then so is
S ∈ k-alg.

(c) Smooth affine schemes are flat [108, (17.5.2)].

(d) Étale affine schemes are smooth because if X is an étale affine k-scheme,
then the set maps of 25.18 (i) with R = k[X] are bijective while the same maps
for smooth affine k-schemes are only required to be surjective.

(e) Smooth affine schemes satisfy the separable Nullstellensatz, see [271, Tag
056U]: Suppose X is a smooth affine k-scheme and k is a field. Then the set

{closed x ∈ X | k(x) is a finite separable extension of k}

is dense in X. In particular, if X is smooth and K is a separably closed field,
then X(K) , ∅ if and only if k[X] is not the zero ring.

25.22 Remark. For (M, q) a non-degenerate quadratic module over k, the group
scheme O(q) defined in 24.26 is smooth if n is even, or if n is odd and 2 ∈ k×,
see Exc. 26.12, [53, Thm. C.1.5], or [61, III.5.2.3 and II.5.2.7].

Within the framework of the present investigation, smooth affine schemes
mostly arise in conjunction with two other important properties that we have
encountered before and that are usually combined in the following concept.

25.23 Fppf schemes. An affine k-scheme is said to be fppf (“fidèlement plat et
de présentation finie”) if it is faithfully flat and finitely presented. For example,
when k is a field, X is fppf if and only if k[X] is a finitely generated k-algebra
that is not zero.

https://stacks.math.columbia.edu/tag/056U
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A first glimpse at the connection between this notion and smoothness may
be read off from the following result.

25.24 Proposition. Smooth affine k-schemes that have non-empty geometric
fibers are fppf.

Proof If X is such a scheme, then X is flat (25.21 (c)), and having non-empty
geometric fibers implies that X is faithfully flat (Cor. 25.13). Being finitely
presented by definition, it is in fact fppf. □

25.25 Properties of affine fppf schemes. Given an affine k-scheme X, the
following statements hold.

(i) If X is fppf, then there exists an fppf R ∈ k-alg such that X(R) , ∅. In-
deed, R := k[X] ∈ k-alg is fppf and X(R) = Homk-alg(k[X],R) contains
1k[X]. (One can arrange for R to be quasi-finite, see [110, (17.16.2)].)

(ii) If X is fppf and smooth, then there exists an étale cover R ∈ k-alg such
that X(R) , ∅ by [110, (17.16.3)(ii)].

(iii) If R ∈ k-alg is faithfully flat, then for X to be smooth over k it is neces-
sary and sufficient that the base change

XR � Spec
(
k[X]R

)
∈ R-aff

be smooth over R by [110, (17.7.3)(ii)] and 24.28.

25.26 Torsors. Let X be an affine k-scheme and G a k-group scheme acting on
X from the right, so we have a morphism X ×G → X of k-functors such that,
for all R ∈ k-alg,

X(R) ×G(R) −→ X(R), (x, g) 7−→ xg,

is a group action in the usual sense depending functorially on R. Note that X(R)
may well be empty! We say X is a torsor in the flat topology with structure
group G if

(i) the action of G on X is simply transitive, i.e., for all R ∈ k-alg and all
x, y ∈ X(R), there is a unique g ∈ G(R) satisfying y = xg.

(ii) There exists an fppf S ∈ k-alg such that X(S ) , ∅

In this case, fixing S as in (ii), we may apply (i) to obtain an isomorphism
XS

∼
→ GS of affine S -schemes, allowing us to conclude from 25.25 (iii) that,

e.g., X is smooth if and only if G is.
Finally, if instead of (ii), we even have

(iii) there exists an étale cover S ∈ k-alg having X(S ) , ∅,
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then X is called a torsor (with structure group G) in the étale topology.
Evidently, if X is a torsor in the étale topology, then it is a torsor in the flat

topology. Conversely, if X is a torsor in the flat topology and G is smooth, then
X is smooth, and as in 25.25 (ii) we conclude that X is a torsor in the étale
topology.

25.27 Example. Let G be a k-group scheme. Taking X = G, the multiplication
X×G→ X defines a group action and X(k) = G(k) is nonempty for it contains
the identity element of G(k). Thus G is itself a G-torsor in the étale topology.
It is called the trivial G-torsor.

In case k is a field and X is an affine k-scheme of finite type, some of the
conditions in the definition of torsor can be rephrased.

25.28 Proposition. Let k be a field and X be an affine k-scheme of finite
type. If X(R) , ∅ for some finitely generated (resp., smooth) and nonzero
R ∈ k-alg, then X(K) , ∅ for some field K that is finite-dimensional (resp.,
finite-dimensional and separable) over k.

Proof Since R is not the zero ring, by the Nullstellensatz (resp., the separa-
ble Nullstellensatz), there is a field K that is finite-dimensional (resp., finite-
dimensional and separable) over k and a homomorphism of k-algebras R→ K.
Thus X(K) , ∅. □

It follows from the proposition that, for X and k as in the proposition, X(R) ,
∅ for some nonzero finitely generated R if and only if X(K) , ∅ for K the
algebraic closure of k. Similarly, X(R) , ∅ for some nonzero smooth R if and
only if X(K) , ∅ for K the separable closure of k.

25.29 Concluding remarks. The three fundamental facts from algebraic ge-
ometry assembled in 25.25 form an extremely versatile tool to derive non-
trivial results about non-associative algebras over commutative rings, having
first been applied in the setting of Jordan pairs more than forty years ago by
Loos [173]. Further application in many different directions will be given in
subsequent portions of this work.

Exercises
25.30. Let R be a finitely presented k-algebra.

(a) Prove that a finitely presented R-algebra is finitely presented over k.
(b) Conclude from (a) that R f is a finitely presented k-algebra, for any f ∈ R.

25.31. Let φ : R→ R′ be a surjective morphism in k-alg. Prove:
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(a) (cf. [61, I, §3, 1.3 (b)]) If R is finitely generated and R′ is finitely presented,
then Ker(φ) ⊆ R is a finitely generated ideal.

(b) If R is finitely presented and Ker(φ) ⊆ R is a finitely generated ideal, then R′ is
finitely presented.

25.32. Let M be a finitely generated projective k-module. Show that the affine k-scheme
Ma of 24.21 is finitely presented.

25.33. Let M be a k-module and w ∈ M. Show that w̃ : k-alg → set define by w̃(R) =
{wR} ⊆ MR for all R ∈ k-alg is a subfunctor of Ma, and even a finitely presented closed
affine subscheme if M is finitely generated projective.

25.34. Let M be a projective k-module, q : M → k a quadratic form and R a faithfully
flat k-algebra. Show that if qR : MR → R is non-singular over R in the sense of 11.11,
then so is q over k.

25.35. Faithfully flat descent of polynomial laws. Let R be a faithfully flat k-algebra.
As in 25.6, consider the two morphisms

di : R −→ S := R ⊗ R (i = 0, 1) (1)

in k-alg defined by

d0(r) := 1R ⊗ r, d1(r) := r ⊗ 1R (r ∈ R). (2)

Pulling back scalar multiplication from S to R by means of di converts any T ∈ S -alg
into some Ti ∈ R-alg such that T0 = T1 = T as k-algebras. Now let M, N be k-modules
and suppose g : MR → NR is a polynomial law over R. Then prove:

(a) For i = 0, 1, there are unique polynomial laws gi : MS → NS over S such that
giT := (gi)T = gTi as set maps from (MS )T = MT = MTi = (MR)Ti to (NS )T = NT =
NTi = (NR)Ti for all T ∈ S -alg.

(b) There exists a polynomial law f : M → N over k satisfying f ⊗ R = g if and only
if g0 = g1. In this case, f is unique, and for all k′ ∈ k-alg, the morphism

ψ : k′ −→ Rk′ , α′ 7−→ 1R ⊗ α
′,

in k-alg makes the diagram

Mk′ 1Mk′

//

1M⊗ψ

��

Mk′ fk′
//

canMk′ ,Rk′

��

Nk′ 1Nk′

//

canNk′ ,Rk′

��

Nk′

1N⊗ψ

��
MRk′ 1MRk′

// (Mk′ )Rk′
= (MR)Rk′ gRk′

// (NR)Rk′
= (Nk′ )Rk′ 1NRk′

// NRk′

(3)

commutative.

25.36. Prove: If M, N are finitely generated projective k-modules, then for each d ≥ 0
the natural map

Φ : S d(M∗) ⊗ N → Pold(M,N)

is an isomorphism.
Remark. Compare Exc. 12.49.
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25.37. Faithfully flat descent of conic algebras. Let C be a non-associative k-algebra
und suppose R ∈ k-alg is faithfully flat. Prove:

(a) If CR is unital, then so is C.
(b) If C is projective as a k-module and CR carries a quadratic form over R making

it a conic R-algebra, then C carries a quadratic form over k making it a conic
k-algebra such that the base change from k to R of C as a conic k-algebra is CR
as a conic R-algebra.

Remark. This exercise is a routine application of 25.35. Applications of this kind will
occur quite frequently in the present volume. Rather than always carrying out the de-
tails, we from now on refer to these applications by saying that the corresponding results
are obtained by faithfully flat descent.

25.38. (a) Let M be a finitely generated projective k-module. Prove that there is a
characteristic polynomial Endk(M) → k[t], where t is an indeterminate, and that it is a
polynomial law.

(b) For x ∈ Endk(M), define det x to be the constant term of the characteristic polyno-
mial of −x. Verify for x, y ∈ Endk(M):
(i) det(xy) = (det x)(det y).
(ii) The Cayley-Hamilton Theorem holds, in the sense that plugging x into its char-

acteristic polynomial yields zero in Endk(M).
(iii) x is invertible if and only if det x is invertible in k.

25.39. Smoothness and direct products. Let X1,X2 be affine k-schemes. Show that if
X1 and X2 are both smooth, then so is their direct product X1 ×X2. Conversely, assume
X1 × X2 is smooth, X1 is finitely presented over k, and X2(k) , ∅. Show that X1 is
smooth.

25.40. Let k be a ring and suppose d ≥ 2 is an integer and x ∈ k. Prove: The k-algebra
R := k[t]/(td − x) is an étale k-algebra if and only if both d and x are invertible in k.

25.41. n-th roots of unity. Let n be a positive integer. Prove:

(a) Setting
µn(R) := {r ∈ R | rn = 1R}

for all R ∈ k-alg gives a closed k-group subscheme µn of Gm whose co-ordinate algebra
is

k[µn] = k[t]/k[t](tn − 1) � k[t, t−1]/k[t, t−1](tn − 1).

(b) If n = lm with relatively prime positive integers l,m, then µn � µl × µm.

(c) The following conditions are equivalent.
(i) µn is étale.
(ii) µn is smooth.
(iii) n · 1k ∈ k×.

25.42. In this problem, k is a field and E is an étale k-algebra of finite dimension d.

(a) Prove that there is a Zariski-open subset of E consisting of elements e such that
k[e] = E, and that this set is non-empty if k is infinite.
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(b) In the case when E =
∏d

i=1 k, prove that this Zariski-open subset (of e ∈ E with
k[e] = E) is non-empty if and only if |k| ≥ d.

Remark. One says that R ∈ k-alg is monogenic or one-generated if there is an r ∈ R
such that R = k[r]. In this problem, we have investigated whether étale k-algebras are
monogenic in the case where k is a field. For an example of a result that holds when k
is semi-local, see [21, Prop. 7.3].

25.43. Let A be a unital non-associative k-algebra, in the sense of 8.6. Prove: If A ⊗ R
is simple for some faithfully flat R ∈ k-alg, then A is simple.

25.44. Let M, M′ be k-modules and R ∈ k-alg be faithfully flat. Prove that the exact
sequence

0 // k // R d0−d1 // R ⊗ R

from Prop. 25.7 induces an exact sequence

0 // Homk(M,M′) // HomR(MR,M′
R) // HomR⊗R(MR⊗R,M′

R⊗R).

25.45. Let G be a k-group scheme. Prove that the k-group functor of automorphisms
of G, viewed as the trivial G-torsor from Example 25.27, is naturally identified with G
itself.

25.46. Recall the split étale algebra EΓ defined by a finite set Γ from Example 24.20.

(i) Verify that, when k is non-zero connected, the group of k-algebra automor-
phisms of EΓ is the group of permutations of Γ.

(ii) Deduce that the k-group scheme Aut(EΓ) is naturally identified with the con-
stant group scheme corresponding to the group of permutations of Γ.

(The case |Γ| = 2 was Exc. 24.29.)

25.47. Let E be a k-algebra. Prove:

(i) If E is finite étale, then ER is a finite étale R-algebra for every R ∈ k-alg.
(ii) E is finite étale if and only if there is a faithfully flat R ∈ k-alg such that ER is

a finite étale algebra over R.

(Hint: It may be helpful to use the notions of separable and étale algebras from
Bourbaki [29, Chap. V]. Namely, in case k is a field, a k-algebra A is separable if AL
is reduced for every field L containing k. The definition of étale algebra over a field in
Bourbaki agrees with our definition.)

26 Splitting composition algebras with étale covers

We will now be able to show as the main result of the present section that
every composition algebra C over any commutative ring becomes split after
a faithfully flat étale base change. The proof, following [176], is not at all
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obvious, relying as it does on the results of Grothendieck we have assembled
before. As an important by-product of our approach we also show that the
group scheme Aut(C) as defined in Example 24.25 is smooth in the sense of
25.20.

Throughout we let k be an arbitrary commutative ring.

26.1 The set-up. Unless other arrangements have been made, we fix a com-
position algebra C of rank r over k. By Cor. 19.18, we have r ∈ {1, 2, 4, 8}.
Moreover, if r > 1, then C is regular (19.11) and, given an elementary idempo-
tent e ∈ C, the Peirce components C12(e), C21(e) by Ex. 19.35 are in duality to
each other under the bilinearized norm of C; hence they are finitely generated
projective k-modules of rank m = r

2 − 1.

26.2 The concept of a splitting datum. In order to define splitting data for C,
we discuss the cases r = 1, 2, 4, 8 separately.

(a) For r = 1, a splitting datum for C � k by definition has the form ∆ =
(1C) ∈ C1.

(b) For r = 2, a splitting datum for C by definition has the form ∆ = (e) ∈ C1,
where e ∈ C is an elementary idempotent.

(c) For r = 4, a splitting datum for C by definition has the form ∆ = (e, x, y) ∈
C3, where e ∈ C is an elementary idempotent and x ∈ C21(e), y ∈ C12(e) satisfy
the following conditions, with e′ := 1C − e.

xy = e′, tC(xy) = 1, yx = e. (1)

Actually, one checks easily that these equations are mutually equivalent.

(d) For r = 8, a splitting datum for C by definition has the form ∆ =
(e, x1, x2, x3) ∈ C4, where e ∈ C is an elementary idempotent and x1, x2, x3 ∈

C21(e) satisfy the following conditions.

(x1x2)x3 = −e, tC(x1x2x3) = −1, (xix j)xl = −e (2)

for all cyclic permutations (i jl) of (123). Again one checks that these equations
are mutually equivalent.

In summary, splitting data for C belong to Cnr , where nr for r = 1, 2, 4, 8 is
defined by the following table.

r 1 2 4 8
nr 1 1 3 4

Moreover, they are preserved by isomorphisms: if η : C → C′ is an isomor-
phism of composition algebras of rank r over k, and ∆ is a splitting datum for
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C, then the linear bijection ηnr : Cnr → C′nr maps ∆ ⊆ Cnr to the splitting da-
tum η(∆) := ηnr (∆) ⊆ C′nr of C′. Finally, splitting data are stable under base
change, so if ∆ ⊆ Cnr is a splitting datum for C, then ∆R ⊆ Cnr

R is one for CR,
for all R ∈ k-alg. The set of all splitting data for C will be denoted by

Splid(C) := {∆ | ∆ is a splitting datum for C}. (3)

26.3 The affine scheme of splitting data. Again we treat the cases r = 1, 2, 4, 8
separately and let R ∈ k-alg be arbitrary.

(a) Let r = 1. Then (s1CR ) ∈ C1
R for s ∈ R is a splitting datum for CR if and

only if

s − 1R = 0. (1)

(b) Let r = 2. Then (e) ∈ C1
R by Exc. 16.23 is a splitting datum for CR if and

only if

nC(e) = 0, tC(e) = 1. (2)

(c) Let r = 4. Then (e, x, y) ∈ C3
R is a splitting datum for CR if and only if

nC(e) = 0, tC(e) = 1,

⟨u∗R, ex⟩ = ⟨u∗R, xe − x⟩ = ⟨u∗R, ye⟩ = ⟨u∗R, ey − y⟩ = 0, (3)

tC(xy) = 1

for all u∗ ∈ C∗.

(d) Let r = 8. Then (e, x1, x2, x3) ∈ C4
R is a splitting datum for CR if and only

if

nC(e) = 0, tC(e) = 1,

⟨u∗R, exi⟩ = ⟨u∗R, xie − xi⟩ = 0, (4)

tC(x1x2x3) = −1

for all u∗ ∈ C∗ and all i = 1, 2, 3.

Summing up, we therefore conclude that equations (1)–(4) define a closed
subscheme of Cnr

a := (Cnr )a = (Ca)nr in the sense of 24.15, denoted by Splid(C)
and called the affine scheme of splitting data for C. By definition we have

Splid(C)(R) := Splid(CR) := {∆ | ∆ is a splitting datum for CR} (5)

for all R ∈ k-alg and, in view of (9.4.2),

Splid(C)(φ) : Splid(C)(R) −→ Splid(C)(S ), (6)

Splid(CR) ∋ ∆ 7−→ ∆S = (1Cnr ⊗ φ)(∆) ∈ Splid(CS ),
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for all morphisms φ : R → S in k-alg. Passing from C to its affine scheme of
splitting data is obviously compatible with base change.

As will be seen in due course, for a splitting datum to exist it is necessary
and sufficient that the ambient composition algebra be split. In fact, a much
more precise statement will be derived in Prop. 26.7 below. Before proceeding
to this result, we discuss a few examples.

26.4 Standard examples of splitting data. Here we present examples of split-
ting data for the standard split composition algebras C0 := C0r(k) of rank r
over k as described in 21.19 (a)–(d). Again we treat the cases r = 1, 2, 4, 8
separately.

(a) r = 1. Then C0 = k, and

∆0 := ∆01(k) := (1) (1)

is the only splitting datum for C0.

(b) r = 2. Then C0 = k × k is the direct product of two copies of k as ideals
and

∆0 := ∆02(k) := (E), E := (1, 0) ∈ C (2)

is a splitting datum for C.

(c) r = 4. Then C0 = Mat2(k) is the algebra of 2-by-2 matrices with entries in
k and

∆0 := ∆04(k) := (E, X,Y), (3)

E := E11 =

(
1 0
0 0

)
, X := E21 =

(
0 0
1 0

)
, Y := E12 =

(
0 1
0 0

)
is a splitting datum for C0.

(d) r = 8. Then C0 = Zor(k) is the algebra of Zorn vector matrices over k and,
writing (ei)1≤i≤3 for the canonical basis of k3 over k,

∆0 := ∆08(k) := (E, X1, X2, X3), E =
(
1 0
0 0

)
, Xi =

(
0 0
ei 0

)
(1 ≤ i ≤ 3)

(4)

is a splitting datum for C since (21.18.4) implies

(X1X2)X3 =

(
0 e1 × e2

0 0

) (
0 0
e3 0

)
(5)

= − (e1 × e2)Te3

(
1 0
0 0

)
= − det(e1, e2, e3)E = −E.
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The splitting datum ∆0r(k) exhibited in (1)–(4) above will henceforth be
referred to as the standard splitting datum for C0r(k) (r = 1, 2, 4, 8). We clearly
have ∆0r(k)R = ∆0r(R) for all R ∈ k-alg.

26.5 Proposition. The affine k-scheme of splitting data for C is smooth.

Proof Consulting (26.3.1)–(26.3.4) we see that X := Splid(C) is defined by
finitely many equations as a closed subscheme of Cnr

a . By Exc. 25.31 (b) and
Exc. 25.32, therefore, X is finitely presented. Hence, by 25.20, it suffices to
show that the set map X(R) → X(R/I) induced by the projections R → R/I is
surjective, for all R ∈ k-alg and all ideals I ⊆ R satisfying I2 = {0}. In order
to do so, we may assume R = k and write α 7→ ᾱ, x 7→ x̄ for the projection
k → k̄ := k/I, C −→ C̄ := C ⊗ k̄ = C/IC, respectively. We must show that
every splitting datum ∆′ of C̄ can be lifted to a splitting datum ∆ of C satisfying
∆̄ = ∆′. The case r = 1 being obvious, we are left with the cases r = 2, 4, 8,
which we treat separately.

Suppose first that r = 2. A splitting datum for C̄ has the form ∆′ = (e′)
for some elementary idempotent e′ ∈ C̄. By Exc. 16.25, e′ can be lifted to an
elementary idempotent e ∈ C. Thus ∆ := (e) is a splitting datum for C such
that ∆̄ = ∆′.

Suppose next that r = 4. A splitting datum for C̄ has the form ∆′ = (e′, x′, y′)
for some elementary idempotent e′ ∈ C̄, where x′ ∈ C̄21(e′), y′ ∈ C̄12(e′) satisfy
tC̄(x′y′) = 1k̄. As in (a), we find an elementary idempotent e ∈ C satisfying
ē = e′. The canonical projection C → C̄ induces surjections Ci j(e) → C̄i j(e′)
for {i, j} = {1, 2}. Hence x′, y′ can be lifted to elements u ∈ C21(e), v ∈ C12(e),
respectively, satisfying ū = x′, v̄ = y′. Hence

tC(uv) = tC̄(x′y′) = 1k̄,

and we conclude tC(uv) = 1 + α for some α ∈ I. This implies 1 + α ∈ k× with
inverse 1−α since I2 = {0}. Setting x := u ∈ C21(e), y := (1−α)v ∈ C12(e), we
therefore deduce not only x̄ = x′, ȳ = y′ but also tC(xy) = 1, so ∆ := (e, x, y) is
a splitting datum for C such that ∆̄ = ∆′.

Suppose finally that r = 8. A splitting datum for C has the form ∆′ =
(e′, x′1, x

′
2, x
′
3) for some elementary idempotent e′ ∈ C̄ and some x′1, x

′
2, x
′
3 ∈

C̄21(e′) satisfying tC̄(x′1x′2x′3) = −1k̄. Again e′ can be lifted to an elementary
idempotent e ∈ C satisfying ē = e′, and again x′i can be lifted to an element
ui ∈ C21(e) satisfying ūi = x′i for 1 ≤ i ≤ 3. Hence

tC(u1u2u3) = tC̄(x′1x′2x′3) = −1k̄,

and we conclude tC(u1u2u3) = −1+α for some α ∈ I. This implies −1+α ∈ k×

with inverse −(1 + α). Setting xi := ui for i = 1, 2 and x3 := −(1 + α)u3,
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we therefore deduce not only xi ∈ C21(e) and x̄i = x′i for 1 ≤ i ≤ 3 but also
tC(x1x2x3) = −1. Thus ∆ := (e, x1, x2, x3) is a splitting datum for C such that
∆̄ = ∆′. □

26.6 The k-functor of isomorphisms. Let A, B be non-associative algebras
over k.

(a) In partial generalization of 24.25, we consider the set of (k-algebra) iso-
morphisms from A to B:

Isomk(A, B) := Isom(A, B) := {η | η : A
∼
−→ B is a k-isomorphism}. (1)

This set will in general be empty but it gives rise to a k-functor

Isomk(A, B) := Isom(A, B) : k-alg −→ set

by defining

Isom(A, B)(R) := IsomR(AR, BR) (2)

for all R ∈ k-alg and

Isom(A, B)(φ) : Isom(A, B)(R) −→ Isom(A, B)(S ), (3)

Isom(AR, BR) ∋ η 7−→ ηS ∈ IsomS (AS , BS )

for all morphisms φ : R → S in k-alg, where we view S as an R-algebra via φ
and identify AS = (AR)S , BS = (BR)S as S -algebras via (9.4.1).

(b) The k-group functor Aut(A) of 24.25 acts canonically on Isom(A, B) from
the right via

IsomR(AR, BR) × Aut(AR) −→ Isom(AR, BR), (η, ζ) 7−→ η ◦ ζ,

and this action is simply transitive.

(c) Returning to our composition algebra C of rank r over k, we define a split-
ting of C as an isomorphism from C0r(k) onto C, where C0r(k) is the split
composition algebra of rank r over k described in 21.19. Thus Isom(C0r(k),C)
is the set of splittings of C.

26.7 Proposition. Let C be a composition algebra of rank r over k and denote
by ∆0r(k) the standard splitting datum for C0r(k) as defined in 26.4. Then ∆0r(k)
generates C0r(k) as a unital k-algebra, and the assignment

η 7−→ η
(
∆0r(k)

)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

246 Composition algebras

defines a bijection Φ = Φ(k) from the set of splittings of C onto the set of
splitting data of C:

Φ := Φ(k) : Isom
(
C0r(k),C

) ∼
−→ Splid(C).

Proof Since ∆0 := ∆0r(k) is a splitting datum for C0 := C0r(k), its image
under an isomorphism η : C0

∼
→ C is a splitting datum for C. Thus the map Φ

is well-defined, and it remains to show that it is bijective.
We begin by showing that ∆0 generates C0 as a unital k-algebra. By 26.4,

this is trivial for r = 1, 2 and obvious for r = 4, while for r = 8 it suffices
to note XiX j =

(
0 el
0 0

)
for all cyclic permutations (i jl) of (123), which follows

immediately from (21.18.4) and (26.4.4). It is now clear that the map Φ is
injective

In order to show that it is also surjective, we pick any splitting datum ∆ of C
and have to find an isomorphism η : C0

∼
→ C sending ∆0 to ∆. We do so again

by noting that the case r = 1 is obvious and by treating the cases r = 2, 4, 8
separately.

r = 2. Then∆ = (e) for some elementary idempotent e ∈ C. From Exc. 16.23,
we deduce that e, ē are unimodular and ke + kē is a quadratic étale subalgebra
of C. Hence C = ke ⊕ kē since C has rank 2 as a k-module, and

η : C0 −→ C, (α, β) 7−→ αe + βē

is an isomorphism sending ∆0 to ∆.
r = 4. Then ∆ = (e, x, y), with e ∈ C an elementary idempotent and x, y ∈

C21(e) satisfying (26.2.1). By Prop. 22.13, we may assume

C = Endk(k ⊕ L) =
(
k L∗

L k

)
, e =

(
1 0
0 0

)
,

for some line bundle L over k, and (22.12.5) yields elements u ∈ L, v∗ ∈ L∗

such that x =
(

0 0
u 0

)
, y =

(
0 v∗
0 0

)
. Now (26.2.1) implies ⟨v∗, u⟩ = 1, forcing L, L∗

to be free k-modules of rank 1 with dual basis vectors u, v∗, respectively. Hence
the assignment(

α β

γ δ

)
7−→

(
α βv∗

γu δ

)
(α, β, γ, δ ∈ k)

defines an isomorphism η : C0
∼
→ C sending ∆0 to ∆.

r = 8. Then ∆ = (e, x1, x2, x3), where e ∈ C is an elementary idempotent and
x1, x2, x3 ∈ C21(e) satisfy (26.2.2). By Thm. 22.15, we may assume

C = Zor(M, θ) =
(

k M∗

M k

)
, e =

(
1 0
0 0

)
,
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for some finitely generated projective k-module M of rank 3 and some ori-
entation θ of M, where (22.14.8) yields elements u1, u2, u3 ∈ M satisfying
xi =

(
0 0
ui 0

)
for i = 1, 2, 3. Combining (26.2.2) with (22.14.3), (22.14.2), we

conclude

−e = (x1x2)x3 =

(
0 u1 ×θ u2

0 0

) (
0 0
u3 0

)
=

(
−⟨u1 ×θ u2, u3⟩ 0

0 0

)
= − θ(u1 ∧ u2 ∧ u3)e,

hence θ(u1 ∧ u2 ∧ u3) = 1. Thus (u1, u2, u3) is a θ-balanced basis of M in the
sense of 22.14, which also implies that there is an identification C = Zor(k) =
C08(k) = C0 matching ui with ei for i = 1, 2, 3. But this means we have found
an isomorphism from C0 to C sending ∆0 to ∆. □

26.8 Theorem (Loos-Petersson-Racine [176, Thm. 4.10]). Let C be a compo-
sition algebra of rank r ∈ {1, 2, 4, 8} over k. Then the k-functor

Isom(C0r(k),C)

is a smooth affine torsor in the étale topology with structure group G = Aut(C0r(k)).

Proof Putting X := Isom(C0r(k),C), the set maps

Φ(R) : X(R)
∼
−→ Splid(C)(R)

given by Prop. 26.7 for any R ∈ k-alg are bijective and one checks that they
are compatible with base change, hence give rise to an isomorphism

Φ : X
∼
−→ Splid(C)

of k-functors. By Prop. 26.5, therefore, X is a smooth affine k-scheme acted
upon by G from the right in a simply transitive manner (26.6 (b)). More-
over, it follows from 23.12 that X has non-empty geometric fibers. Hence,
by Prop. 25.24, X is fppf and thus, in view of 25.25 (ii) and the definition
25.26 (iii), a smooth affine torsor with structure group G in the étale topol-
ogy. □

The preceding theorem has two corollaries which, up to a point, will be proved
simultaneously.

26.9 Corollary (Loos-Petersson-Racine [176, Cor. 4.11]). For any k-algebra
C, the following conditions are equivalent.

(i) C is a composition algebra over k.
(ii) There exists a faithfully flat R ∈ k-alg such that CR is a composition

algebra over R.
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(iii) There exists a faithfully flat R ∈ k-alg such that CR is a split composi-
tion algebra over R.

(iv) There exists an étale cover R ∈ k-alg such that CR is a split composition
algebra over R.

26.10 Corollary (Loos-Petersson-Racine [176, Cor. 4.12]). Let C be a com-
position algebra over k. Then Aut(C) is a smooth k-group scheme.

Proof of 26.9 and 26.10 We first note that in 26.9, the implications (iv) ⇒
(iii) ⇒ (ii) are obvious, while the implication (ii) ⇒ (i) follows from the fact
that C is a conic algebra (by Exc. 25.37) whose norm, nC , is non-singular (by
Exc. 25.34, since (nC)R = nCR is and R is faithfully flat) and permits composi-
tion (since (nC)R does and the natural map C → CR by Prop. 25.4 is injective).
In 26.9, therefore, it remains to prove the implication (i)⇒ (iv).

Next we reduce both corollaries to the case that

C has rank r ∈ {1, 2, 4, 8} as a k-module. (1)

This is accomplished by considering the rank decomposition of C, which, by
21.19, attains the form

k = k0 × k1 × k2 × k3, C = C0 ×C1 ×C2 ×C3 (2)

as direct products of ideals, where C j := Ck j is a composition algebra of rank 2 j

over k j for 0 ≤ j ≤ 3. Hence, assuming the implication (i)⇒ (iv) of 26.9 if (1)
holds. we find an étale covers R j of k j for 0 ≤ j ≤ 3 such that the composition
algebra C jR j over R j is split of rank 2 j. It is now straightforward to check that
R := R0×R1×R2×R3 is an étale cover of k making CR = C0R0×C1R1×C2R2×C3R3

a split composition algebra over k. This completes the reduction for 26.9.
Assuming 26.10 if (1) holds, let R ∈ k-alg and I ⊆ R be an ideal having

I2 = {0}. Using Exc. 8.10, and arguing as before, we have

R = R0 × R1 × R2 × R3,

I = I0 × I1 × I2 × I3, (3)

CR = C0R0 ×C1R1 ×C2R2 ×C3R3 ,

CR/I = C0,R0/I0 ×C1,R1/I1 ×C2,R2/I2 ×C3,R3/I3 .

Since C j,R j = 1k jCR, we conclude that Aut(CR) stabilizes C j,R j for 0 ≤ j ≤ 3.
Thus

Aut(CR) = Aut(C0R0 ) × Aut(C1R1 ) × Aut(C2R2 ) × Aut(C3R3 ),

and, similarly,

Aut(CR/I) = Aut(C0,R0/I0 ) × Aut(C1,R1/I1 ) × Aut(C2,R2/I2 ) × Aut(C3,R3/I3 ).
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Since C jR j has rank 2 j over R j, the k j-group scheme Aut(C j) is smooth, forcing
it to be finitely presented and the natural map Aut(C jR j ) → Aut(C j,R j/I j ) to be
surjective for 0 ≤ j ≤ 3. Hence so is the natural map Aut(CR) → Aut(CR/I),
which completes the reduction also for 26.10.

For the remainder of the proof, we may therefore assume that (1) holds.
Hence Thm. 26.8 implies that X := Isom(C0r(k),C) is a smooth torsor in the
étale topology, with structure group G = Aut(C0r(k)). Thus condition (iii) of
25.26 implies X(R) , ∅ for some étale cover R ∈ k-alg. Hence CR � C0k(R) is
split of rank r over R. This completes the proof of 26.9. Moreover, the chain of
isomorphisms

Aut(C)R � Aut(CR) � Aut
(
C0r(R)

)
� GR � XR

shows that Aut(C)R is smooth over R. But then, by 25.25 (iii), Aut(C) must be
smooth over k. □

26.11 Example. Let us exhibit covers as in 26.9(iii) and (iv) in the case of
C = DiCo(O), the Dickson-Coxeter octonions over the integers.

Let R be the ring of integers in Q(
√
−d) for some positive integer d. The

norm (nC)Q(
√
−d) is isotropic, so CQ(

√
−d) is split. Looking ahead to Lemma

57.1 (a), we deduce that CR is split. Since R is an fppf Z-algebra (Example
25.19), this verifies Cor. 26.9(iii).

But note that R is not an étale Z-algebra because it is ramified at the primes
dividing the discriminant of Q(

√
−d). Consider instead the quadratic exten-

sions K1 := Q(
√
−1) and K2 := Q(

√
−3). They are ramified only at the primes

p1 := 2 and p2 := 3 respectively. Consequently, the integral closure Ri of
Z[1/pi] in Ki is an étale Z[1/pi]-algebra. Since Z[1/pi] is an étale Z-algebra,
Ri is étale over Z. Moreover, Spec Ri → SpecZ only misses pi, so R1×R2 is an
étale cover of Z. As in the previous paragraph, CRi is split for each i, so CR1×R2

is split as an octonion algebra over R1 × R2.

Exercises
26.12. Let Q := (M, q) be a quadratic space of rank 2n, n ∈ N, over k. By a hyperbolic
basis of Q we mean a family (wi)1≤i≤2n of elements in M such that

q(wi) = q(wn+i) = q(wi,w j) = q(wn+i,wn+ j) = 0, q(wi,wn+ j) = δi j (1)

for 1 ≤ i, j ≤ n. The set of hyperbolic bases of Q will be denoted by Hyp(Q) ⊆ M2n.

(a) Show that the k-functor

Hyp(Q) : k-alg −→ set

given by
Hyp(Q)(R) := Hyp(QR), QR := (MR, qR),
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for all R ∈ k-alg and

Hyp(Q)(φ) : Hyp(Q)(R) −→ Hyp(Q)(S ),
Hyp(QR) ∋ (wi)1≤i≤2n 7−→ (wiS )1≤i≤2n ∈ Hyp(QS )

for all morphisms φ : R→ S in k-alg is a smooth closed k-subscheme of M2n
a .

(b) Conclude from (a) that
(i) there exists an étale cover R ∈ k-alg making QR a split hyperbolic

quadratic space over R in the sense of 11.18.
(ii) O(Q) is a smooth group scheme.
(Hint: Imitate the arguments of 26.6–26.10.)
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V

Jordan algebras

In the preceding chapter, we investigated some fundamental properties of com-
position algebras, particularly of octonions, over arbitrary commutative rings.
Our next main objective will be to accomplish the same for what we call cubic
Jordan algebras, among which Albert algebras are arguably the most impor-
tant. In order to achieve this objective, a few prerequisites from the general
theory of Jordan algebras are indispensable. Rather than striving for maxi-
mum generality, we confine ourselves to what is absolutely necessary for the
intended applications.

27 Linear Jordan algebras

Linear Jordan algebras were introduced by Albert, who in three fundamental
papers [5, 6, 7] developed a virtually complete structure theory of the finite-
dimensional ones over arbitrary fields of characteristic not two. While the main
focus of the present volume is primarily on (quadratic) Jordan algebras, linear
Jordan algebras are still of some interest since, e.g., they motivate the study
of quadratic ones and provide useful illustrations of why certain weird phe-
nomena can only occur in characteristic 2. In this section, the most elementary
properties of linear Jordan algebras will be discussed. Since linear Jordan alge-
bras have been extensively treated in book form (Braun-Koecher [36], Jacob-
son [136], Zhevlakov et al [298], and particularly McCrimmon [190]), proofs
will often be omitted.

Throughout we let k be a commutative ring such that 2 ∈ k×. We begin by
repeating definitions 5.6, 5.7 in the present more general context.

27.1 The concept of a linear Jordan algebra. By a linear Jordan algebra over
k we mean a (non-associative) k-algebra J satisfying the following identities,
for all x, y ∈ J.

xy = yx (commutative law), (1)

x(x2y) = x2(xy) (Jordan identity). (2)

27.2 Remark. The Jordan identity is the minimal nontrivial polynomial identity

251
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one can ask for on a commutative k-algebra, in a certain sense. Specifically,
suppose k is a field of characteristic , 2, 3, 5 and J is a finite-dimensional
commutative (non-associative) k-algebra with an associative bilinear form as
in 7.9 that is nondegenerate. If J satisfies a polynomial identity of degree ≤ 4
not implied by the commutative law, then J is a linear Jordan algebra, see [49,
Prop. A.8].

27.3 Special and exceptional linear Jordan algebras. (a) Let A be a k-algebra
with multiplication (x, y) 7→ xy. Then the symmetric product

x • y :=
1
2

(xy + yx)

converts A into a commutative algebra over k, denoted by A+. Moreover, one
checks easily that, if A is associative, then A+ is a linear Jordan algebra. Linear
Jordan algebras that are isomorphic to a subalgebra of A+, for some associative
algebra A, are said to be special. Non-special linear Jordan algebras are called
exceptional.

(b) For example, let B be a unital k-algebra and τ : B→ B an involution. Then
H(B, τ) = {x ∈ B | τ(x) = x} is a unital subalgebra of B+. In particular, if B is
associative, then H(B, τ) is a unital special Jordan algebra.

27.4 Elementary identities. The Jordan identity (27.1.2) can be expressed in
terms of left multiplication operators as

[Lx, Lx2 ] = 0, (1)

so a commutative algebra is linear Jordan if and only if (1) holds, i.e., if and
only if the left multiplication operators Lx and Lx2 commute.

Now let J be a linear Jordan algebra over k. Replacing x by αx+ y in (1) for
x, y ∈ J, α ∈ k, expanding and comparing mixed terms by using the fact that J
is commutative and 2 is invertible, we conclude

2[Lx, Lxy] + [Ly, Lx2 ] = 0. (2)

Repeating this procedure and dividing by 2 yields

[Lx, Lyz] + [Ly, Lzx] + [Lz, Lxy] = 0, (3)

which, when applied to any w ∈ J, amounts to

x
(
(yz)w

)
+ y

(
(zx)w

)
+ z

(
(xy)w

)
= (yz)(xw) + (zx)(yw) + (xy)(zw). (4)

We call (3) or (4) the fully linearized Jordan identity. Viewing (4) as a linear
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operator in x, we deduce, after an obvious change of notation,

L(xy)z = LxyLz + LyzLx + LzxLy − LxLzLy − LyLzLx. (5)

Here the sum of the first three terms on the right is symmetric in x, y, z, hence
remains unaffected by interchanging x and z. Since [x, y, z] = (xy)z − (zy)x =
z(xy) − x(zy), this implies

L[x,y,z] = L[Lz,Lx]y = [[Lz, Lx], Ly]. (6)

For any integer m > 1, we may put y := xm−1, z := x in (5) and obtain the
identity

Lxm+1 = 2Lxm Lx + Lx2 Lxm−1 − L2
xLxm−1 − Lxm−1 L2

x, (7)

which for m = 2 reduces to

Lx3 = 3LxLx2 − 2L3
x. (8)

27.5 Proposition. Linear Jordan algebras are stable under base change: if J
is a linear Jordan algebra over k, then JR is a linear Jordan algebra over R,
for any R ∈ k-alg.

Proof It suffices to check the Jordan identity (27.1.2) for JR, which is straight-
forward, using the identities derived in 27.4. See [190, p. 149] for details. □

27.6 Proposition. Let J be a linear Jordan algebra over k and x ∈ J.

(a) For u ∈ k1[x] (resp. u ∈ k[x] if J is unital), Lu is a polynomial in Lx and
Lx2 .

(b) For u, v ∈ k1[x] (resp. u, v ∈ k[x] if J is unital), Lu and Lv commute:
[Lu, Lv] = 0.

Proof (a) We may assume u = xm for some m ∈ Z, m > 0 (resp. m ∈ N).
Then the assertion follows from (27.4.7) by induction on m.

(b) Since Lx, Lx2 commute by (27.4.1), so do Lu, Lv by (a). □

27.7 Corollary. Linear Jordan algebras over k are power-associative.

Proof This follows from a straightforward application of Prop. 27.6 (b). De-
tails are left to the reader. □

27.8 Remark. In view of Prop. 27.6, equation (27.4.7) simplifies to

Lxm+1 = 2(Lxm − Lxm−1 Lx)Lx + Lx2 Lxm−1 . (1)

We have encountered examples of linear Jordan algebras in 27.3 (special Jor-
dan algebras) and in Thm. 5.10 (cubic euclidean Jordan matrix algebras, in
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particular the euclidean Albert algebra). Other examples, seemingly of a com-
pletely different nature, will now be introduced.

27.9 The linear Jordan algebra of a pointed quadratic module. Let (M, q, e)
be a pointed quadratic module over k, with trace t and conjugation ι, cf. 11.14
for details. Then the k-module M becomes a k-algebra J = J(M, q, e) under the
multiplication

xy :=
1
2
(
t(x)y + t(y)x − q(x, y)e

)
(x, y ∈ M). (1)

J is obviously commutative and unital, with identity element 1J = e. (Recall
from 11.14 that M = ke⊕Ker t. With this interpretation, formula (1) amounts to
the statement that e is the identity in J and that xy = − 1

2 q(x, y)e for x, y ∈ Ker t.)
We have

x2 − t(x)x + q(x)1J = 0 (2)

for all x ∈ J. Thus Lx2 , being a linear combination of Lx and 1J , commutes
with Lx, and we conclude that J is a unital linear Jordan algebra, called the
linear Jordan algebra of the pointed quadratic module (M, q, e).

It is a special Jordan algebra by [136, Thm. VII.1]. That result is proved by
showing that J(M, q, e) is isomorphic to a subalgebra of something called the
Clifford algebra of q|Ker t. While that proof is written for fields of characteristic
not 2, it extends to commutative rings where 2 is invertible in an obvious way.

Since q(e) = 1, we conclude from (2) that J = J(M, q, e) is a commutative
conic k-algebra in the sense of 16.1 whose norm, trace, conjugation agree with
the corresponding data attached to (M, q, e). Conversely, consider any conic
algebra C over k. As we have noted before, (C, nC , 1C) is a pointed quadratic
module, and comparing (1) with (16.5.5) divided by 2, we obtain

J(C, nC , 1C) = C+. (3)

We now extend the definition of the U-operator as given in 6.4 to the present
more general context.

27.10 The U-operator of a linear Jordan algebra. Let J be a linear Jordan
algebra over k. For x ∈ J, the linear map

Ux : J −→ J, y 7−→ Uxy := 2x(xy) − x2y, (1)

is called the U-operator of x. The quadratic map

U : J −→ Endk(J), x 7−→ Ux = 2L2
x − Lx2 , (2)
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is called the U-operator of J. Its bilinearization gives rise to the tri-linear Jor-
dan triple product

{xyz} := Ux,zy = (Ux+z − Ux − Uz)y = 2
(
x(zy) + z(xy) − (xz)y

)
. (3)

Viewing this as a map acting on z, we obtain the linear operators

Vx,y := 2
(
Lxy + [Lx, Ly]

)
, (4)

uniquely determined by the condition

Vx,yz = {xyz}. (5)

In particular, we have

Vx := Vx,1J = V1J ,x = 2Lx, (6)

so up to the factor 2, the operator Vx agrees with the left multiplication by x in
J.

27.11 Examples. In addition to the U-operator of real cubic Jordan matrix
algebras (Exc. 6.12 (b)), we now discuss the following cases.

(a) Let A be an associative algebra over k. As in Exc. 6.12 (a), the U-operator
of the linear Jordan algebra A+ is given by the formula

Uxy = xyx (x, y ∈ A) (1)

in terms of the associative product in A. In particular, any subalgebra of A+ is
closed under the binary operation (x, y) 7→ xyx.

(b) Let (M, q, e) be a pointed quadratic module over k, with trace t and con-
jugation x 7→ x̄. Then the U-operator of the linear Jordan algebra J(M, q, e) is
given by the formula

Uxy = q(x, ȳ)x − q(x)ȳ (x, y ∈ J) (2)

since (27.9.1), (27.9.2), (27.10.1) and (11.14.2) yield

Uxy = 2x(xy) − x2y = t(x)xy + t(y)x2 − q(x, y)x − t(x)xy + q(x)y

= q(x, e)t(y)x − q(x)t(y)e − q(x, y)x + q(x)y

= q
(
x, t(y)e − y

)
x − q(x)

(
t(y)e − y

)
= q(x, ȳ)x − q(x)ȳ,

as claimed.

The U-operator and its variants described in 27.10 are of the utmost impor-
tance for a proper understanding of (linear) Jordan algebras. This is primarily
due to a number of fundamental identities satisfied by these operators.
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27.12 Advanced identities. Let J be a linear Jordan algebra over k. Then the
following identities hold for all x, y, z, u, v ∈ J, where for the validity of the
first, J is required to be unital.

U1J = 1J , (1)

LyUx + UxLy = Uxy,x, (2)

LyUx,z + Ux,zLy = Uxy,z + Uzy,x, (3)

{xyz} = {zyx}, (4)

[Vx,y,Vu,v] = V{xyu},v − Vu,{yxv}, (5)

Vx,yUx = UxVy,x = UUxy,x, (6)

VUxy,y = Vx,Uy x, (7)

UUxy = UxUyUx. (8)

A verification of these identities, which (with the exception of (1) and (4)) are
highly non-trivial, will be omitted because they are logically not strictly nec-
essary for the subsequent applications to cubic Jordan algebras. The interested
reader is referred to McCrimmon [190, p. 202] or Meyberg [193].

Exercises
27.13. Let k be a commutative ring with 2 ∈ k×. Prove:

(a) For every associative k-algebra A: The linear Jordan algebra A+ is associative
if and only if [x, y] ∈ Cent(A) for all x, y ∈ A.

(b) Matn(k)+ is a Jordan algebra that is not associative, for all n ≥ 2, if k , {0}.

28 Para-quadratic algebras

Just as linear Jordan algebras fit naturally into the more general framework of
arbitrary non-associative algebras, i.e., of modules (over a commutative ring)
equipped with a binary operation that is linear in each variable, (quadratic)
Jordan algebras to be investigated below fit naturally into the more general
framework of what we call para-quadratic algebras—modules equipped with a
binary operation that is quadratic in the first variable and linear in the second.
It is the purpose of the present section to extend the language of (linear) non-
associative algebras as explained in §7 to this modified setting.

Throughout we let k be an arbitrary commutative ring. With an eye on sub-
sequent applications, we discuss the notion of a para-quadratic algebra only in
the presence of a base point which serves as a “weak identity element”.
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28.1 The concept of a para-quadratic algebra. By a para-quadratic algebra
over k we mean a k-module J together with a quadratic map

U : J −→ Endk(J), x 7−→ Ux, (1)

the U-operator, and a distinguished element 1J ∈ J, the base point, such that

U1J = 1J . (2)

We then write

{xyz} := Ux,zy = (Ux+z − Ux − Uz)y (x, y, z ∈ J) (3)

for the associated trilinear triple product, and

x ◦ y := {x1Jy} (x, y ∈ J) (4)

for the associated bilinear circle product. Note that the triple product (3) is
symmetric in the outer variables, whence the circle product (4) is commutative.
Moreover, {xyx} = 2Uxy for all x, y ∈ J. Viewing (3) (resp. (4)) as a linear
operator in z (resp. y), we obtain linear maps

Vx,y : J −→ J, z 7−→ {xyz}, (5)

Vx := Vx,1J : J → J, y 7−→ x ◦ y = {x1Jy}. (6)

that depend bilinearly on x, y (resp. linearly on x). We refer to the map V : J ×
J → Endk(J) defined by (5) as the V-operator of J. Most of the time,we
simply write J for a para-quadratic algebra, its U-operator, base point, triple
and circle product being understood. In keeping with our introductory promise,
1J because of (2) may be regarded as a weak identity element for J.

If J and J′ are para-quadratic algebras over k, a homomorphism from J to J′

is defined as a k-linear map φ : J → J′ preserving U-operators and base points
in the sense that

φ(Uxy) = Uφ(x)φ(y), φ(1J) = 1J′ (7)

for all x, y ∈ J. In this case, φ also preserves triple and circle products, so we
have

φ({xyz}) = {φ(x)φ(y)φ(z)}, φ(x ◦ y) = φ(x) ◦ φ(y) (x, y, z ∈ J). (8)

Summing up we obtain the category k-paquad of para-quadratic k-algebras.

28.2 Unital para-quadratic algebras. A para-quadratic algebra J over k is
said to be unital if x ◦ y = {1J xy} for all x, y ∈ J. Since the triple product is
symmetric in the outer variables, and because of (28.1.4), we then have

x ◦ y = {1J xy} = {x1Jy} = {xy1J} (1)
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for all x, y ∈ J and, in particular, 1J ◦ x = 2U1J x = 2x. If J is unital, the weak
identity element 1J is called the unit or identity element of J.

For the rest of this section, we fix a para-quadratic algebra J over k.

28.3 Subalgebras. For X,Y,Z ⊆ J we denote by UXY (resp. {XYZ}) the addi-
tive subgroup of J generated by the expressions Uxy (resp. {xyz}) for x ∈ X,
y ∈ Y , z ∈ Z. We say that J′ is a subalgebra of J if J′ ⊆ J is a k-submodule
satisfying 1J ∈ J′ and UJ′ J′ ⊆ J′. Then {J′J′J′} + J′ ◦ J′ ⊆ J′ and there is a
unique way of viewing J′ as a para-quadratic k-algebra in its own right such
that the inclusion J′ → J is a homomorphism. This implies not only 1J′ = 1J

but also that the triple (resp. circle) product of J′ is obtained from the triple
(resp. circle) product of J via restriction.

28.4 Example. Let A be a flexible unital k-algebra, so we have (xy)x = x(yx) =:
xyx for all x, y ∈ A. Then the U-operator defined by

Uxy := xyx (x, y ∈ A) (1)

and the unit element of A convert A into a para-quadratic k-algebra denoted by
A(+). Triple and circle product of A(+) are given by

{xyz} = (xy)z + (zy)x = x(yz) + z(yx), x ◦ y = xy + yx (x, y, z ∈ A). (2)

In particular, the para-quadratic algebra A(+) is unital. Obviously, (Aop)(+) =

A(+).

28.5 Ideals. We say I is an ideal in J if it is a k-submodule satisfying the
inclusion relations

UI J + UJ I + {JJI} ⊆ I. (1)

In this case, there is a unique way of making the k-module J′ := J/I into
a para-quadratic k-algebra such that the canonical map from J to J′ is a ho-
momorphism. Conversely, the kernel of any homomorphism of para-quadratic
algebras is an ideal. Moreover, if I1 and I2 are ideals in J, then so is I1+ I2, and
the standard isomorphism theorems of abstract algebra continue to hold in this
modified setting.

28.6 Inner and outer ideals. There is a vague analogy between one-sided
ideals in ring theory and the following notions for para-quadratic algebras. A
k-submodule I ⊆ J is said to be an inner (resp. an outer) ideal if

UI J ⊆ I (resp. UJ I + {JJI} ⊆ I). (1)

Thus a submodule of J is an ideal if and only if it is an inner and an outer
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ideal. But the analogy to one-sided ideals goes only so far: for example, let
I ⊆ J be an outer ideal and x ∈ I, y ∈ J. The 2Uxy = {xyx} ∈ {JJI} ⊆ I, and
we conclude that, if 2 ∈ k×, then outer ideals of J are ideals.

28.7 Direct products of ideals. Let J1, . . . , Jr be para-quadratic algebras over
k. Then

J := J1 × · · · × Jr,

their direct product as a k-module, becomes a para-quadratic k-algebra, with
U-operator and base point respectively given by

U(x1,...,xr)(y1, . . . , yr) = (Ux1 y1, . . . ,Uxr yr), 1J = (1J1 , . . . , 1Jr )

for xi, yi ∈ Ji, 1 ≤ i ≤ r. It follows immediately from the definition that also
the triple and circle product of J are carried out component-wise. In particular,
J is unital if and only if Ji is unital, for each i = 1, . . . , r. Identifying Ji ⊆ J
canonically for 1 ≤ i ≤ r, we clearly have UJi J j = {0} for 1 ≤ i, j ≤ r, i , j
and {JiJ jJl} = {0} for 1 ≤ i, j, l ≤ r unless i = j = l.

Conversely, let J be a any para-quadratic algebra over k and suppose that
I1, . . . , Ir ⊆ J are ideals such that J = I1 ⊕ · · · ⊕ Ir as a direct sum of sub-
modules (i.e., of ideals). For all i, j, l = 1, . . . , r, this implies UIi I j = {0} unless
i = j and {IiI jIl} = {0} unless i = j = l. It follows that I1, . . . , Ir are para-
quadratic k-algebras in their own right, and J identifies canonically with their
direct product as para-quadratic algebras.

28.8 Powers. Let x ∈ J. We define the powers xn ∈ J for n ∈ N inductively by

x0 := 1J , x1 := x, xn := Uxxn−2 (n ∈ N, n ≥ 2). (1)

It can be useful to note that, with this definition,

(x + y)2 = x2 + x ◦ y + y2

for all x, y ∈ J. We write

k[x] :=
∑
n∈N

kxn (2)

for the submodule of J spanned by the powers of x. More generally, we define

kr[x] :=
∑
n≥r

kxn (3)

for r ∈ N as a submodule of k[x]. We say J is power-associative at x if

Uxm xn = x2m+n, {xmxnxp} = 2xm+n+p (4)
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for all m, n, p ∈ N. This is easily seen to imply

(xm)n = xmn (5)

for all m, n ∈ N, and that k[x] ⊆ J is a para-quadratic subalgebra. We say J is
power-associative if it is so at every element of J.

For example, let A be a unital flexible k-algebra as in 28.4. Then the powers
of x ∈ A are the same in A and A(+). In particular, if A is power-associative,
then so is A(+) and conversely.

28.9 Idempotents. An element c ∈ J is called an idempotent if c3 = c2 = c.
This implies cn = c for all positive integers n, hence k[c] = k1J + kc; in partic-
ular, J is power-associative at c. There are always the trivial idempotents 0 and
1J but possibly no others. Two idempotents c, d ∈ J are said to be orthogonal,
written as c ⊥ d, if

Ucd = Udc = {ccd} = {ddc} = c ◦ d = 0. (1)

Orthogonality of idempotents is obviously a symmetric relation. Moreover,
c ⊥ d is easily seen to imply that c + d ∈ J is an idempotent. If c ∈ J is an
idempotent, then so is 1J − c, and the idempotents c, 1J − c are orthogonal.

Let A be a unital flexible k-algebra. Then the idempotents of A and A(+) are
the same. Moreover, for two idempotents c, d in A to be orthogonal in A(+) it is
necessary and sufficient that they be orthogonal in A, i.e., cd = dc = 0.

28.10 The multiplication algebra. The subalgebra of Endk(J) generated by
the linear operators Ux,Vx,y for x, y ∈ J is called the multiplication algebra of
J, denoted my Mult(J). Note by (28.1.2) that Mult(J) is a unital subalgebra
of Endk(J), so 1J ∈ Mult(J). We may view J canonically as a Mult(J)-left
module. Then the Mult(J)-submodules of J are precisely the outer ideals of J.

28.11 Simplicity and division algebras. J is said to be simple if it is non-
zero and has only the trivial ideals {0} and J. We say J is outer simple if it is
non-zero and the only outer ideals are {0} and J. Note by 28.6 that simplicity
and outer simplicity are equivalent notions if 2 ∈ k× but not in general, see
Example 28.12 below. Note further by 28.10 that outer simplicity (and not
simplicity) is equivalent to J being an irreducible Mult(J)-module.

And finally, J is said to be a division algebra if it is non-zero and Ux : J → J
is bijective for all nonzero elements x ∈ J. For example, let A be a uni-
tal flexible k-algebra. Then A is a division algebra in the sense of 8.6 if and
only if A(+) is a para-quadratic division algebra. This follows immediately
from (28.4.1), which thanks to flexibility may be written in operator form as
LxRx = Ux = RxLx, so if, e.g., Ux is bijective, then Lx is surjective by the first
equation and injective by the second.
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We note that para-quadratic division algebras have only the trivial inner
ideals and, in particular, are simple. Indeed, let I be a non-zero inner ideal in
a para-quadratic division algebra J and pick 0 , x ∈ I. Then Ux is bijective,
which implies J = UxJ ⊆ I, and the assertion follows.

28.12 Example. Let K ⊃ F be a purely inseparable field extension of charac-
teristic 2 and exponent 1. Since K is a flexible division algebra over k := F,
K(+) is a para-quadratic one, with U-operators Uxy = x2y and triple product
{xyz} = 2xyz = 0. Hence K(+) is a simple para-quadratic F-algebra. However,
since x2 ∈ F for all x ∈ K, every F-subspace of K is an outer ideal of K(+).
In particular, F is an outer ideal in K(+) that is neither {0} nor K, so K(+) is not
outer simple.

28.13 Scalar extensions. Giving a para-quadratic k-algebra amounts to the
same as giving a k-module M, a quadratic-linear composition g : M × M →

M in the sense of Exc. 11.34, and a distinguished element 1 ∈ M such that
g(1, y) = y for all y ∈ M. Since scalar extensions of quadratic-linear maps
exist, by Exc. 11.34, so do scalar extensions of para-quadratic algebras. More
specifically, given R ∈ k-alg, the scalar extension of J from k to R, denoted by
JR, is the unique para-quadratic algebra over R living on the R-module JR (base
change of the k-module J from k to R) and characterized by the condition that

(Uxy)R = UxR yR, 1JR = (1J)R

for all x, y ∈ J. It follows that the triple (resp. circle) product of JR is the
R-trilinear (resp. R-bilinear) extension of the triple (resp. circle) product of J.
The standard properties enjoyed by the scalar extensions of k-modules or linear
non-associative algebras over k (cf. 9.2) carry over to this modified setting
without change.

28.14 The centroid. Due to the non-linear character of para-quadratic alge-
bras, it seems impossible to define a meaningful analogue of the centre inside
the algebras themselves. Instead, just as in the case of linear non-associative
algebras without a unit (e.g., of Lie algebras, cf. Jacobson [135, Chap. X, §1]),
one has to work inside their endomorphism algebras.

Accordingly, we define the centroid of J, denoted by Cent(J), as the set of
all elements a ∈ Endk(J) such that, writing ax := a(x) (a ∈ Endk(J), x ∈ J) for
simplicity,

Uax = a2Ux, Uax,y = aUx,y, aUx = Uxa, (x, y ∈ J). (1)

The difficulty with this definition is that one of the conditions imposed on
the elements of the centroid is no longer linear in a, and hence it is not at
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all clear whether Cent(J) ⊆ Endk(J) is a submodule, let alone a commutative
subalgebra. Before discussing this question any further, let us observe for a ∈
Cent(J) and x, y ∈ J that

aUx,y = Uax,y = Ux,ay = Ux,ya and aVx,y = Vax,y = Vx,ay = Vx,ya. (2)

These relations either follow by linearizing (1) or by straightforward verifica-
tion, e.g., aVx,yz = aUx,zy = Uax,zy = Vax,yz for z ∈ J. Note that, in view of
(1), (2), the elements of the centroid behave “just like scalars” not only with
respect to the U-operator but also with respect to the triple and circle product:

a{xyz} = {(ax)yz} = {x(ay)z} = {xy(az)}, (3)

a(x ◦ y) = (ax) ◦ y = x ◦ (ay) (4)

for all a ∈ Cent(J), x, y, z ∈ J.
Our next aim will be to exhibit conditions under which the centroid becomes

a commutative subalgebra (resp. a subfield) of the endomorphism algebra of J.

28.15 Proposition (cf. McCrimmon [184, Thm. 2]). The following conditions
are equivalent.

(i) Cent(J) is a commutative (unital) subalgebra of Endk(J).
(ii) Cent(J) is a (unital) subalgebra of Endk(J).
(iii) Cent(J) is an additive subgroup of Endk(J).
(iv) The elements of Cent(J) commute by pairs: [a, b] = 0 for all a, b ∈

Cent(J).

Proof In (i), (ii), unitality is automatic since 1J ∈ Cent(J).
(i)⇒ (ii)⇒ (iii). Obvious.
Before tackling the remaining implications (iii)⇒(iv)⇒(i), we claim, for all

a, b ∈ Cent(J),

a + b ∈ Cent(J) ⇐⇒ ∀x ∈ J : U(a+b)x = (a + b)2Ux (1)

⇐⇒ [a, b] = 0.

Indeed, since the last two conditions of (28.14.1) are linear in a, the first equiv-
alence in (1) is obvious. As to the second, we use (28.14.1), (28.14.2) and
compute

U(a+b)x − (a + b)2Ux = Uax + Uax,bx + Ubx − a2Ux − (ab + ba)Ux − b2Ux

= (2ab − ab − ba)Ux = [a, b]Ux,

which by (28.1.2) is zero for all x ∈ J if and only if [a, b] = 0. This completes
the proof of (1).

(iii)⇒ (iv). This follows immediately from (1).
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(iv)⇒ (i). By (1) and (iv), we need only show that Cent(J) is closed under
multiplication, so let a, b ∈ Cent(J). Then

U(ab)x = a2Ubx = a2b2Ux = (ab)2Ux

since a and b by (iv) commute. Thus ab ∈ Cent(J). □

28.16 Central para-quadratic algebras. J is said to be central if the linear
map k → Endk(J), α 7→ α · 1J , is injective with image Cent(J). In this case,
Cent(J) ⊆ Endk(J) is a unital subalgebra isomorphic to k. Conversely, suppose
Cent(J) ⊆ Endk(J) is a subalgebra, automatically unital and commutative by
Prop. 28.15. Then the natural action of Cent(J) on J converts J into a central
para-quadratic algebra over Cent(J), denoted by Jcent and called the central-
ization of J. See 8.4 for the analogous, but more elementary, concept in the
context of linear non-associative algebras.

28.17 The extreme radical. We wish to show that, under some mild extra
condition, the centroid of a simple para-quadratic algebra is a field. This extra
condition is best understood in terms of the extreme radical of J, which is
defined by

Rex(J) := {z ∈ J | Uz = Uz,x = 0 for all x ∈ J} (1)

and obviously a submodule of J. In fact, the extreme radical of J agrees with
the radical of the quadratic map x 7→ Ux as defined in 11.3.

28.18 Theorem (Schur’s lemma, cf. McCrimmon [184, Thm. 3]). The centroid
of a simple para-quadratic algebra with zero extreme radical is a field.

Proof Let a, b ∈ Cent(J) and x, y ∈ J. Then (28.14.1), (28.14.2) yield

U[a,b]x = Uabx−bax = Uabx − Uabx,bax + Ubax = a2Ubx − aUbx,axb + Uaxb2

= a2Uxb2 − 2a2Uxb2 + a2Uxb2 = 0

and

U[a,b]x,y = Uabx−bax,y = aUx,yb − aUx,yb = 0.

Hence [a, b]x ∈ Rex(J) = {0}, and we deduce from Prop. 28.15 that Cent(J) ⊆
Endk(J) is a commutative unital subalgebra. It remains to show that its non-
zero elements are invertible, so let a ∈ Cent(J) be non-zero. For x, y, z ∈ J we
have

Uaxy = a2Uxy ∈ Im(a), Uyax = aUyx ∈ Im(a), and

{yz(ax)} = a{yzx} ∈ Im(a),
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whence Im(a) ⊆ J is a non-zero ideal. Thus Im(a) = J by simplicity, and a is
surjective. On the other hand, let z ∈ I := Ker(a). Then a{xyz} = {xy(az)} = 0
for all x, y ∈ J, forcing {JJI} ⊆ I. Similarly, UJ I ⊆ I. And finally, since a is
surjective, x = aw for some w ∈ J, which implies aUzx = aUzaw = a2Uzw =
Uazw = 0, hence Uzx ∈ I. Thus I ⊂ J is an ideal, and we conclude I = {0}.
Summing up, we have shown that a : J → J is bijective. □

As a consequence of this result, para-quadratic division k-algebras may al-
ways be viewed as para-quadratic algebras over some field F ∈ k-alg which
induce their para-quadratic k-algebra structure by restriction of scalars. In-
deed, since they obviously have zero extreme radical, we arrive at the following
more precise corollary.

28.19 Corollary. Let J be a para-quadratic division k-algebra. Then F :=
Cent(J) is a field in k-alg and the centralization Jcent of J is a central para-
quadratic division algebra over F. □

Exercises
28.20. Monomials and the nil radical in para-quadratic algebras. Let J be a para-
quadratic algebra over k. For X ⊆ J and m ∈ N we define subsets Monm(X) ⊆ J
by setting Mon0(X) := {1J}, Mon1(X) := X and by requiring that Monm(X) for m > 1
consist of all elements Uyz with y ∈ Monn(X), z ∈ Monp(X), n, p ∈ N, n > 0, m = 2n+p.
The elements of

Mon(X) :=
⋃
m∈N

Monm(X)

are called monomials (in J) over X.

(a) Prove Monm({x}) = {xm} for all x ∈ J and all m ∈ N if J is power-associative.
(b) An element x ∈ J is said to be nilpotent if 0 ∈ Mon({x}) is a monomial over

{x}. We say I ⊆ J is a nil ideal if it is an ideal consisting entirely of nilpotent
elements. Prove that the image of a nilpotent element under a homomorphism
of para-quadratic algebras is nilpotent, and that for ideals I′ ⊆ I in J, the ideal
I is nil if and only if I′ is nil and I/I′ is a nil ideal in J/I′. Conclude that the
sum of all nil ideals in J is a nil ideal, called the nil radical of J, denoted by
Nil(J).

(c) Prove Nil(k)J ⊆ Nil(J).

28.21. Para-quadratic evaluation. Let J be a para-quadratic algebra over k and x ∈ J
such that J is power-associative at x. We define the evaluation at x ∈ J as the linear
map εx : k[t] → J determined by εx(tn) = xn for all n ∈ N and put f (x) := εx( f ) for all
f ∈ k[t].

(a) Show that εx : k[t](+) → J is a homomorphism of para-quadratic k-algebras and
conclude that

I := Ix := Ker(εx) := { f ∈ k[t] | f (x) = 0}
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is an ideal in k[t](+). Show further that

I0 := I0
x := Ker0(εx) := { f ∈ k[t] | f (x) = (t f )(x) = 0}

is the unique largest ideal in k[t] contained in I. Moreover, both f 2 and 2 f
belong to I0 for all f ∈ I. It follows that R := k[t]/I0 is a unital commutative
associative k-algebra, and with the canonical projection ε0

x : k[t] → R, there is
a unique homomorphism π : R(+) → J of para-quadratic algebras making the
diagram

k[t](+)

ε0
x

||

εx

!!
R(+)

π
// J

commutative. In particular, k[x] = Im(π) ⊆ J is a para-quadratic subalgebra of
J, and a2 = 2a = 0 for all a ∈ Ker(π).

(b) Suppose 2 = 0 in k and let n ≥ 2 be an integer. Show that

In := ktn + tn+2k[t]

is an ideal in k[t](+) but not in k[t]. Conclude from the relations

xn+1 , 0 = xn = xn+2 = xn+3 = · · ·

for the image x of t under the canonical projection k[t](+) → Jn := k[t](+)/In
that Jn has no linear structure, i.e., there is no unital flexible algebra A over k
satisfying Jn � A(+).

28.22. Para-quadratic lifting of idempotents. Let J be a para-quadratic algebra over k
and x ∈ J such that J is power-associative at x.

(a) For v ∈ k[x], let U′v : k[x]→ k[x] be the restriction of Ux to k[x]. Prove

U′( f g)(x) = U′f (x)U
′
g(x) (1)

for all f , g ∈ k[t] and conclude

[U′v,U
′
w] = 0, U′Uvw = U′2v U′w, U′vn = U′nv (2)

for all v,w ∈ k[x] and all n ∈ N.
(b) Assume there are integers n > d > 0 and scalars αd, . . . , αn−1 ∈ k such that

αd ∈ k× and
αd xd + αd+1 xd+1 + · · · + αn−1 xn−1 + xn = 0.

Show that there is a unique element v ∈ k2d[x] satisfying Uxd v = x2d. Conclude
Uv = 1 on k2d[x] and that c := v2 is an idempotent in k2d[x] satisfying Uc = 1
on k2d[x]. (Hint: Apply Exc. 7.14 (a) and Exc. 28.21 (a).)

(c) Let φ : J → J′ be a surjective homomorphism of power-associative para-
quadratic algebras over k and suppose Ker(φ) ⊆ J is a nil ideal (Exc. 28.20).
Conclude from (b) that every idempotent c′ ∈ J′ can be lifted to J, i.e., there
exists an idempotent c ∈ J satisfying φ(c) = c′.

28.23 (Petersson-Racine [224, Lemma 3]). Let J be a para-quadratic algebra over k and
x ∈ J. Show that, if J is power-associative at x, the following conditions are equivalent.
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(i) x is nilpotent in the sense of Exc. 28.20 (b).
(ii) xm = 0 for some positive integer m.
(iii) There exists a positive integer m such that xn = 0 for all integers n ≥ m.

Show further for the para-quadratic subalgebra k[x] ⊆ J (cf. Exc. 28.21 (a)) that

Nil(k[x]) = {v ∈ k[x] | v is nilpotent}.

28.24. The outer centroid. Let J be a para-quadratic algebra over k and define the outer
centroid of J, denoted by Centout(J), as the centralizer of the multiplication algebra of
J. We say J is outer central if the natural map α 7→ α1J from k to the outer centroid of
J is an isomorphism. Prove:

(a) If J is outer simple, then its outer centroid is a(n associative) division ring.
(b) If k is a field and J is finite-dimensional and outer simple over k, then

EndCentout(J)(J) = Mult(J).

(c) Assume k is a field and J is finite-dimensional over k. Then J is outer central
and outer simple if and only if it is non-zero and Mult(J) = Endk(J).

(d) For a finite-dimensional para-quadratic algebra over a field, the following con-
ditions are equivalent.

(i) J is outer central and outer simple.
(ii) Every base field extension of J is outer simple.
(iii) The scalar extension of J to the algebraic closure of the base field is

outer simple.

28.25. Orthogonal systems of idempotents. Let J be a para-quadratic algebra over k. A
finite family (c1, . . . , cr) of elements in J is called an orthogonal system of idempotents
if each ci, 1 ≤ i ≤ r, is an idempotent, and the following relations hold, for all i, j, l =
1, . . . , r.

Uci c j = {cicic j} = ci ◦ c j = 0 (i , j), {cic jcl} = 0 (i, j, l mutually distinct). (1)

An orthogonal system (c1, . . . , cr) of idempotents in J is said to be complete if
∑r

i=1 ci =
1J . Prove:

(a) If (c1, . . . , cr) is an orthogonal system of idempotents in J, then
∑r

i=1 ci is an
idempotent, and

(c1, . . . , cr, 1J −

r∑
i=1

ci)

is a complete orthogonal system of idempotents in J.
(b) If J = A(+) for some unital flexible k-algebra A, then the (complete) orthogonal

systems of idempotents in J and in A are the same.

29 Jordan algebras and basic identities

Experimental studies carried out by Jacobson in the 1950s suggest that the
most promising way of extending the theory of linear Jordan algebras to arbi-
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trary commutative rings from those where 2 is invertible consists in axioma-
tizing properties of the U-operator. The fruitfulness of this approach is under-
scored by the fact that the explicit formulas for the U-operator in our exam-
ples of linear Jordan algebras (Exc. 6.12 (b), (27.11.1), (27.11.2)), as opposed
to the ones for the bilinear product ((5.3.1), 27.3, (27.9.1)), are defined over
the integers and hence make sense over any commutative ring. Unfortunately,
however, the question of which specific properties of the U-operator should
be singled out as axioms remained a mystery for a long time. But then, in
1966, McCrimmon [181] introduced the concept of what he called a quadratic
Jordan algebra. He showed that this concept is equivalent to the concept of
a unital linear Jordan algebra over rings where 2 is invertible and that it gives
rise to a far reaching structure theory, culminating eventually in the Zel’manov-
McCrimmon enumeration [191] of non-degenerate prime quadratic Jordan al-
gebras.

Our aim in the present section will be to define quadratic Jordan algebras
(henceforth referred to simply as Jordan algebras) and to show that in the
presence of 1

2 they are categorically isomorphic to unital linear Jordan algebras.
Using some basic identities, we derive a few elementary properties of Jordan
algebras and extend the standard examples previously obtained in the linear
case to the more general quadratic setting.

Throughout we let k be an arbitrary commutative ring. In deriving the el-
ementary properties of Jordan algebras required in the present volume, we
mostly follow Jacobson [140].

29.1 The concept of a Jordan algebra. By a Jordan algebra over k we mean
a para-quadratic k-algebra J with U-operator U and base point 1J satisfying
the following identities in all scalar extensions:

UUxy = UxUyUx, (1)

UxVy,x = Vx,yUx. (2)

Equation (1) is called the fundamental formula. We write k-jord for the cat-
egory of Jordan algebras over k, viewed as a full subcategory of k-paquad,
the category of para-quadratic algebras over k. By definition, Jordan algebras
remain stable under base change.

Let J be a Jordan algebra over k. The triple (resp. circle) product associated
with J in its capacity as a para-quadratic algebra will be referred to as the
Jordan triple product (resp. the Jordan circle product) of J. Setting x = 1J in
(2) and observing (28.1.2), (28.1.6), we conclude V1J ,x = Vx, hence {1J xy} =
{x1Jy} = x ◦ y for all x, y ∈ J. Thus Jordan algebras are unital para-quadratic
algebras.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

268 Jordan algebras

29.2 Basic identities. Let J be a Jordan algebra over k. The identities listed in
29a on the facing page hold strictly in J, i.e., for all x, y, z,w in every scalar
extension.

Proof Since Jordan algebras are stable under base change, it suffices to verify
these identities for all x, y, z, u, v,w ∈ J. Here (1), (5) hold since J is unital para-
quadratic, while (2) and the first equation in (4) are valid by the definition of
a Jordan algebra. Applying this part of (4) to z, viewing the result as a linear
map acting on y, using the fact that the Jordan triple product is symmetric in
the outer variables and writing again y for z, the second equation of (4) drops
out. On the other hand, (3) follows immediately by linearizing (2) with respect
to y. Fixing y ∈ J and computing the first and second derivatives of both sides
of the fundamental formula UUxy = UxUyUx with respect to x by means of the
differential calculus 12.17, we obtain (6) and (7). Linearizing (6) (resp. (4))
with respect to x yields (8) (resp. (9)). Specializing y and z to 1J in (7), we
obtain Vx2 + 4Ux = 2Ux + V2

x , hence (10). On the other hand, since Jordan
algebras are unital para-quadratic, setting y = 1J in (4) yields (11). Next we
put x = 1J in (9) and observe (5). Writing x for z, we end up with (12), which,
when applied to z, amounts to

x ◦ (y ◦ z) + {yxz} = y ◦ (x ◦ z) + {xyz}.

Putting z = x and applying (10) we conclude

x ◦ (x ◦ y) + Ux,yx = 2x2 ◦ y + 2Uxy = 2x2 ◦ y + x ◦ (x ◦ y) − x2 ◦ y.

Thus (13) holds, which linearizes to {xzy} + {zxy} = (x ◦ z) ◦ y and yields (14)
after interchanging x and y. Next we put z = 1J in (7) to obtain (15), while
linearizing (11) yields (16). Applying this to y and using (13), we conclude

2Uxy2 + {x(x ◦ y)y} = x ◦ {xyy} + y ◦ (Uxy) = x ◦ (x ◦ y2) + y ◦ (Uxy)

= V2
x y2 + y ◦ (Uxy).

Now (10) yields with

y ◦ (Uxy) = {x(x ◦ y)y} + (2Ux − V2
x )y2 = {x(x ◦ y)y} − Vx2 y

= {x(x ◦ y)y} − x2 ◦ y2

an equation whose right-hand side is symmetric in x and y. Hence so is the left,
and we have proved (17). Linearizing gives

y ◦ (Uxz) + z ◦ (Uxy) = x ◦ (Uy,zx) = x ◦ (Vy,xz),

and viewing this as a linear map in z, we arrive at

VUxy = VxVy,x − VyUx. (33)
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U1J = 1J , (1)

UUxy = UxUyUx, (2)

UUxy,Uxz = UxUy,zUx, (3)

UxVy,x = Vx,yUx = Ux,Uxy, (4)

Vx = V1J ,x = U1J ,x, (5)

UUxy,{xyz} = UxUyUx,z + Ux,zUyUx, (6)

UUxy,Uzy + U{xyz} = UxUyUz + UzUyUx + Ux,zUyUx,z (7)

UUx,wy,Ux,zy + UUxy,Uz,wy = Ux,wUyUx,z + UxUyUz,w + Uz,wUyUx + Ux,zUyUx,w,

(8)

Ux,zVy,x + UxVy,z = Vz,yUx + Vx,yUx,z = Uz,Uxy + Ux,Ux,zy, (9)

2Ux = V2
x − Vx2 , (10)

UxVx = VxUx = Ux,x2 , (11)

VxVy + Vy,x = VyVx + Vx,y, (12)

Ux,yx = {xxy} = x2 ◦ y, (13)

Ux,y = VxVy − Vx,y, (14)

Ux◦y + UUxy,y = UxUy + UyUx + VxUyVx, (15)

UxVy + Ux,yVx = VxUx,y + VyUx, (16)

(Uxy) ◦ y = x ◦ (Uyx), (17)

VxVy,x + UxVy = VyUx + Vx,yVx, (18)

VUxy = VxVy,x − VyUx = Vx,yVx − UxVy, (19)

VUxy,y = Vx,Uy x, (20)

VUxy,z + VUxz,y = Vx,{yxz}, (21)

UUxy,z = Ux,zVy,x − Vz,yUx = Vx,yUx,z − UxVy,z, (22)

Vx,{yxz} + UxUy,z = Vx,yVx,z + VUxz,y = Vx,zVx,y + VUxy,z,, (23)

V{xyz},y = Vx,Uyz + Vz,Uy x, (24)

Vx,yVz,y = Vx,Uyz + Ux,zUy, (25)

Vx,yUz + UzVy,x = Uz,{xyz}, (26)

Vx,yVx,z = VUxy,z + UxUy,z, (27)

[Vx,y,Vu,v] = V{xyu},v − Vu,{yxv}, (28)

VUxy,zUx = UxVy,Uxz, (29)

VUxy,zVx,y = UxUyVx,z + Vx,UyUxz, (30)

U{xyz} + UUxUyz,z = UxUyUz + UzUyUx + Vx,yUzVy,x, (31)

UUxUyz,{xyz} = UxUyUzVy,x + Vx,yUzUyUx. (32)

Table of Identities 29a Identities that hold strictly for every Jordan k-algebra J, i.e.,
that hold for every x, y, z,w ∈ JR for every R ∈ k-alg.
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Setting z = 1J in (9), we obtain (18), which combines with (33) to imply (19).
Using (14), (19) and (15), we can now compute

VUxy,y − Vx,Uy x = VUxyVy − UUxy,y − VxVUy x + Ux,Uy x

= (VxVy,x − VyUx)Vy − (UxUy + UyUx + VxUyVx − Ux◦y)

− Vx(Vy,xVy − UyVx) + (UyUx + UxUy + VyUxVy − Uy◦x)

= 0.

This proves (20), which linearizes to (21). Applying this to w ∈ J, we obtain

{(Uxy)zw} + {(Uxz)yw} = {x{yxz}w},

which in turn may be viewed as a linear map in z and, writing z for w, yields the
first equation of (22), while the second now follows from (9). We now apply
(9) to u and obtain

{x{yxu}z} + Ux{yzu} = {zy(Uxu)} + {xy{xuz}} = {zu(Uxy)} + {xu{xyz}}.

Viewing this as a linear map in z and replacing u by z, we arrive at (23). Next
we apply (20) to z and linearize the resulting equation, {(Uxy)yz} = {x(Uyx)z},
with respect to x:

{{xyw}yz} = {w(Uyx)z} + {x(Uyw)z}. (34)

Viewing (34) as a linear map in z and replacing w by z gives (24), while viewing
it as a linear map in w and interchanging x with z gives (25). Combining (22)
with (9) and interchanging x with z, we obtain

Vx,yUz + UzVy,x = Uz,{xyz},

hence (26). Combining (23) with (21) yields

Vx,yVx,z + VUxz,y = Vx,{yxz} + UxUy,z = VUxy,z + VUxz,y + UxUy,z,

hence (27). Linearizing (26) at z in the direction u and applying the result to v,
we obtain

{xy{uvz}} + {u{yxv}z} = {uv{xyz}} + {{xyu}vz},

which, when viewed as a linear map in z, amounts to (28). Letting the left-hand
side of (29) act on w and observing (3), we conclude

VUxy,zUxw = UUxy,Uxwz = UxUy,wUxz = UxVy,Uxzw,

and (29) is proved. Applying the left-hand side of (30) to w and observing (6)
implies

VUxy,zVx,yw = UUxy,{xyw}z = UxUyUx,wz + Ux,wUyUxz = (UxUyVx,z + Vx,UyUxz)w,
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hence (30). Consulting (22), (27) and (22) again, we now compute

Vx,yUzVy,x = Ux,zVy,zVy,x − UUzy,xVy,x = Ux,zVUyz,x + Ux,zUyUx,z − Ux,UzyVy,x

= Ux,zUyUx,z + UUxUyz,z + Vz,UyzUx − UUxy.Uzy − VUzy,yUx,

which by (20) implies

Vx,yUzVy,x = Ux,zUyUx,z + UUxUyz,z − UUxy,Uzy,

hence combines with (7) to yield

U{xyz} + UUxUyz,z = U{xyz} + Vx,yUzVy,x + UUxy,Uzy − Ux,zUyUx,z

= UxUyUz + UzUyUx + Vx,yUzVy,x,

and this is (31). Finally, in order to derive (32), we linearize (6) with respect to
y and obtain

UUxu,{xyz} + UUxy,{xuz} = UxUy,uUx,z + Ux,zUy,uUx.

Here we replace u by Uyz. Then a computation involving (4), (20), (22) and (6)
(with Uzy in place of z) yields

UUxUyz,{xyz} = UxUy,UyzUx,z + Ux,zUy,UyzUx − UUxy,{x(Uyz)z}

= UxUyVz,yUx,z + Ux,zVy,zUyUx − UUxy,{xy(Uzy)}

= UxUy(UUzy,x + UzVy,x) + (UUzy,x + Vx,yUz)UyUx − UUxy,{xy(Uzy)}

= UxUyUzVy,x + Vx,yUzUyUx + UxUyUUzy,x + Ux,UzyUyUz

−UUxy,{xy(Uzy)}

= UxUyUzVy,x + Vx,yUzUyUx,

which completes the proof of (32). □

29.3 The connection with unital linear Jordan algebras. Assume that 2 is
invertible in k. Let J be a unital linear Jordan algebra over k. Then its identity
element and the U-operator (27.10.1) convert J into a para-quadratic algebra
Jquad, which by the advanced identities (27.12.1), (27.12.6), (27.12.8) com-
bined with the usual scalar extension argument (cf. Prop. 27.5) is a Jordan
algebra.

Conversely, let J be a Jordan algebra over k Then the bilinear multiplication

xy :=
1
2

Ux,y1J =
1
2
{x1Jy} =

1
2

Vxy

gives J the structure of a non-associative k-algebra Jlin with left multiplication
operator Lx =

1
2 Vx for x ∈ J. By definition and (29a.1), (29a.5), Jlin is com-

mutative with identity element 1J , and its squaring agrees with the one of J.
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By (29a.11), the linear operators Vx, Ux commute, hence by (29a.10) so do
Vx and Vx2 . This shows [Lx, Lx2 ] = 0, and from (27.4.1) we conclude that Jlin

is a unital linear Jordan algebra. One checks easily that the two constructions
J 7→ Jquad and J 7→ Jlin are inverse to each other, and that a linear map be-
tween unital linear Jordan algebras is a homomorphism of unital linear Jordan
algebras if and only if it is one of Jordan algebras. Summing up, we have thus
proved the following result.

29.4 Theorem. If 2 ∈ k×, then the constructions presented in 29.3 yield inverse
isomorphisms between the categories of unital linear Jordan algebras over k
and Jordan algebras over k. □

29.5 Convention. Assume that 2 is invertible in k. If there is no danger of con-
fusion, we will always use Thm. 29.4 to identify Jordan algebras over k in the
sense of 29.1 with unital linear Jordan algebras over k in the sense of 27.1; ac-
cordingly, the terms “unital linear Jordan algebra over k” and “Jordan algebra
over k” will be used interchangeably. Note that under the preceding identifi-
cation, the advanced identities 27.12 valid in linear Jordan algebras translate
equivalently to appropriate identities in the long list of formulas in Figure 29a.

The reader may wonder why, in defining Jordan algebras over arbitrary base
rings, we have insisted on an identity element. The reason is that removing this
restriction would lead to an algebraic structure that would be computationally
much more challenging. We refer to McCrimmon [186] for details.

29.6 Counter-examples: para-quadratic algebras. It should not come as a
surprise that para-quadratic algebras which are not Jordan exist in abundance.
Exhibiting explicit examples is of course another matter. Here is a whole class
of them.

Let k be a commutative ring in which 2 is invertible and let J be a unital
linear Jordan k-algebra with product xy. Since J is commutative, it is also
flexible, so we can form the para-quadratic algebra P := P(J) := J(+) in the
sense of 28.4, with U-operator (xy)x = x(xy) and base point 1P := 1J . We
claim:

(∗) P is a Jordan algebra if and only if J is alternative.

Recall from Exc. 14.7 that commutative alternative algebras are associative
if there is no 3-torsion. By Exc. 27.13 (b), therefore, P(J) is para-quadratic but
not Jordan for J := Matn(k)+, n ≥ 2, k , {0}, 6 ∈ k×.

Proof of (∗) If J is alternative, then the U-operator of J by (27.10.1) has the
form Uxy = 2x(xy) − x2y = x(xy), so P = Jquad in the sense of 29.3 is Jordan.
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Conversely, assume P is a Jordan algebra. The Jordan triple product of P is
given by {xyz} = (xy)z + (zy)x, which implies x ◦ y = {x1Jy} = 2xy. By 29.3
again, Plin = J, hence P = (Plin)quad = Jquad, in other words, P and J have
the same U-operator. But this means x(xy) = 2x(xy) − x2y, i.e., x(xy) = x2y.
Thus, J is left alternative and hence alternative since it is commutative to begin
with. □

29.7 Examples: associative algebras. Let A be a unital associative k-algebra.
We claim that the para-quadratic algebra A(+) of 28.4 with base point 1A(+) =

1A and U-operator

Uxy = xyx (x, y ∈ A) (1)

is in fact a Jordan algebra. Indeed, since associativity is preserved by scalar
extensions, it suffices to verify (29a.2) and (29a.4) over the base ring, so let
x, y, z ∈ A. Then

UUxyz = (xyx)z(xyx) = x
(
y(xzx)y

)
x = UxUyUxz,

UxVy,xz = x(yxz + zxy)x = xy(xzx) + (xzx)yx = Vx,yUxz,

as desired. Recall from (28.4.2) that the Jordan triple and circle products of
A(+) are respectively given by

{xyz} = xyz + zyx, x ◦ y = xy + yx (2)

for all x, y ∈ A. Recall further that, if 2 ∈ k is invertible, the identifications of
29.5 show A(+) = A+ as unital linear Jordan algebras over k.

29.8 Examples: associative algebras with involution. Let (B, τ) be an ass-
ociative algebra with involution over k. By definition, B is unital and

H(B, τ) = {x ∈ B | τ(x) = x}

is obviously a subalgebra of B(+) and hence by Exc. 29.17 is a Jordan algebra.
Along slightly different lines, consider Symd(B, τ). For x, z ∈ B, we have

x(z + τ(z))τ(x) = xzτ(x) + τ(xzτ(x)) ∈ Symd(B, τ),

so USymd(B,τ) Symd(B, τ) ⊆ Symd(B, τ). Therefore, if 1J ∈ Symd(B, τ) (which
holds, for example, if 2 ∈ k×), then Symd(B, τ) is a Jordan algebra. For any
positive integer n, it follows that the k-module Sympn(k) of (10.10.6) is a sub-
algebra of Mat2n(k)(+) and hence a Jordan algebra.

As another special case, if (B, τ) = (A × Aop, εA) as in 10.4, with εA the
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exchange involution, then the diagonal embedding A → A × A determines an
isomorphism

A(+) ∼
−→ H(A × Aop, εA), x 7−→ (x, x), (1)

of Jordan algebras.

29.9 Special and exceptional Jordan algebras. A Jordan algebra over k is
said to be special if it is isomorphic to a subalgebra of A(+), for some unital
associative k-algebra A. Otherwise, it is said to be exceptional. If 2 ∈ k×, one
checks easily that these notions are equivalent to the ones defined in 27.3 (a),
which in turn agree with the definitions in 5.7 (a) when k = R.

29.10 Examples: alternative algebras. Let A be a unital alternative k-algebra.
Then the left Moufang identity (13.3.1) implies that the left multiplication of
A,

L : A(+) −→ Endk(A)(+), x 7−→ Lx,

is a homomorphism of para-quadratic algebras and obviously injective. Hence
A(+) is a special Jordan algebra. Recall that we have encountered the U-
operator of A(+) already in 13.5, where it was referred to as the U-operator
of A.

29.11 Examples: pointed quadratic modules. Assume (M, q, e) is a pointed
quadratic module over k and write x 7→ x̄ for its conjugation. Then we claim
that the base point e and the quadratic map x 7→ Ux from M to Endk(M) given
by

Uxy := q(x, ȳ)x − q(x)ȳ (x, y ∈ M) (1)

give M the structure of a Jordan algebra over k. We denote this Jordan algebra
J := J(M, q, e) and call it the Jordan algebra of (M, q, e). To verify the claim,
write t for the linear trace of (M, q, e), so that Uey = t(ȳ)e− ȳ = t(y)e− (t(y)e−
y) = y for all y ∈ M, hence Ue = 1M . Thus J is a para-quadratic k-algebra.
In order to show that this para-quadratic algebra is, in fact, a Jordan algebra,
we first note that the construction of J out of (M, q, e) is compatible with base
change, so it suffices to verify (29.1.1) and (29.1.2) over k. First of all, (1)
implies

Vx,yz = {xyz} = q(x, ȳ)z + q(z, ȳ)x − q(x, z)ȳ (2)
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and a straightforward verification shows

q(Uxy) = q(x)2q(y), (3)

q(Uxy, z) = q(x, ȳ)q(x, z) − q(x)q(y, z̄), (4)

Ux x̄ = q(x)x, (5)

Vx,yx = 2
(
q(x, ȳ)x − q(x)ȳ

)
. (6)

Combining these identities with the fact that the conjugation leaves q invariant,
we can now compute

UxUyUxz = UxUy
(
q(x, z̄)x − q(x)z̄

)
= Ux

(
q(x, z̄)q(y, x̄)y − q(x, z̄)q(y)x̄ − q(x)q(y, z)y + q(x)q(y)z

)
= q(x, ȳ)q(x, z̄)q(x, ȳ)x − q(x)q(x, ȳ)q(x, z̄)ȳ − q(x)q(y)q(x, z̄)x

− q(x)q(y, z)q(x, ȳ)x + q(x)q(y, z)q(x)ȳ

+ q(x)q(y)q(x, z̄)x − q(x)q(y)q(x)z̄

= q(x, ȳ)
(
q(x, ȳ)q(x, z̄) − q(x)q(y, z)

)
x

− q(x)
(
q(x, ȳ)q(x, z̄) − q(x)q(y, z)

)
ȳ − q(x)2q(y)z̄

= q(Uxy, z̄)
(
q(x, ȳ)x − q(x)ȳ

)
− q(Uxy)z̄

= q(Uxy, z̄)Uxy − q(Uxy)z̄ = UUxyz.

Similarly,

UxVy,xz = Ux
(
q(y, x̄)z + q(z, x̄)y − q(y, z)x̄

)
= q(x, ȳ)q(x, z̄)x − q(x, ȳ)q(x)z̄

+ q(x, z̄)q(x, ȳ)x − q(x, z̄)q(x)ȳ − q(x)q(y, z)x

=
(
2q(x, ȳ)q(x, z̄) − q(x)q(y, z)

)
x − q(x)

(
q(x, ȳ)z̄ + q(x, z̄)ȳ

)
= 2q(x, ȳ)q(x, z̄)x − 2q(x)q(x, z̄)ȳ

− q(x)q(x, ȳ)z̄ − q(x)q(z̄, ȳ)x + q(x)q(x, z̄)ȳ

= Vx,y
(
q(x, z̄)x − q(x)z̄

)
= Vx,yUxz.

Thus (29.1.1) and (29.1.2) hold in J and the proof is complete.
Assuming 2 ∈ k× and exploiting the isomorphism between the categories of

Jordan algebras and linear Jordan algebras as described in 29.3, we conclude
from Example 27.11 that the linear Jordan algebra of a pointed quadratic k-
module as defined in 27.9 identifies canonically with the Jordan algebra of the
same pointed quadratic k-module as defined above.

29.12 The Jordan algebra of a pointed quadratic module: identities. Let-
ting (M, q, e) be a pointed quadratic module over k, we maintain the notation
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of 29.11. The identities in 29b are either easily verified or have been checked
before, and are collected here for convenience. Note the analogy of these for-
mulas with the ones of 16.5.

t(x) = q(e, x), (1)

q(e) = 1, t(e) = 2, (2)

x̄ = t(x)e − x, ē = e, x = x, (3)

t(x, y) = q(x, ȳ) = t(x)t(y) − q(x, y), (4)

Uxy = q(x, ȳ)x − q(x)ȳ, (5)

x2 = t(x)x − q(x)e, (6)

x3 = t(x)x2 − q(x)x, (7)

Vx,yz = {xyz} = q(x, ȳ)z + q(ȳ, z)x − q(z, x)ȳ, (8)

x ◦ y = t(x)y + t(y)x − q(x, y)e, (9)

Ux x̄ = q(x)x, Ux x̄2 = q(x)2e, x + x̄ = t(x)e, (10)

q(x̄) = q(x), t(x̄) = t(x), t(x̄, ȳ) = t(x, y), (11)

q(Uxy) = q(x)2q(y), q(xn) = q(x)n, (12)

t(x2) = t(x)2 − 2q(x), (13)

t(x ◦ y) = 2
(
t(x)t(y) − q(x, y)

)
, (14)

t(Uxy, z) = t(y,Uxz), (15)

t({xyz},w) = t(z, {yxw}), (16)

Uxy = U x̄ȳ. (17)

Table of Identities 29b Some identities that hold in the Jordan algebra of a pointed
quadratic module, valid for all x, y, z ∈ J and all n ∈ N.

The Jordan algebras of pointed quadratic modules are often referred to col-
lectively as Jordan algebras of Clifford type.

29.13 Jordan algebras of Clifford type: elementary idempotents. Continue
the notation of 11.14 and 29.12. Arguing as in Exc. 16.23, it follows that, for
any element c ∈ J := J(M, q, e), the following conditions are equivalent.

(i) c is an idempotent satisfying cR , 0, 1JR for all R ∈ k-alg, R , {0}.
(ii) c is an idempotent satisfying cp , 0, 1Jp for all prime ideals p ⊆ k.
(iii) q(c) = 0 and t(c) = 1.
(iv) c is an idempotent and the elements c, 1J − c are unimodular.
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If these conditions are fulfilled, we call c an elementary idempotent of J.
The description of arbitrary idempotents in J is exactly the same as the one

in conic algebras provided by Exc. 16.26.

29.14 Quadratic Z-structures as Jordan algebras. LetD be one of the subal-
gebras R,C,H,O of the Graves-Cayley octonions. We have seen in Thm. 5.10
that J := Her3(D) is a unital linear Jordan algebra over R and hence may be
viewed canonically as a real Jordan algebra by means of the identification 29.5.
Now suppose Λ ⊆ J is a quadratic Z-structure of J. By its very definition (cf.
6.5), Λ is a Z-subalgebra of J as a (quadratic) Jordan algebra. Hence Λ is a
quadratic Jordan algebra over Z in its own right but, in general, not a lin-
ear one. For example, if M is a Z-structure of D in the sense of 3.6 (d), then
Λ := Her3(M) by 6.3 is not closed under the bilinear Jordan product of J.

29.15 Towards power-associativity. We wish to show in analogy to Cor. 27.7
that Jordan algebras are power-associative. Combining the fundamental for-
mula (29a.2) and its linearization (29a.3) with the recursive definition of pow-
ers in (28.8.1), we see by induction that any Jordan algebra J over k satisfies
the identities

Uxn = Un
x , UxUxm,xn Ux = Uxm+2,xn+2 (1)

for all x ∈ J and all m, n ∈ N.

29.16 Proposition. Jordan algebras are power-associative: for all Jordan al-
gebras J over k, all x ∈ J and all m, n, p ∈ N we have

Uxm xn = x2m+n, (1)

{xmxnxp} = 2xm+n+p. (2)

In particular, k[x] ⊆ J is a Jordan subalgebra.

Proof Equation (1) follows immediately from (29.15.1) by induction on m.
Equation (2) will now be proved by induction on l := m + n + p. We first note
that (2) follows from (1) for m = p and is symmetric in m, p. Hence we may
always assume if necessary that m < p. Moreover, (2) is obvious if two of
the exponents m, n, p are zero. Summing up, not only the induction beginning
l = 0 is trivial, but also the cases l = 1, 2 are. Let us now assume l ≥ 3 and that
(2) holds for all exponents m′, n′, n′ ∈ N having m′ + n′ + p′ < l. We consider
the following cases.

Suppose first that m = 0. Then (2) amounts to xn ◦ xp = 2xn+p, hence is
symmetric in n, p and obvious for n = 0 or n = p. Thus we may assume
1 ≤ n < p. But the assertion can also be written in the form {xn1J xp} = 2xn+p,
so we have reduced the proof to the case m ≥ 1.
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Suppose next that m = 1. Then p ≥ 2, and (28.8.1), (29a.4) combine with
the induction hypothesis to imply

{xxnxp} = Vx,xn Uxxp−2 = UxVxn,xxp−2 = Ux{xnxxp−2} = 2Uxxn+p−1 = 2x1+n+p,

as claimed.
Finally, suppose m ≥ 2. Then p > m ≥ 2 and the induction hypothesis

combined with (29.15.1) yields

{xmxnxp} = UUx xm−2,Ux xp−2 xn = UxUxm−2,xp−2 Uxxn = Ux{xm−2xn+2xp−2}

= 2Uxxm+n+p−2 = 2xm+n+p,

which completes the induction. □

Exercises
29.17. Show for a para-quadratic algebra J over k that the following conditions are
equivalent.

(i) J is a Jordan algebra.
(ii) The identities

UUxy = UxUyUx, (1)
UxVy,x = Vx,yUx, (2)

UUxy,Ux,zy = UxUyUx,z + Ux,zUyUx, (3)
UUxy,Uzy + UUx,zy = UxUyUz + UzUyUx + Ux,zUyUx,z, (4)

UUx,wy,Ux,zy + UUxy,Uz,wy = Ux,wUyUx,z + UxUyUz,w (5)
+ Uz,wUyUx + Ux,zUyUx,w,

Ux,zVy,x + UxVy,z = Vz,yUx + Vx,yUx,z (6)

hold in J.
(iii) The identities (1), (2) hold in Jk[T], where T = (ti)i≥0 is a countably infinite

family of indeterminates.

Conclude that subalgebras and homomorphic images of Jordan algebras (in the category
k-paquad) are Jordan algebras.

29.18. Let J be a Jordan algebra over k. Show that

(a) a k-submodule I ⊆ J is an outer ideal (resp. an ideal) if and only if UJ I ⊆ I
(resp. UI J + UJ I ⊆ I),

(b) an element c ∈ J is an idempotent if and only if c2 = c,
(c) the extreme radical of J is an ideal. Conclude that the centroid of a simple

Jordan algebra is a field.

29.19. Assume 2 ∈ k× and let J be a unital linear Jordan algebra over k. Show that the
centroid of Jquad is a unital commutative associative subalgebra of Endk(J) and that the
left multiplication of J induces an isomorphism Cent(J) � Cent(Jquad).
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29.20. Let J be a Jordan algebra over k and q : J → k a quadratic form with q(1J) = 1,
so that (M, q, e) is a pointed quadratic module over k, where M stands for the k-module
underlying J and e = 1J . Write t for the trace of (M, q, e) and prove that J = J(M, q, e)
if and only if the equations

x2 − t(x)x + q(x)e = 0 = x3 − t(x)x2 + q(x)x (1)

hold strictly in J.

29.21. Let (M, q, e) be a pointed quadratic module over k and J = J(M, q, e) the cor-
responding Jordan algebra. Write t for the trace of (M, q, e) and show that an element
x ∈ J is nilpotent if and only if t(x) and q(x) are nilpotent elements of k. Conclude that

Nil(J) = {x ∈ M | q(x), q(x, y) ∈ Nil(k) for all y ∈ M}.

29.22. (a) Suppose 2 = 0 in k and consider the situation of Exc. 28.21 (b) for n = 2.
Decide whether there exists a Jordan algebra J of Clifford type over k such that J �
J2 = k[t](+)/I2.

(b) Show that, over an appropriate commutative ring, there exists a Jordan algebra of
Clifford type that contains an element x satisfying x2 = 0 , x3.

29.23. The functor (+) : k-alg→ k-jord is clearly a full embedding if 2 ∈ k×. But show
that this is not true in general.

29.24. Let E := EΓ from Example 24.20 and Exc. 25.46. Verify that the natural inclu-
sion of ordinary groups Autk-alg(E) ⊆ Autk-jord(E(+)) is an isomorphism.

Remark. It follows that the natural map of k-group schemes Aut(E)→ Aut(E(+)) is an
isomorphism.

29.25. Let C be a flexible conic algebra over k. Show that the para-quadratic algebra
C(+) agrees with the Jordan algebra of the pointed quadratic module (C, nC , 1C) if and
only if C is alternative.

29.26. Let k-poquainj be the category of pointed quadratic modules over k whose un-
derlying k-modules are projective, with injective homomorphisms of pointed quadratic
modules as morphisms, and similarly, let k-jordinj the category of Jordan algebras over
k, with injective homomorphisms of para-quadratic algebras as morphisms. Prove that
the assignment

(
φ : (M, q, e) −→ (M′, q′, e′)

)
7−→

(
φ : J(M, q, e) −→ J(M′, q′, e′)

)
defines a faithful and full embedding from k-poquainj to k-jordinj.

29.27. Let (V, q, e) be a regular pointed quadratic module of dimension 3 over a field
F of characteristic not 2. Show that there exist a quaternion algebra B over F and an
involution τ of B such that J(V, q, e) � H(B, τ). Show further that (B, τ) is uniquely
determined by this condition. (Hint: Use Exc. 19.39.)
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30 Power identities

By showing in Cor. 27.7 that linear Jordan algebras over a commutative ring
where 2 is invertible are power-associative, we derived what may be called a
local property: every subalgebra on a single generator is associative. The proof
of this result has been reduced to yet another property of linear Jordan alge-
bras that, though no longer local, could at least be called “quasi-local”: given
any element x in a linear Jordan algebra J, the left multiplication operators of
arbitrary elements in k1[x] ⊆ J acting on all of J commute by pairs.

The local property of a linear Jordan algebra to be power-associative has
been extended to the setting of Jordan algebras in Prop. 29.16. It is the purpose
of the present section to accomplish the same objective for the quasi-local ana-
logue of this property alluded to above. More specifically, fixing a Jordan al-
gebra J over an arbitrary commutative ring k throughout this section, the main
result we wish to establish reads as follows.

30.1 Theorem. Let x ∈ J. Then

U( f g)(x) = U f (x)Ug(x)

for all f , g ∈ k[t].

30.2 Remark. The proof of this result given in Jacobson [140, Cor. 3.3.3] rests
on a general principle [140, 3.3.1] that may be regarded as a weak version of
Macdonald’s theorem [140, Thm. 3.4.15]. The proof we are going to provide
below will work instead with explicit and elementary manipulations of some
of the basic identities in Figure 29a valid in arbitrary Jordan algebras.

30.3 A first reduction. In order to derive Thm. 30.1, we write the polynomials
f , g ∈ k[t] in the form

f =
∑
i∈N

αiti, g =
∑
m∈N

βmtm,

where the families (αi)i∈N, (βm)m∈N ∈ kN both have finite support. With N2 =

N × N, this implies

f g =
∑

(i,m)∈N2

αiβmti+m,

hence

( f g)(x) =
∑

(i,m)∈N2

αiβmxi+m,
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and endowingN2 with the lexicographic ordering, we apply (29.15.1) to obtain
the expansion

U( f g)(x) =
∑

(i,m)∈N2

α2
i β

2
mU i+m

x +
∑

(i,m),( j,n)∈N2,(i,m)<( j,n)

αiα jβmβnUxi+m,x j+n

=
∑

i,m∈N

α2
i β

2
mU i+m

x +
∑

i, j,m,n∈N,i< j

αiα jβmβnUxi+m,x j+n

+
∑

i,m,n∈N,m<n

α2
i βmβnUxi+m,xi+n .

Thus we have

U( f g)(x) =
∑

i,m∈N

α2
i β

2
mU i+m

x +
∑

i,m,n∈N,m<n

α2
i βmβnUxi+m,xi+n

+
∑

i, j,m∈N,i< j

αiα jβ
2
mUxi+m,x j+m (1)

+
∑

i, j,m,n∈N,i< j,m<n

αiα jβmβn(Uxi+m,x j+n + Uxi+n,x j+m ).

On the other hand, from

f (x) =
∑
i∈N

αixi and g(x) =
∑
m∈N

βmxm

we deduce

U f (x)Ug(x) =
(∑

i∈N

α2
i U i

x +
∑

i, j∈N,i< j

αiα jUxi,x j
)( ∑

m∈N

β2
mUm

x +
∑

m,n∈N,m<n

βmβnUxm,xn
)

=
∑

i,m∈N

α2
i β

2
mU i+m

x +
∑

i,m,n∈N,m<n

α2
i βmβnU i

xUxm,xn

+
∑

i, j,m∈N,i< j

αiα jβ
2
mUxi,x j Um

x +
∑

i, j,m,n,i< j,m<n

αiα jβmβnUxi,x j Uxm,xn .

Comparing this with (1), we see that Thm. 30.1 will be a consequence of the
identities (30.4.5), (30.4.6) below.

30.4 Proposition. For all x ∈ J and all i, j,m, n ∈ N, the following identities
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hold.

Vxn+2 = V2
x Vxn − UxVxn − VxUx,xn , (1)

Ux,xn+2 = Ux(VxVxn − Ux,xn ), (2)

Vxn+1 = VxVxn − Ux,xn , (3)

Vxm,xn = Vxm+n , (4)

Uxi Uxm,xn = Uxi+m,xi+n = Uxm,xn Uxi , (5)

Uxi,x j Uxm,xn = Uxi+m,x j+n + Uxi+n,x j+m . (6)

The proof of this result will be preceded by the following lemma.

30.5 Lemma. For x ∈ J, the linear operators Uxi , Vx j , Uxm,xn (i, j,m, n ∈ N)
commute by pairs, and we have

Vxn+2 = VxVxn Vx − VxUx,xn − Vxn Ux, (1)

Ux,xn+2 = Ux(Vxn Vx − Ux,xn ) (2)

for all n ∈ N.

Proof We first apply (29a.19) to obtain Vxn+2 = VUx xn = VxVxn,x − Vxn Ux and
(29a.14) yields (1). Similarly, since Ux,xn+2 = Ux,Ux xn = UxVxn,x by (29a.4),
another application of (29a.14) gives (2). It remains to prove

[Uxi ,Uxm,xn ] = 0, (3)

[Uxi,x j ,Uxm,xn ] = 0 (4)

for all i, j,m, n ∈ N since Vx j = Ux j,1J .
We begin with (3), note by symmetry and (29.15.1) that we may assume

i = 1, m < n, and argue by induction on l := m + n. For l = 0, there is nothing
to prove. For l = 1, we have m = 0, n = 1, and the assertion comes down to
[Ux,Vx] = 0, which holds by (29a.11). Now suppose l ≥ 2 and assume (3)
holds for all natural numbers m′, n′ in place of m, n having m′ + n′ < l. Then
we consider the following cases.

Suppose first that m = 0 and n = l. Then the assertion comes down to
[Ux,Vxl ] = 0, which follows from (1) for n = l−2 and the induction hypothesis
since, in particular, [Ux,Ux,xl−2 ] = 0.

Suppose next that 0 < m < n. Then l ≥ 3. Here m = 1 implies n = l − 1,
and the assertion comes down to [Ux,Ux,xl−1 ] = 0, which follows from (2) for
n = l − 3 since [Ux,Vxl−3 ] = 0 = [Ux,Ux,xl−3 ] by the induction hypothesis.
On the other hand, if n > m ≥ 2, then (29a.3) gives Uxm,xn = UUx xm−2,Ux xn−2 =

UxUxm−2,xn−2 Ux, and the assertion follows from the induction hypothesis. This
completes the proof (3).
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Turning to (4), we note that the assertion is symmetric in (i, j) and (m, n)
and that, by (3), we may assume i < j, m < n. Now we argue by induction
on l := i + j + m + n. The cases l = 0, 1 are obvious by what we have just
noted, while for l = 2 we may assume i = m = 0, j = n = 1, in which case the
assertion reduces to the triviality [Vx,Vx] = 0. Now let l ≥ 3 and assume the
assertion holds for all natural numbers i′, j′,m′, n′ in place of i, j,m, n having
i′ + j′ + m′ + n′ < l. Then we consider the following cases.

Suppose first that i = m = 0. Then we have to show [Vx j ,Vxn ] = 0. For j = 1,
hence n = l − j ≥ 2, the assertion follows from (1) for n − 2 in place of n since
the induction hypothesis implies [Vx,Ux,xn−2 ] = 0. On the other hand, if j ≥ 2,
the assertion follows again from (1) (this time for j − 2 in place of n) since the
induction hypothesis and (3) imply [Ux,x j−2 ,Vxn ] = [Ux,Vxn ] = 0.

Suppose next that i = m = 1. This implies j ≥ 2, and we have to show
[Ux,x j ,Ux,xn ] = 0, which follows from (2) for n = j − 2 since the induction
hypothesis implies [Vx j−2 ,Ux,xn ] = 0 = [Ux,x j−2 ,Ux,xn ].

Suppose finally that j > i ≥ 2, which is by symmetry the only remain-
ing case. Then equation (29a.3) yields Uxi,x j = UUx xi−2,Ux x j−2 = UxUxi−2,x j−2 Ux,
which commutes with Uxm,xn by (3) and the induction hypothesis. □

Proof of Proposition 30.4 Combining the first part of Lemma 30.5 with equa-
tion (30.5.1), we obtain (30.4.1), while (30.4.2) agrees with (30.5.2).

Next we prove (30.4.5) for i = 1, m = 0, i.e.,

UxVxn = Ux,xn+1 , (5)

and (30.4.3) simultaneously by induction on n. Both equations are obvious for
n = 0. Now suppose n > 0 and assume (30.4.3) and (5) both hold for all natural
numbers < n. Then (30.4.2) for n−1 in place of n and the induction hypothesis
for (30.4.3) imply

Ux,xn+1 = Ux(VxVxn−1 − Ux,xn−1 ) = UxVxn ,

hence (5). Combining both parts of the induction hypothesis with (30.4.1) for
n − 1 in place of n, we now obtain

VxVxn − Ux,xn = V2
x Vxn−1 − VxUx,xn−1 − UxVxn−1 = Vxn+1 ,

hence (30.4.3). This completes the proof of (30.4.3) and (5).
We are now in a position to prove (30.4.5), where (29.15.1) allows us to

assume i = 1, and first deduce from Lemma 30.5 that it suffices to establish
the first one of the two equations. By symmetry and (29.15.1) we may assume
m < n and then argue by induction on m. The case m = 0 has been settled in
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(5). For m > 0, we apply (29a.3) and the induction hypothesis to conclude

Uxm+1,xn+1 = UUx xm−1,Ux xn−1 = UxUxm−1,xn−1 Ux = Uxm,xn Ux = UxUxm,xn ,

as claimed.
Turning to (30.4.4), we have by Lemma 30.5 that the linear operators Vxm ,

Vxn commute. Hence (29a.12) implies Vxm,xn = Vxn,xm , so our assertion is sym-
metric in m and n. We now argue by induction on m. For m = 0 there is
nothing to prove. For m = 1, we apply (29a.14) and (30.4.3) to obtain Vx,xn =

VxVxn − Ux,xn = Vxn+1 , hence the assertion. Now suppose m ≥ 2 and assume
the assertion holds for all m′ ∈ N in place of m satisfying m′ < m. Combining
(29a.21) with Prop. 29.16, the case m = 1 and the induction hypothesis, we
deduce

Vxm,xn = VUx xm−2,xn = Vx,{xm−2 xxn} − VUx xn,xm−2 = 2Vx,xm+n−1 − Vxn+2,xm−2

= 2Vxm+n − Vxm−2,xn+2 = 2Vxm+n − Vxm+n = Vxm+n ,

and the proof of (30.4.4) is complete.
Finally, turning to (30.4.6), we may assume i < j and m < n by symmetry,

Lemma 30.5 and (30.4.5). Then we argue by induction on l := i + m. For
l = 0, i.e., i = m = 0, we have to prove Vx j Vxn = Vx j+n + Ux j,xn . But Vx j Vxn =

Ux j,xn+Vx j,xn by (29a.14), and the assertion follows from (30.4.4). Next suppose
l = i+m > 0 and assume (30.4.6) for all natural numbers i′, j′,m′, n′ in place of
i, j,m, n satisfying i′+m′ < l. Since Uxi,x j and Uxm,xn commute by Lemma 30.5,
we may assume i > 0. Then (30.4.5) and the induction hypothesis yield

Uxi,x j Uxm,xn = UxUxi−1,x j−1 Uxm,xn = UxUxi+m−1,x j+n−1 + UxUxi+n−1,x j+m−1

= Uxi+m,x j+n + Uxi+n,x j+m ,

which completes the induction and the proof of Prop. 30.4. □

With the proof of Prop. 30.4, we have also established Th. 30.1. The re-
mainder of this section will be devoted to a useful application. We begin with
an auxiliary result, where we use the notation already employed in Exc. 28.21.

30.6 Proposition. For x ∈ J and R ∈ k-alg such that R = k[x] as k-modules,
the following conditions are equivalent.

(i) R(+) = k[x] as Jordan algebras.
(ii) The powers of x in R and in J coincide.
(iii) f (x) = 0 implies (t f )(x) = 0, for all f ∈ k[t].
(iv) Ix := { f ∈ k[t] | f (x) = 0} ⊆ k[t] is an ideal.
(v) I0

x := { f ∈ k[t] | f (x) = (t f )(x) = 0} equals Ix.
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If these conditions are fulfilled, then R is unique. In fact, the evaluation map
εx : k[t]→ J of Exc. 28.21 (a) induces canonically an isomorphism

ε̄x : k[t]/Ix
∼
−→ R, f + Ix 7−→ f (x), (1)

of unital commutative associative k-algebras.

Proof (i)⇒ (ii). By 28.4 and 28.8, the powers of x in R and R(+) coincide.
(ii) ⇒ (iii). Denote the multiplication of R by juxtaposition. Assume f =∑
αiti ∈ k[t] with αi ∈ k satisfies f (x) = 0. From (ii) we deduce (t f )(x) =∑
αixi+1 = x

∑
αixi = x f (x) = 0. Thus (iii) holds.

(iii) ⇒ (v). We trivially have I0
x ⊆ Ix, while the reverse inclusion follows

from (iii).
(v)⇒ (iv). By Exc. 28.21 (a), Ix = I0

x is an ideal in k[t]. Thus (iv) holds.
(iv) ⇒ (i). The evaluation εx : k[t] → k[x] (Exc. 28.21) induces a k-linear

bijection ε̄x : k[t]/Ix → k[x]. Let R ∈ k-alg be the unique k-algebra having
R = k[x] as k-modules and making ε̄x : k[t]/Ix

∼
→ R an isomorphism in k-alg.

But then ε̄x is an isomorphism of Jordan algebras from (k[t]/Ix)(+) = k[t](+)/Ix

not only to R(+) but also to k[x] ⊆ J. Hence (i) holds.
Uniqueness of R follows from the fact that it is spanned by the powers of x

in J as a k-module. The rest is clear. □

30.7 Remark. The preceding arguments show that the proposition holds, more
generally, for para-quadratic algebras that are power-associative at x.

30.8 Local linearity. Our Jordan algebra J is said to be linear at x ∈ J if there
exists a unital commutative associative k-algebra R, necessarily unique, such
that R = k[x] as k-modules and the equivalent conditions (i)–(v) of Prop. 30.6
hold. By abuse of language, we simply write R = k[x] for this k-algebra and
have

( f g)(x) = f (x)g(x) ( f , g ∈ k[t]). (1)

Finally, we say J is locally linear if it is linear at x, for every x ∈ J.

30.9 Examples. (a) If 2 ∈ k×, then every Jordan algebra over k is locally linear.
This follows from Exc. 28.21 (a) combined with Prop. 30.6.

(b) Every special Jordan algebra is locally linear. Indeed, if A is a unital ass-
ociative k-algebra and J ⊆ A(+) is a subalgebra, then for any x ∈ J the meanings
of k[x] in J and in A are the same.

(c) There are Jordan algebras of Clifford type over appropriate base rings that
are not locally linear (Exc. 29.22 (b)).
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30.10 Absolute zero divisors. An element x ∈ J is called an absolute zero
divisor (in J) if Ux = 0. By abuse of language we say that J has no absolute
zero divisors if Ux = 0 implies x = 0, for all x ∈ J, in other words, if 0 is the
only absolute zero divisor of J.

30.11 Theorem (McCrimmon [184, Prop. 1]). J is locally linear provided it
has no absolute zero divisors.

Proof Let x ∈ J and f ∈ Ix (cf. Prop. 30.6 (iii)). Then Thm. 30.1 implies
U( f g)(x) = U f (x)Ug(x) = 0 for all g ∈ k[t], forcing ( f g)(x) = 0 by hypoth-
esis, hence f g ∈ Ix. Thus Ix ⊆ k[t] is an ideal, whence J is linear at x, by
Prop. 30.6 (iii). Thus J is locally linear. □

Exercises
30.12. Absolute zero divisors in Jordan algebras of Clifford type. Let (M, q, e) be a
pointed quadratic module over k and J := J(M, q, e) the corresponding Jordan algebra
of Clifford type.

(a) Show that if k is reduced, then x ∈ J is an absolute zero divisor if and only if
x ∈ Rad(q), i.e., q(x) = q(x, y) = 0 for all y ∈ J.

(b) Deduce from (a) that the absolute zero divisors of J are contained in the nil
radical of J. Conclude that J is locally linear if Nil(J) = {0} but not in general.

30.13. The Dickson condition for Jordan algebras over fields. Let J be a Jordan algebra
over a field F and assume J is strictly locally linear, i.e., JK is locally linear over K, for
every field extension K/F. Show that there exists a pointed quadratic module (M, q, e)
over F such that J = J(M, q, e) if and only if J satisfies the Dickson condition: for
all field extensions K/F and all elements x ∈ JK , the quantities 1JK , x, x

2 are linearly
dependent over K.

31 Inverses, isotopes and the structure group

The present section is devoted to three fundamental concepts that have dom-
inated the theory of Jordan algebras since ancient times. To begin with, the
notions of invertibility and inverses arise naturally out of the analogy connect-
ing the U-operator of Jordan algebras with the left (or right) multiplication
operator of associative algebras. Isotopes, on the other hand, have been dis-
cussed earlier for alternative algebras but unfold their full potential only in the
setting of Jordan algebras. And, finally, the structure group derives its impor-
tance not only from the connection with isotopes but, more significantly, from
the one with exceptional algebraic groups that will be discussed more fully in
later portions of the book.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

31 Inverses, isotopes and the structure group 287

Throughout this section, we let k be a commutative ring and J, J′, J′′ be
Jordan algebras over k.

31.1 The concept of invertibility. The idea of defining invertibility of an el-
ement in a linear Jordan algebra by properties (e.g., as in the alternative or
associative case, by the bijectiveness) of its left multiplication operator is not
a particularly useful one, see Exc. 31.36 below for details. Instead, it turns
out to be much more profitable to do so by properties of the U-operator, an
approach that has the additional advantage of making sense also for arbitrary
Jordan algebras.

Accordingly, an element x ∈ J is said to be invertible (in J) if there exists
an element y ∈ J, called an inverse of x (in J), such that

Uxy = x, Uxy2 = 1J . (1)

We will see in a moment that an inverse of x in J, if it exists, is unique. More
precisely, we can derive the following characterization of invertibility.

31.2 Proposition. For x ∈ J, the following conditions are equivalent.

(i) x is invertible.
(ii) Ux is bijective.
(iii) Ux is surjective.
(iv) 1J ∈ Im(Ux).

If these conditions hold, then x has a unique inverse, written as x−1 and given
by

x−1 = U−1
x x. (1)

Proof (i) ⇒ (ii). Let y ∈ J be an inverse of x. Then (31.1.1) and the funda-
mental formula (29a.2) imply UxUy2 Ux = 1J . Hence Ux, having a left and a
right inverse in Endk(J), is bijective.

(ii)⇒ (iii)⇒ (iv). Clear.
(iv)⇒ (ii). Let z ∈ J satisfy Uxz = 1J . Then UxUzUx = 1J , and as before it

follows that Ux is bijective.
(ii) ⇒ (i). Put y := U−1

x x ∈ J. Then Uxy = x, UxUyUx = UUxy = Ux,
and since Ux is bijective, we conclude Uy = U−1

x . Hence Uxy2 = UxUy1J =

UxU−1
x 1J = 1J . Thus (31.1.1) holds, and x is invertible with inverse y. Com-

bining (31.1.1) with condition (ii), we see that the remaining assertions of the
proposition also hold, □

31.3 Proposition. Let x, y ∈ J.
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(a) If x is invertible, then so is x−1 and

(x−1)−1 = x, Ux−1 = U−1
x , Vx−1 = U−1

x Vx = VxU−1
x . (1)

(b) x and y are both invertible if and only if Uxy is invertible. In this case,

(Uxy)−1 = Ux−1 y−1. (2)

Proof (a) From the fundamental formula and (31.1.1) we deduce UxUx−1 Ux =

UUx x−1 = Ux, which implies Ux−1 = U−1
x since Ux is bijective by Prop. 31.2.

Thus x−1 is invertible, and (31.2.1) yields (x−1)−1 = U−1
x−1 x−1 = Uxx−1 = x.

Finally, (29a.4) implies UxVx−1,x = Ux,Ux x−1 = 2Ux, hence Vx−1,x = 2 · 1J .
Now (29a.19) yields Vx = VUx x−1 = VxVx−1,x − Vx−1 Ux = 2Vx − Vx−1 Ux, hence
Vx = Vx−1 Ux and, similarly, Vx = UxVx−1 . This completes the proof of (a).

(b) By Prop. 31.2, the element Uxy ∈ J is invertible iff the linear map UUxy =

UxUyUx is bijective iff so are Ux and Uy iff x and y are both invertible. In
this case, (31.2.1) gives (Uxy)−1 = U−1

UxyUxy = U−1
x U−1

y U−1
x Uxy = U−1

x y−1, as
claimed. □

31.4 The set of invertible elements. We write J× for the set of invertible el-
ements in J. By Prop. 31.3 (b), it contains the identity element and is closed
under the para-quadratic operation (x, y) 7→ Uxy. Note for a subalgebra J′ ⊆ J
that, if an element x ∈ J′ is invertible in J′, then it is so in J and the two
inverses are the same.

We say that J is a Jordan division algebra if J , {0} and all its non-zero
elements are invertible, i.e., if J× = J \ {0}. Thanks to Prop. 31.2, this agrees
with the notion of division algebra for para-quadratic algebras given in 28.11.
When 2 is invertible, then we may also view J as a linear Jordan algebra and
compare this notion of division algebra with the sense of 8.6. We find:

(a) For cubic Jordan algebras, a family that will be defined in 34.1 and
includes Albert algebras, the two notions agree, see Exc. 46.24.

(b) For Jordan algebras that are not cubic, the two notions need not agree,
as can be seen by combining Exc. 31.36 and Exc. 31.33.

The following result is an immediate consequence of the definitions.

31.5 Proposition. If φ : J → J′ is a homomorphism, then φ(J×) ⊆ J′× and
φ(x−1) = φ(x)−1 for all x ∈ J×. □

31.6 Examples: alternative algebras. Let A be a unital alternative algebra
over k. We claim that an element x ∈ A is invertible in the Jordan algebra A(+)

if and only if it is so in A, in which case the two inverses coincide. This follows
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immediately from Propositions 13.6 and 31.2 since the U-operator of A in the
sense of 13.5 is the same as the U-operator of A(+) in the sense of 28.4. In
particular, A(+) is a Jordan division algebra if and only if A is an alternative
division algebra.

31.7 Examples: associative algebras with involution. Let (B, τ) be an ass-
ociative k-algebra with involution and J := H(B, τ) the Jordan algebra of τ-
symmetric elements in B. For all x ∈ B×, we have τ(x) ∈ B× and τ(x)−1 =

τ(x−1). Hence x ∈ J is invertible in J if and only if it is so in B, in which case
its inverses in J and B coincide. In particular, if B is an associative division
algebra, then J is a Jordan division algebra.

But the converse of this implication does not hold: let A be an associative
division algebra and ε the exchange involution on B := A × Aop. Then H(B, ε)
is a Jordan division algebra by (29.8.1) and 31.6 but B is not an associative
division algebra.

31.8 Isotopes. Let p ∈ J be invertible. On the k-module J we define a new
para-quadratic algebra over k, depending on p and written as J(p), by the U-
operator U(p) : J → Endk(J), x 7→ U(p)

x := UxUp and the base point 1J(p) :=
1(p) := p−1, which by (31.3.1) does indeed satisfy the relation U(p)

1(p) = 1J(p) .
For x, y, z ∈ J, the triple and circle product associated with J(p) are given
by {xyz}(p) = U(p)

x,z y = Ux,zUpy = {x(Upy)z} and x ◦(p) y = {x1(p)y}(p) =

{x(Up p−1)y} = {xpy}, respectively. Summing up, writing V (p) for the V-operator
of J(p), we obtain the formulas

1J(p) = 1(p) = p−1, (1)

U(p)
x = UxUp, (2)

U(p)
x,y = Ux,yUp, (3)

{xyz}(p) = {x(Upy)z}, (4)

x ◦(p) y = {xpy}, (5)

V (p)
x,y = Vx,Upy, (6)

V (p)
x = Vx,p (7)

for all x, y, z ∈ J. The para-quadratic algebra J(p) is called the p-isotope (or
simply an isotope) of J. Note that passing to isotopes is

(i) unital: J(1J ) = J.
(ii) functorial: if φ : J → J′ is a homomorphism, then φ : J(p) → J′(φ(p)) is

a homomorphism of para-quadratic algebras.
(iii) compatible with base change: (J(p))R = (JR)(pR) for all R ∈ k-alg.
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For n ∈ N, the n-th power of x ∈ J performed in the p-isotope J(p) will be
denoted by x(n,p). For example x(2,p) = U(p)

x 1(p) = UxUp p−1, hence

x(2,p) = Ux p. (8)

The first fundamental fact to be derived in the present context is that isotopes
of Jordan algebras are Jordan algebras.

31.9 Theorem. J(p) is a Jordan algebra over k, for all p ∈ J×.

Proof Since passing to isotopes is compatible with base change (31.8 (iii)),
it suffices to prove (29.1.1), (29.1.2) for J(p). Let x, y ∈ J. Then (29.1.1) for J
and (31.8.2) imply

U(p)
U(p)

x y
= UUxUpyUp = UxUpUyUpUxUp = U(p)

x U(p)
y U(p)

x ,

hence (29.1.1) for J(p). In order to accomplish the same for the identity (29.1.2),
we apply (29.1.2) and (29a.29), (31.8.2), (31.8.6) for J to conclude

UpU(p)
x V (p)

y,x = UpUxUpVy,Up x = UUp xVy,Up x = VUp x,yUUp x = VUp x,yUpUxUp

= UpVx,UpyUxUp = UpV (p)
x,y U(p)

x ,

and canceling Up yields (29.1.2) for J(p). □

31.10 Theorem. Let p ∈ J be invertible.

(a) An element x ∈ J is invertible in J(p) if and only if it is so in J. In this
case, its inverse in J(p) is given by x(−1,p) = U−1

p x−1.
(b) Let q ∈ J(p)× = J×. Then (J(p))(q) = J(Upq).

Proof (a) The first part follows immediately from (31.8.2) combined with
Prop. 31.2. Moreover, applying (31.2.1) to J(p) and J, we conclude

x(−1,p) = U(p)−1
x x = U−1

p U−1
x x = U−1

p x−1,

as claimed.
(b) From (31.8.1) and (a) we deduce (1(p))(q) = q(−1,p) = Up−1 q−1 = (Upq)−1 =

1(Upq). Moreover, for x ∈ J we apply (31.8.2) repeatedly and obtain

(U(p))(q)
x = U(p)

x U(p)
q = UxUpUqUp = UxUUpq = U(Upq)

x .

Summing up, we have proved (b). □

31.11 Corollary. Setting p−2 := (p−1)2, we have (J(p))(p−2) = J for all p ∈ J×.

Proof (J(p))(p−2) = J(Up(p−1)2) = J by (31.1.1). □
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31.12 Example. For p ∈ J× and I an ideal in J, the subset I of J(p) is also an
ideal in J(p). To see this, one can examine each term on the left side of (28.5.1),
for example:

{JJI}(p) = {J(UpJ)I} = {JJI} ⊆ I.

In view of Cor. 31.11, the ideals of J and J(p) are the same. In particular, J is
simple if and only if J(p) is.

31.13 Examples: alternative algebras. Let A be a unital alternative algebra
over k and p ∈ A(+)× = A× (31.6). Writing Rp for the right multiplication
operator of p in A, we claim that

Rp : A(+)(p) ∼
−→ A(+) (1)

is an isomorphism of Jordan algebras. Indeed, Rp1A(+)(p) = Rp p−1 = 1A(+) , so Rp

preserves identity elements. Moreover, letting x, y ∈ A and applying (13.5.4),
we obtain

RpU(p)
x y = RpUxUpy = RpUxLpRpy = UxpRpy = URp xRpy,

hence the assertion.
In particular, we can now conclude that isotopes of special Jordan algebras

are special. Indeed, if J is special, then there exists a unital associative algebra
A over k and an injective homomorphism φ : J → A(+). Therefore we deduce
for p ∈ J× that φ is also an injective homomorphism from J(p) to A(+)(φ(p)) �

A(+). Thus J(p) is special.

31.14 The connection with isotopes of alternative algebras. Let A be a unital
alternative algebra over k and p, q ∈ A×. Consulting (15.5.1) and Prop. 15.6,
we conclude

A(p,q)(+) = A(+)(pq). (1)

In particular, as is already implicit in Lemma 15.10, passing to unital isotopes
of alternative algebras does not change the Jordan structure:

Ap(+) = A(+) (p ∈ A×). (2)

31.15 Examples: associative algebras with involution. Let (B, τ) be an ass-
ociative k-algebra with involution and p ∈ H(B, τ)× = H(B, τ)∩B× (31.7).Then
it follows from Prop. 43.7 that

τp : B −→ B, x 7−→ τp(x) := p−1τ(x)p (1)
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is an involution of B satisfying

H(B, τp) = H(B, τ)p. (2)

In view of 31.13, we therefore conclude that

Rp : H(B, τ)(p) ∼
−→ H(B, τp) (3)

is an isomorphism of Jordan algebras that fits into the commutative diagram

B(+)(p)
Rp

� // B(+)

H(B, τ)(p)
?�

OO

Rp

� // H(B, τp).
?�

OO

31.16 Remark. The second fundamental fact to be observed in the present con-
text is that isotopes of J, though they are always Jordan algebras, will in gen-
eral not be isomorphic to J. For examples along these lines, see Exc. 31.34 (d),
(e) below.

31.17 Homotopies. Homotopies of Jordan algebras are homomorphisms into
appropriate isotopes. More precisely, a homotopy from J to J′ is a map η : J →
J′ such that η : J → J′(p′) is a homomorphism, for some p′ ∈ J′×. In this case,
Prop. 31.5 and Thm. 31.10 (a) imply η(J×) ⊆ J′(p′)× = J′×, and p′ is uniquely
determined since η(1J) = 1J′(p′ ) = p′−1, hence

p′ = η(1J)−1. (1)

In Prop. 31.18 (c) we will see that compositions of homotopies are homo-
topies. Hence Jordan k-algebras under homotopies form a category, denoted by
k-jordhmt. By (d) of the same proposition, the isomorphisms in this category
are precisely the bijective homotopies and are called isotopies. The isotopies
from J to itself are called autotopies.

31.18 Proposition. (a) η : J → J′ is a homomorphism if and only if η is a
homotopy preserving identity elements: η(1J) = 1J′ .

(b) Let p ∈ J×, p′ ∈ J′×. Then η : J → J′ is a homotopy if and only if η : J(p) →

J′(p′) is a homotopy.

(c) If η : J → J′ and η′ : J′ → J′′ are homotopies, then so is η′ ◦ η : J → J′′.

(d) If η : J → J′ is a bijective homotopy, then so is η−1 : J′ → J.

Proof (a) A homomorphism is a homotopy preserving units. Conversely, let
η : J → J′ be a homotopy preserving units. By (31.17.1), therefore, η : J →
J′(p′) is a homomorphism, with p′ = η(1J)−1 = 1J′ .
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(b) Assume first that η : J → J′ is a homotopy. Then some q′ ∈ J′× makes
η : J → J′(q

′) a homomorphism. Hence a repeated application of Thm. 31.10 (b)
implies that so is η : J(p) → J′(p′)(q′1), with q′1 = Up′−1 Uq′η(p). Thus η : J(p) →

J′(p′) is a homotopy. Conversely, if η : J(p) → J′(p′) is a homotopy, then what
we have just shown implies that so is η : J = J(p)(p−2) → J′(p′)(p′−2) = J′.

(c) Some p′ ∈ J′× makes η : J → J′(p′) a homomorphism. But η′ : J′(p′) →

J′′ is a homotopy by (a), so some p′′ ∈ J′′× makes η′ : J′(p′) → J′′(p′′) a homo-
morphism. Hence so is η′ ◦ η : J → J′′(p′′), implying (c).

(d) For some p′ ∈ J′×, η : J → J′(p′) is an isomorphism. Hence so is
η−1 : J′(p′) → J, and (b) shows that η−1 : J′ → J is a bijective isotopy. □

31.19 Proposition. For all linear maps η : J → J′, the following conditions
are equivalent.

(i) η is an isotopy from J to J′.
(ii) η is bijective and there exists a bijective linear map η♯ : J′ → J such

that

Uη(x) = ηUxη
♯ (1)

for all x ∈ J.

In this case, η♯ is uniquely determined and satisfies

η♯ = η−1Uη(1J ). (2)

Proof The final assertion follows immediately from (1) for x = 1J .
(i) ⇒ (ii). Some p′ ∈ J′× makes η : J → J′(p′) an isomorphism. For x, y ∈

J we therefore conclude η(Uxy) = U(p′)
η(x)η(y) = Uη(x)Up′η(y), hence ηUx =

Uη(x)Up′η, and we obtain (1) by setting η♯ := η−1Up′−1 .
(ii) ⇒ (i). If x ∈ J is invertible, then so is η(x) ∈ J′, by (1). In particular,

p′ := η(1J)−1 ∈ J′×. Then η(1J) = p′−1 and (1) yields Up′ = U−1
η(1J ) = (ηη♯)−1 =

η♯−1η−1. Applying (1) once more, we therefore deduce

U(p′)
η(x)η(y) = Uη(x)Up′η(y) = ηUxη

♯η♯−1η−1η(y) = η(Uxy)

for all x, y ∈ J. Thus η : J → J′(p′) is an isomorphism, making η : J → J′ an
isotopy. □

31.20 The structure group. The group of autotopies of J is denoted by Str(J)
and called the structure group of J. By Prop. 31.19 for J′ = J, it consists of all
η ∈ GL(J) such that there exists an η♯ ∈ GL(J) satisfying

Uη(x) = ηUxη
♯ (1)
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for all x ∈ J. Combining this with the fundamental formula (29.1.1) and
Prop. 31.2, we see that Ux ∈ Str(J) for all x ∈ J×; in fact, we then have
U♯

x = Ux. The subgroup of Str(J) generated by the linear operators Ux, x ∈ J×,
is called the inner structure group of J, denoted by Instr(J). Combining (1)
with (31.19.2), we obtain ηUxη

−1 = Uη(x)Uη(1J )−1 for all η ∈ Str(J) and all
x ∈ J×. Thus Instr(J) ⊆ Str(J) is actually a normal subgroup. Note that α1J for
α ∈ k× belongs to the structure group of J, but not necessarily to the inner one,
unless α ∈ k×2. Finally, it will follow from Cor. 31.21 below that η ∈ Str(J)
implies η♯ ∈ Str(J), and the assignment η 7→ η♯ determines an involution of
Str(J), i.e., an anti-automorphism of period 2; for more on this, see Exc. 40.18
below.

31.21 Corollary. If η : J → J′ and η′ : J′ → J′′ are isotopies, then (η′ ◦ η)♯ =
η♯ ◦ (η′)♯. Moreover, η♯ : J′ → J is an isotopy and η♯♯ = η.

Proof For the first part we compute U(η′η)(x) = η
′Uη(x)(η′)♯ = η′ηUxη

♯(η′)♯ for
x ∈ J and apply Prop. 31.19. Combining 31.20 with (31.19.1), we now see that
η♯ is an isotopy and η♯♯ = Uη(1J )η

♯−1 = Uη(1J )U−1
η(1J )η = η. □

31.22 Theorem. (a) Both the structure group and the inner structure group
remain unchanged when passing to isotopes:

Str(J(p)) = Str(J), Instr(J(p)) = Instr(J) (p ∈ J×). (1)

(b) The natural action of the structure group of J on J stabilizes J×, and we
have

η(x)−1 = η♯−1(x−1) (η ∈ Str(J), x ∈ J×). (2)

(c) The stabilizer of 1J in Str(J) is Aut(J), the automorphism group of J.

(d) For p, q ∈ J× and η ∈ Endk(J), the following conditions are equivalent.

(i) η : J(p) → J(q) is an isomorphism.
(ii) η ∈ Str(J) and η(p−1) = q−1.
(iii) η ∈ Str(J) and η♯(q) = p.

Proof (a) follows immediately from Prop. 31.18 (b) and (31.8.2).
(b) The first part follows immediately from (31.20.1) combined with Propo-

sition 31.2. Moreover, given x ∈ J×, an application of (31.20.1) and (31.2.1)
yields η(x)−1 = U−1

η(x)η(x) = η♯−1U−1
x η−1η(x), hence (2).

(c) follows immediately from Prop. 31.18 (a).
(d) (i) ⇔ (ii): By Prop. 31.18, condition (i) holds if and only if η ∈ Str(J)

and η(p−1) = η(1(p)) = 1(q) = q−1.
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(d) (ii)⇔ (iii): For η ∈ Str(J), the condition η(p−1) = q−1 by (2) is equivalent
to q = η(p−1)−1 = η♯−1(p), hence to η♯(q) = p. □

31.23 Corollary. For p, q ∈ J×, the isotopes J(p) and J(q) are isomorphic if and
only if p and q belong to the same orbit of J× under the action of the structure
group of J. □

31.24 Example. Let p ∈ J and assume p3 = α1J for some α ∈ k×. Then
α−1Up belongs to the structure group of J and α−1Up p = 1J , p ∈ J×. Hence
Cor. 31.23 shows that J and J(p) are isomorphic.

31.25 Corollary. Let J be a (linear) Jordan algebra over an algebraically
closed field of characteristic not 2. If J is algebraic in the sense of Exc. 8.11,
then the inner structure group of J acts transitively on J× and any two isotopes
of J are isomorphic.

Proof Let p ∈ J×. By Exc. 8.11, there exists a q ∈ J× such that p = q2 =

Uq1J . Hence p belongs to the orbit of 1J under the inner structure group of J.
This proves the first assertion, while the second one now follows immediately
from Cor. 31.23. □

Note that Cor. 31.25 does not hold in characteristic 2, see Exc. 31.34 (e)
below.

31.26 On the methodological importance of isotopes. By deriving the re-
sults of the present section, we have brought to the fore the close analogy
connecting the U-operator of Jordan algebras with the left (or right) multipli-
cation operator of associative algebras. There are important differences, how-
ever. For example, the trivial observation that the group of left multiplications
induced by invertible elements of a unital associative algebra A is transitive
on A× has no analogue in the Jordan setting. In fact, combining Cor. 31.23
with Exc. 31.34 (d) below, it follows that there are Jordan algebras over fields
where not even the full structure group, let alone the inner one, acts transitively
on their invertible elements.

Isotopes may be regarded as a substitute for this deficiency. For example,
one is often confronted with the task of proving an identity for Jordan algebras
involving invertible elements x, y, z, . . . . This task can sometimes be simplified
by passing to an appropriate isotope, which would then allow one to assume
that, e.g., x is the identity element. Here is a typical result where the procedure
just described turns out to be successful.

31.27 Theorem (Jacobson [140, Prop. 1.7.10]). Let x, y be elements of J and
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assume that y is invertible. If two of the elements x, x+Uxy, x+ y−1 are invert-
ible, then so is the third and

(x + Uxy)−1 + (x + y−1)−1 = x−1. (1)

Proof We first treat the case y = 1J by showing that if two of the elements
x, x + x2, 1J + x are invertible, then so is the third and

(x + x2)−1 + (1J + x)−1 = x−1. (2)

We begin by applying Thm. 30.1 to deduce

Ux+x2 = UxU1J+x. (3)

Hence our first intermediate assertion holds. Moreover, combining (29a.11)
with (29.16.2), we obtain Ux,x2 x−1 = VxUxx−1 = Vxx = 2x2, which together
with (3) implies

Ux+x2
(
(x + x2)−1 + (1J + x)−1) = x + x2 + Ux(1J + x) = x + 2x2 + x3

= Uxx−1 + Ux,x2 x−1 + Ux2 x−1 = Ux+x2 x−1,

hence (2).
Next let y ∈ J× be arbitrary. Passing to the y-isotope J(y), which satisfies

J(y)× = J× by Thm. 31.10 (a), the relations

x + Uxy = x + x(2,y), x + y−1 = 1(y) + x

and the special case treated before prove the first part of the theorem. Moreover,
by Thm. 31.10 (a) again and (2) for J(y),

(x + Uxy)−1 + (x + y−1)−1 = Uy
(
(x + x(2,y))(−1,y) + (1(y) + x)(−1,y))

= Uyx(−1,y) = x−1. □

31.28 Corollary (Hua identity). Let x, y ∈ J be invertible such that x − y−1 is
invertible as well. Then so is x−1 − (x − y−1)−1 and

Uxy = x −
(
x−1 − (x − y−1)−1)−1

.

Proof Thm. 31.27 for −x in place of x shows that −x + Uxy is invertible and

(−x + Uxy)−1 = −
(
x−1 − (x − y−1)−1).

The assertion follows. □
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Exercises
31.29. Let J be a Jordan algebra over k that is finitely generated projective as a k-
module. Prove that the following conditions are equivalent.

(i) All invertible elements of J are unimodular.
(ii) J contains unimodular elements.
(iii) rkp(J) > 0 for all p ∈ Spec(k), i.e., J has full support as a k-module.

31.30. Evaluation at invertible elements. Let x be an invertible element of J.

(a) Define

x−n := (x−1)n (1)

for all positive integers n (see Cor. 31.11 for n = 2) and prove

Uxn = Un
x , (2)

Uxm xn = x2m+n, (3)
(xm)n = xmn, (4)

{xm xn xp} = 2xm+n+p, (5)
Vxm ,xn = Vxm+n , (6)

Uxi Uxm ,xn = Uxi+m ,xi+n = Uxm ,xn Uxi , (7)
Uxi ,x j Uxm ,xn = Uxi+m ,x j+n + Uxi+n ,x j+m (8)

for all i, j,m, n ∈ Z.
(b) Write k[t, t−1] for the ring of Laurent polynomials in the variable t over k and

ε×x : k[t, t−1](+) → J

for the unique linear map sending tn to xn for all n ∈ Z. Show that ε×x is a ho-
momorphism of Jordan algebras and that k[x, x−1] := Im(ε×x ) is the subalgebra
of J generated by x and x−1.

(c) Write f (x) := ε×x ( f ) for f ∈ k[t, t−1] and show that

U( f g)(x) = U f (x)Ug(x) (9)

for all f , g ∈ k[t, t−1]. Conclude that if J has no absolute zero divisors, then
k[x, x−1] carries the structure of a unique algebra R ∈ k-alg such that k[x, x−1] =
R(+) as Jordan algebras.

31.31. Let u ∈ J be nilpotent in the sense of Exc. 28.20 (b) and prove that 1J − u is
invertible in J with inverse

(1J − u)−1 =
∑
n≥0

un.

Conclude for a nil ideal I ⊆ J and the canonical projection x 7→ x̄ from J to J̄ := J/I
that x ∈ J is invertible in J if and only if x̄ is invertible in J̄.

31.32. Invertibility in linear Jordan algebras. Let J be a linear Jordan algebra over a
commutative ring where 2 is invertible. Elements x, y ∈ J are said to operator commute
if [Lx, Ly] = 0.

(a) Prove for x, y ∈ J that x2 and y operator commute if and only if so do x and xy.
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(b) Prove for x ∈ J that the following conditions are equivalent.

(i) x is invertible.
(ii) There exists an element y ∈ J such that xy = 1J and x, y operator

commute.
(iii) There exists an element y ∈ J such that xy = 1J and x2y = x.
Show further that if these conditions are fulfilled, then y as in (ii) (resp. (iii)) is
unique and equal to x−1.

Remark. The characterization of invertibility in (b) (ii) is due to Koecher (unpublished).

31.33. Invertibility in pointed quadratic modules. Let (M, q, e) be a pointed quadratic
module with conjugation x 7→ x̄ over k. Prove that an element x ∈ M is invertible in the
Jordan algebra J := J(M, q, e) if and only if q(x) ∈ k is invertible in k. In this case,

x−1 = q(x)−1 x̄, q(x−1) = q(x)−1. (1)

If x is invertible in J, we also say x is invertible in (M, q, e) with inverse x−1. Thus the
Jordan algebra of a pointed quadratic module (M, q, e) over a field is a Jordan division
algebra if and only if the quadratic form q is anisotropic.

31.34. Isotopes of pointed quadratic modules. Let (M, q, e) be a pointed quadratic mod-
ule over k, with trace t and conjugation x 7→ x̄.

(a) Let f ∈ M be invertible in (M, q, e) (Exc. 31.33). Show that

(M, q, e)( f ) := (M, q( f ), e( f )), q( f ) := q( f )q, e( f ) := f −1 (1)

is a pointed quadratic module over k with trace

t( f ) : M −→ k, x 7−→ t( f )(x) := q( f̄ , x), (2)

and conjugation

x 7−→ x̄( f ) := q( f )−1q( f̄ , x) f̄ − x. (3)

Show further

J
(
(M, q, e)( f )) = (

J(M, q, e)
)( f )
. (4)

We call (M, q, e)( f ) the f -isotope (or simply an isotope) of (M, q, e).
(b) Let f ∈ M be invertible in (M, q, e). Prove that the invertible elements of

(M, q, e) and (M, q, e)( f ) are the same, and that(
(M, q, e)( f ))(g)

= (M, q, e)(U f g)

for all invertible elements g of (M, q, e), where U stands for the U-operator of
the Jordan algebra J(M, q, e).

(c) Prove that if M is projective as a k-module, then the structure group of J(M, q, e)
agrees with the group of similarity transformations of the quadratic module
(M, q), consisting by definition of all bijective linear maps η : M → M such
that q ◦ η = αq for some α ∈ k×.
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(d) Let k := R and M := R3 with the canonical basis (e1, e2, e3). Put e := e1 and
q := ⟨S ⟩quad with

S :=

1 0 0
0 −1 0
0 0 −1

 .
Find an isotope of J := J(M, q, e) which is not isomorphic to J.

(e) Let k := F be a field of characteristic 2 and assume (M, q, e) is traceless in the
sense that t = 0. Furthermore, let f ∈ M be anisotropic relative to q and assume
f < Rad(Dq). Then put J := J(M, q, e) and prove that the isotope J( f ) is not
isomorphic to J. Finally, give an example where the preceding hypotheses are
fulfilled even when F is algebraically closed.

31.35. A useful formula for the U-operator (cf. Braun-Koecher [36, IV, Satz 3.8]). Let
x, y be invertible elements of J. Prove

UxUx−1+y−1 Uy = Ux+y.

(Hint: Pass to the isotope J(y) and apply Exc. 31.30 (9).)

31.36. Linear invertibility. Let J be a linear Jordan algebra over a commutative ring
k where 2 is invertible. An element x ∈ J is said to be linearly invertible if the left
multiplication operator Lx : J → J is bijective. In this case we call x−1 := L−1

x 1J the
linear inverse of x in J. Prove that if x is linearly invertible, then it is invertible, and its
linear inverse and its ordinary inverse are the same; moreover, x−1 is linearly invertible
with (linear) inverse x. Finally, prove that invertible elements of J need not be linearly
invertible by showing for any pointed quadratic module (M, q, e) over a field of charac-
teristic not 2 that J := J(M, q, e) is a linear division algebra in the sense of 8.6 if and
only if q is anisotropic and dimF(J) ≤ 2.
Remark. For more on the connection between linear and ordinary Jordan division al-
gebras, see Petersson [215].

31.37. Strong homotopies. A linear map η : J → J′ is called a strong homotopy if some
p ∈ J× makes η : J(p) → J′ a homomorphism.

(a) Prove that strong homotopies are homotopies. Conversely, if η : J → J′ is a
homotopy and η(J×) = J′×, show that η is a strong homotopy.

(b) Give an example of a homotopy which is not a strong homotopy.

31.38. Discrete valuations of Jordan division rings (Petersson [211, 214]).1 Let J be a
Jordan division ring, i.e., a Jordan division algebra over Z, and write F for the centroid
of J. Recall from Exc. 29.18 (c) that F is a field and that J may canonically be regarded
as a Jordan algebra over F.

By a discrete valuation of J we mean a map λ : J → Z∞ := Z ∪ {∞} satisfying the
following conditions, for all x, y ∈ J.

λ(x) = ∞ ⇐⇒ x = 0, (1)
λ(Uxy) = 2λ(x) + λ(y), (2)
λ(x + y) ≥ min{λ(x), λ(y)}. (3)

1 In this exercise, the reader is assumed to be familiar with the rudiments of valuation theory.
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For the rest of this exercise, fix a discrete valuation λ of J and observe by Thm. 30.11
that J is locally linear. Then prove:

(a) For all x ∈ J× and all n ∈ Z, we have λ(xn) = nλ(x).
(b) For all x ∈ J and all v,w ∈ F[x], we have λ(vw) = λ(v) + λ(w). Conclude that

λ0 : F −→ Z∞, a 7−→ λ0(a) := λ(a1J),

is a discrete valuation of of F, with valuation ring, valuation ideal, and residue
field respectively given by

o0 := {a ∈ F | λ0(a) ≥ 0},
p0 := {a ∈ F | λ0(a) > 0},

F̄ := o0/p0.

(c) The sets

O := {x ∈ J | λ(x) ≥ 0} ⊆ J,
P := {x ∈ J | λ(x) > 0} ⊆ O,

J̄ := O/P

are respectively an o0-subalgebra of J, an ideal in O, a Jordan division algebra
over F̄. But note that, even if J is a linear Jordan algebra over F (i.e., F has
characteristic not 2), O need not be one over o0, and J̄ need not be one over F̄.

(d) λ(J×) is a subgroup of Z, called the value group of λ.
(e) For p ∈ J×, the map

λ(p) : J(p) −→ Z∞, x 7−→ λ(p)(x) := λ(p) + λ(x),

is a discrete valuation of J(p) having the same value group as λ. We call λ(p) the
p-isotope of λ. Given another element q ∈ J×, show further (λ(p))(q) = λ(Upq).

(f) λ satisfies the Jordan triple product inequality

λ({xyz}) ≥ λ(x) + λ(y) + λ(z) (4)

for all x, y, z ∈ J. (Hint: Reduce to the case y = 1J . Then derive and use the
formula

(x ◦ y)2 = Uxy2 + Uy x2 + x ◦ (Uy x), (5)

valid for all x, y in arbitrary Jordan algebras.)

31.39. Let J be an algebraic Jordan division algebra over a field F. Prove:

(a) For x ∈ J, the subalgebra F[x] ⊆ J is a finite algebraic field extension of F.
(b) If F is algebraically closed, then J � F(+).
(c) For F = R, there exists a pointed quadratic module (M, q, e) over R such that

J � J(M, q, e) and q is positive definite.

32 The Peirce decomposition

The Peirce decomposition in its various guises belongs to the most powerful
techniques in the structure theory of Jordan algebras. Initiated by Jordan-von
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Neumann-Wigner [148] in their study of euclidean Jordan algebras, it domi-
nated the scene well into the 1960s, losing a certain amount of its appeal only
when research began to focus on Jordan algebras without finiteness conditions
where idempotents (the principal ingredient of the Peirce decomposition) are
in short supply.

This section is devoted to those properties of the Peirce decomposition that
are relevant for our subsequent applications to cubic Jordan algebras. Our treat-
ment of the subject relies quite heavily on the approach of Loos [171, §5] (after
being specialized from Jordan pairs to algebras), which in turn owes much to
that of Springer [268, §10].

Throughout we let k be a commutative ring and J a Jordan algebra over k.
Recall from Exc. 29.18 (b) that an idempotent in J is an element c satisfying
c2 = c. The additional hypothesis c3 = c that has to be imposed in the setting
of arbitrary para-quadratic algebras (cf. 28.9), implying cn = c for all positive
integers n, holds automatically in the Jordan case.

32.1 Lemma. Let c be an idempotent in J and put d := 1J − c. Writing D :=
k × k for the split quadratic étale k-algebra,

Θc : D −→ Endk(J), (γ, δ) 7−→ Θc
(
(γ, δ)

)
:= Uγc+δd (γ, δ ∈ k)

is a quadratic map that permits composition:

Θc(1D) = 1J , Θc
(
(γ1, δ1)(γ2, δ2)

)
= Θc

(
(γ1, δ1)

)
Θc

(
(γ2, δ2)

)
(1)

for all γi, δi ∈ k, i = 1, 2. In particular,

Θc
(
(γ, δ)

)
∈ GL(J) (γ, δ ∈ k×). (2)

Moreover, Θc is compatible with base change: ΘcR = (Θc)R for all R ∈ k-alg.

Proof The first equation of (1) is obvious. In order to prove the second, we let
i = 1, 2 and note Θc((γi, δi)) = Uδi1J+(γi−δi)c = U fi(c), where fi := δi+ (γi−δi)t ∈
k[t]. Hence Thm. 30.1 implies Θc((γ1, δ1))Θc((γ2, δ2)) = U( f1 f2)(c), where

f1 f2 = δ1δ2 +
(
(γ1 − δ1)δ2 + δ1(γ2 − δ2)

)
t + (γ1 − δ1)(γ2 − δ2)t2.

Evaluating at c, we conclude

( f1 f2)(c) = δ1δ21J +
(
(γ1 − δ1)δ2 + δ1(γ2 − δ2) + (γ1 − δ1)(γ2 − δ2)

)
c

= δ1δ21J +
(
(γ1 − δ1)γ2 + δ1(γ2 − δ2)

)
c

= δ1δ21J + (γ1γ2 − δ1δ2)c

= (γ1γ2)c + (δ1δ2)d,

and the second equation of (1) is proved. The remaining assertions are now
obvious. □
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32.2 Theorem (Singular Peirce decomposition). Let c be an idempotent in J
and put d := 1J − c. Then the following statements hold.

(a) The linear endomorphisms of J defined by

E2 := E2(c) := Uc, E1 := E1(c) := Uc,d = Vc − 2Uc, and (1)

E0 := E0(c) := Ud

satisfy the relation

UtcR+dR = E0R + tE1R + t2E2R (2)

for all R ∈ k-alg and all t ∈ R.
(b) The Ei, i = 0, 1, 2, are orthogonal projections of J, called its Peirce

projections relative to c, and their sum is the identity. Hence they give
rise to a decomposition

J = J2 ⊕ J1 ⊕ J0 (3)

as a direct sum of submodules Ji := Ji(c) := Im(Ei) for i = 0, 1, 2,
called the Peirce components of J relative to c.

(c) We have

J2 = Im(Uc), J1 ⊕ J0 = Ker(Uc), (4)

J0 = Ker(Uc) ∩ Ker(Vc), (5)

Ji ⊆ {x ∈ J | c ◦ x = ix} (i = 0, 1, 2), (6)

J1 = {x ∈ J | c ◦ x = x} = {x ∈ J | {ccx} = x}. (7)

(d) Setting Ji := {0} for i ∈ Z \ {0, 1, 2}, the following composition rules
hold, for all i, j, l ∈ {0, 1, 2}.

UJi J j ⊆ J2i− j, (8)

{JiJ jJl} ⊆ Ji− j+l, (9)

{J2J0J} = {0} = {J0J2J}. (10)

Proof (a) Expanding Uc,d with respect to d gives the second equation for E1

in (1), while (2) is equally obvious.
(b) R := k[s, t], the polynomial ring in two independent variables s, t over

k, is free as a k-module with basis (sit j)i, j∈N. Hence the identifications of 12.4
imply

J ⊆ JR =
⊕
i, j≥0

(
sit jJ

)
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and

Endk(J) ⊆ Endk(J)R =
⊕
i, j≥0

(
sit j Endk(J)

)
⊆ EndR(JR)

as direct sums of k-modules. With this in mind, Lemma 32.1 combined with
(2) yields

2∑
i, j=0

sit jEiE j = (
2∑

i=0

siEi)(
2∑

j=0

t jE j) = ΘcR

(
(s, 1R)

)
ΘcR

(
(t, 1R)

)
= ΘcR

(
(s, 1R)(t, 1R)

)
= ΘcR

(
(st, 1R)

)
=

2∑
i=0

sitiEi.

Comparing coefficients of sit j, we obtain EiE j = δi jEi for i, j = 0, 1, 2, and the
first assertion of (b) follows. The remaining ones are obvious.

(c) Since Uc = E2 by (1), equation (4) is obvious. Applying (1) once more,
we conclude J0 = Ker(E2) ∩ Ker(E1) = Ker(Uc) ∩ Ker(Vc − 2Uc), and (5)
follows. From (1) we also deduce Vc = E1 + 2Uc = 2E2 + E1 =

∑2
j=0 jE j, and

applying this to xi ∈ Ji, we obtain c ◦ xi = Vcxi =
∑

jE jxi = ixi, giving (6)
and the inclusion from left to right in (7). Conversely, suppose x ∈ J satisfies
c ◦ x = x and write x = x2 + x1 + x0, xi ∈ Ji. Then (6) implies x = 2x2 + x1

and comparing Ji-components for i = 0, 1, 2, we conclude x2 = x0 = 0, hence
x = x1 ∈ J1. This completes the proof of the first equation of (7). Since {ccx} =
c ◦ x − {cdx}, the second equation will follow once we have established (10),
which will be done in due course.

(d) Let R = k[t, t−1] be the k-algebra of Laurent polynomials in the variable
t over k, which is free as a k-module with basis (ti)i∈Z. Hence 12.4 yields the
identifications

J ⊆ JR =
⊕
i∈Z

(tiJ)

and

Endk(J) ⊆ Endk(J)R =
⊕
i∈Z

(
ti Endk(J)

)
⊆ EndR(JR)

as direct sums of k-modules. Since t ∈ R×, we deduce from (2) and Lemma 32.1
that the map

Utc+d =

2∑
j=0

t jE j : JR → JR

is bijective with inverse Ut−1c+d. Moreover, for x =
∑

l∈Z xl, xl ∈ Jl, l ∈ Z, we
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compute

Utc+d x =
2∑

j,l=0

t jE jxl =

2∑
l=0

tlxl =
∑
i∈Z

tixi,

which shows

Ji = {x ∈ J | Utc+d x = tix} = {x ∈ J | Ut−1c+d x = t−ix} (i ∈ Z). (11)

Now let i, j, l ∈ Z and xi ∈ Ji, y j ∈ J j, zl ∈ Jl. Then the fundamental formula
and (11) imply

Utc+dUxi y j = Utc+dUxi Utc+dUt−1c+dy j = UUtc+d xi Ut−1c+dy j

= Uti xi t
− jy j = t2i− jUxi y j,

hence Uxi y j ∈ J2i− j. This proves (8). Similarly,

Utc+d{xiy jzl} = Utc+dUxi,zl Utc+dUt−1c+dy j

= UUtc+d xi,Utc+dzl Ut−1c+dy j = Uti xi,tlzl t
− jy j

= ti− j+l{xiy jzl},

which proves {xiy jzl} ∈ Ji− j+l, hence (9). It remains to prove the first equation
of (10) since the second one then follows after the substitution c 7→ d. For
xi ∈ Ji, i = 0, 2, we must show Vx2,x0 = 0. Applying (29a.21), (29a.13) and (1),
(4), (6), we first obtain Vc,x0 = VUcc,x0 = Vc,{ccx0} − VUc x0,c = Vc,c◦x0 = 0 from
(1), (6) and then Vx2,x0 = VUc x2,x0 = Vc,{x2cx0} − VUc x0,x2 = 0 since {x2cx0} ∈ J0

by (9). This completes the proof. □

32.3 Corollary. Let c be an idempotent in J and put d := 1J − c.

(a) For all R ∈ k-alg, there are natural identifications

(JR)i(cR) = Ji(c)R (i = 0, 1, 2).

(b) d is an idempotent in J satisfying Ji(d) = J2−i(c) for i = 0, 1, 2.
(c) The k-module J2(c) (resp. J0(c)) is a Jordan algebra over k with unit

element c (resp. d) whose U-operator is derived from the U-operator
of J by restriction. Moreover, J2(c)⊕ J0(c) is a direct sum of ideals and
a subalgebra of J.

(d) The Peirce components Ji := Ji(c) of J (i = 0, 1, 2) satisfy the bilinear
composition rules

Ji ◦ Ji ⊆ Ji, Ji ◦ J1 ⊆ J1, J2 ◦ J0 = {0}, J1 ◦ J1 ⊆ J2 ⊕ J0 (1)

for i = 0, 2.
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Proof (a) This follows immediately from (32.2.3) and the fact that scalar ex-
tensions of k-modules commute with direct sums.

(b) This follows immediately from Thm. 32.2 (a), (b).
(c) We put c2 := c, c0 := d and let i = 0, 2. From (32.2.8) we deduce

UJi Ji ⊆ Ji, so restricting the U-operator of J to Ji gives a quadratic map
U : Ji → Endk(Ji) which by Thm. 32.2 sends ci to the identity on Ji. In
this way, therefore, Ji becomes a para-quadratic algebra over k, which is in
fact a Jordan algebra since the defining identities (29.1.1), (29.1.2) hold not
only on Ji but by (a) on all scalar extensions as well. By (32.2.8) we have
UJ2 J0 + UJ0 J2 = {0}, which together with (32.2.10) implies that J2 ⊕ J0 is a
direct sum of ideals. As such it is a Jordan algebra in its own right with identity
element c1 + c0 = 1J , hence a subalgebra of J.

(d) For i = 0, 2, j = 0, 1, 2, we apply (32.2.9), (32.2.10) and obtain Ji ◦

J j ⊆ {JiJiJ j} + {JiJ2−iJ j} ⊆ J j hence first two relations of (1), while the third
one now follows by symmetry: J2 ◦ J0 ⊆ J0 ∩ J2 = {0}. On the other hand,
J1 ◦ J1 ⊆ {J1J2J1} + {J1J0J1} ⊆ J0 + J2 by (32.2.9), giving also the fourth
relation, and the proof of (1) is complete. □

32.4 Remark. J2(c), though a Jordan algebra, in general is not a subalgebra of
J; in fact, it is one if and only if c = 1J .

32.5 The Peirce decomposition in linear Jordan algebras. Suppose 2 ∈ k×

and let c be an idempotent in J. We claim

Ji(c) = {x ∈ J | c ◦ x = ix} (i = 0, 1, 2). (1)

By (32.2.6), (32.2.7), the left-hand side is contained in the right and we have
equality for i = 1. Now assume i = 0, 2 and that x ∈ J satisfies c ◦ x =
ix.Writing x = x2+x1+x0, x j ∈ J j(c) for j = 0, 1, 2, we conclude ix2+ix1+ix0 =

c◦x = 2x2+x1. For i = 0, this implies 2x2 = x1 = 0, hence x = x0 ∈ J0(c) since
2 ∈ k×. By the same token, i = 2 implies x1 = 2x0 = 0, hence x = x2 ∈ J2(c).
This completes the proof.

Viewing J as a unital linear Jordan algebra over k via Thm. 29.4, with bilin-
ear multiplication xy = 1

2 x ◦ y = 1
2 Vxy, the left multiplication operator of c in

J is Lc =
1
2 Vc, and (1) may be rewritten as

Ji := Ji(c) = {x ∈ J | cx =
i
2

x} (i = 0, 1, 2), (2)

so the Peirce components of c are basically the “eigenspaces” of Lc with re-
spect to the “eigenvalues” 0, 1

2 , 1. For this reason, the i-th Peirce component
of c, i = 0, 1, 2, in the classical literature is usually denoted by J i

2
(c). But we

will never adhere to this convention. Instead we confine ourselves to rewriting
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the composition rules (32.3.1) in the language of linear Jordan algebras: for
i = 0, 2 we have

J2
i ⊆ Ji, JiJ1 ⊆ J1, J2J0 = {0}, J2

1 ⊆ J2 ⊕ J0

32.6 Example. Let’s work through the details of the Singular Peirce Decom-
position for J the real euclidean Jordan algebra Her3(D) for D = R, C, H, or
O from §5 and the idempotent c = e11. We write a general element x ∈ J as in
(5.4.2):

x =
∑

αieii + ui[ jl].

We have

c • x =

 α1
1
2 u3

1
2 ū2

1
2 ū3 0 0
1
2 u2 0 0

 = α1e11 +
1
2

u3[12] +
1
2

u2[31],

so (32.5.2) implies

J0(c) = Re22 + Re33 + D[23], J1(c) = D[31] + D[12], and J2(c) = Re11.

32.7 Example. Let A be a unital alternative k-algebra and recall that c ∈ A is
an idempotent in A if and only if it is one in the Jordan algebra A(+). In this
case, the Peirce decompositions of A and of A(+) with respect to c relate to one
another by the formulas

A(+)
2 (c) = A11(c), A(+)

1 (c) = A12(c) + A21(c), A(+)
0 (c) = A22(c).

This follows immediately from comparing (2) of Exc. 14.12 with Thm. 32.2.

32.8 Proposition. Let (M, q, e) be a pointed quadratic module over k. An el-
ement c ∈ M is an elementary idempotent in J := J(M, q, e) (cf. 29.13) if and
only if (c, d) with d := e−c is a hyperbolic pair in the quadratic module (M, q).
In this case, d is an elementary idempotent of J as well and

J2(c) = kc, J1(c) = (kc ⊕ kd)⊥, J0(c) = kd, (1)

where “⊥” stands for orthogonal complementation relative to the bilineariza-
tion of q, are the Peirce components of J relative to c.

Proof Write t for the trace and x 7→ x̄ for the conjugation of (M, q, e). If
(c, d) is a hyperbolic pair of (M, q), then q(c) = 0 and t(c) = q(c, c + d) =
2q(c) + q(c, d) = 1. Thus c ∈ J is an elementary idempotent. Conversely, let
this be so. Then q(d) = q(e − c) = 1 − t(c) + q(c) = 0 and q(c, d) = q(c, e −
c) = t(c) − 2q(c) = 1. Thus (c, d) is a hyperbolic pair of (M, q). It remains to
determine the Peirce components of J relative to c. To begin with, let x ∈ J2(c).
Then (29b.5) implies x = Ucx = q(c, x̄)c − q(c)x̄ = q(c, x̄)c ∈ kc, and the first
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equation of (1) holds. But then J0(c) = J2(d) = kd since d is an elementary
idempotent. It remains to prove J1(c) = (kc⊕ kd)⊥. Letting x ∈ J and applying
(29b.9), we obtain c ◦ x = t(c)x + t(x)c − q(c, x)e = x + t(x)c − q(c, x)e, and
(32.2.7) yields

J1(c) = {x ∈ M | t(x)c = q(c, x)e}. (2)

Suppose first x ∈ J1(c). Then (2) implies q(c, x) = t(c)q(c, x) = q(q(c, x)e, c) =
q(t(x)c, c) = 2t(x)q(c) = 0, hence t(x)c = q(c, x)e = 0, forcing t(x) = 0 since
c is unimodular, and then q(d, x) = t(x) − q(c, x) = 0. Thus x ∈ (kc ⊕ kd)⊥.
Conversely, let x ∈ (kc ⊕ kd)⊥. Then q(c, x) = q(d, x) = 0 implies t(x) =
q(c, x) + q(d, x) = 0, and (2) implies x ∈ J1(c). □

The Peirce decomposition of a Jordan algebra relative to a single idempotent
is often not fine enough for the intended applications. We therefore wish to
replace it by a Peirce decomposition relative to a complete orthogonal system
of as many idempotents as possible. In order to accomplish this, we require a
number of preparations that we are now going to address.

Orthogonality of a family of idempotents has been defined in 28.9 and Exc.
28.25 for arbitrary para-quadratic algebras. In the case of Jordan algebras, there
is a simple characterization in terms of the Peirce decomposition.

32.9 Proposition. For idempotents c1, c2 ∈ J, the following conditions are
equivalent.

(i) c1 ⊥ c2.
(ii) c2 ∈ J0(c1).
(iii) c1 ∈ J0(c2).

Proof Orthogonality being a symmetric relation on idempotents, it suffices to
establish the equivalence of (i) and (ii). Combining (28.9.1) with (29a.13), we
see that (i) holds if and only if Uc1 c2 = Uc2 c1 = Vc1 c2 = 0. In this case, (32.2.5)
implies c2 ∈ J0(c1). Conversely, suppose c2 ∈ J0(c1). Then Uc1 c2 = Vc1 c2 = 0,
but also Uc2 c1 ∈ UJ0(c1)J2(c1) = {0} by (32.2.8). Thus (i) holds. □

32.10 Corollary. A finite family (c1, . . . , cr) (r ∈ Z, r > 0) of idempotents in J
is an orthogonal system of idempotents in the sense of Exc. 28.25 if and only if
ci ⊥ c j for 1 ≤ i, j ≤ r, i , j.

Proof Assume ci ⊥ c j for 1 ≤ i, j ≤ r, i , j and let i, j, l ∈ {1, . . . , r}. The
first set of relations in Exc. 28.25 (1) holds by the definition of orthogonality
(cf. (28.9.1)). For the second set, let i, j, l be mutually distinct. From Prop. 32.9
and (32.2.10) we deduce {cic jcl} ∈ {J2(ci)J0(ci)J} = {0}. Thus all of Exc. 28.25
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(1) holds, so (c1, . . . , cr) is an orthogonal system of idempotents. The converse
is obvious, again by Exc. 28.25 (1). □

32.11 Lemma. Let d, e ∈ J be orthogonal idempotents. Then c := d + e ∈ J is
an idempotent and d ∈ J2(d) ⊆ J2(c).

Proof c is an idempotent in J by Exc. 28.25 (a). Moreover, Ucd = Udd +
{dde} + Ued, where Udd = d3 = d and {dde} = Ued = 0 by (1) of Exc. 28.25.
Hence Ucd = d, which by (32.2.4) implies d ∈ J2(d) = Ud J = UUcd J =
UcUdUcJ ⊆ UcJ = J2(c). □

32.12 Proposition. Let Ω = (c1, . . . , cr) be a complete orthogonal system of
idempotents in J and define linear maps

Eii := Eii(Ω) := Uci , Ei j := Ei j(Ω) := Uci,c j (1 ≤ i, j ≤ r, i , j). (1)

Then Ei j = E ji for 1 ≤ i, j ≤ r, and the Ei j, 1 ≤ i ≤ j ≤ r, are orthogonal pro-
jections of J, called its Peirce projections relative to Ω, such that

∑
1≤i≤ j≤r Ei j

is the identity.

Proof The first assertion is obvious, and we clearly have
∑

i≤ j Ei j = U∑
ci =

U1J = 1J , so we need only show that the Ei j, 1 ≤ i ≤ j ≤ r, are orthogonal
projections. We do so in two steps.

1◦. Let 1 ≤ i, j ≤ r, i , j. Lemma 32.11 shows that c := ci + c j ∈ J is an
idempotent, forcing J′ := J2(c) by Cor. 32.3 (b) to be a Jordan algebra with
identity element c. Moreover, Lemma 32.11 implies that ci is an idempotent
in J′ and c j = 1J′ − ci. Applying Thm. 32.2 to J′, ci in place of J, c, respec-
tively, we see that Eii, Ei j, E j j act as orthogonal projections on J′ and vanish
identically on J1(c) ⊕ J0(c) because

EllJm(c) + Ei jJm(c) = UUccl Jm(c) + UUcci,Ucc j Jm(c)

= UcUcl UcJm(c) + UcUci,c j UcJm(c) = {0}

for l = i, j and m = 0, 1. Hence they are orthogonal projections on all of J that
map J to J′.

2◦. The proof will be complete once we have shown

Ei jElm = 0 (1 ≤ i, j, l,m ≤ r, {i, j} , {l,m}). (2)

First suppose i = j in (2). By 1◦, we may assume l , m and i < {l,m}. Then
cl ⊥ ci ⊥ cm, which implies cl + cm ⊥ ci by Prop. 32.9 and then

EiiElmJ + ElmEiiJ ⊆ UJ0(cl+cm)J2(cl + cm) + {J2(cl + cm)J0(cl + cm)J} = {0}.
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This shows (2) not only for for i = j but also for l = m. We are left with the
case i , j, l , m. By symmetry, we may assume i < {l,m}, which implies

Ei jElmJ ⊆ {ciJ2(cl + cm)c j} ⊆ {J0(cl + cm)J2(cl + cm)J} = {0}

and completes the proof of (2). □

32.13 Corollary. Let Ω = (c1, . . . , cr) be a complete orthogonal system of
idempotents in J and put D := k× · · ·×k ∈ k-alg (r factors) as a direct product
of ideals. Then

ΘΩ : D −→ Endk(J), x 7−→ U∑r
i=1 γici ,

for x = (γ1, · · · , γr) ∈ D, γi ∈ k, 1 ≤ i ≤ r, is a quadratic map that permits
composition:

ΘΩ(1D) = 1J , ΘΩ(xy) = ΘΩ(x)ΘΩ(y) (1)

for all x, y ∈ D. In particular, ΘΩ(x) ∈ GL(J) for all x ∈ D×. Moreover, ΘΩ
is compatible with base change: (ΘΩ)R = ΘΩR , ΩR := (c1R, . . . , crR), for all
R ∈ k-alg.

Proof All assertions are obvious except, possibly, the property of ΘΩ per-
mitting composition. But this follows immediately from Prop. 32.12 since
ΘΩ(x) =

∑
i≤ j γiγ jEi j(Ω). □

32.14 Peirce triples. By a Peirce triple, we mean an ordered triple of un-
ordered pairs of positive integers. Thus a Peirce triple has the form

(i j, lm, np) :=
(
{i, j}, {l,m}, {n, p}

)
for integers i, j, l,m, n, p > 0. A Peirce triple (i j, lm, np) will always be iden-
tified with the Peirce triple (np, lm, i j). It is said to be connected if (up to the
identification just defined) it can be written in the form (i j, jm,mp). For exam-
ple, the Peirce triple (43, 23, 12) is connected but (54, 23, 12) is not.

32.15 Theorem (Multiple Peirce decomposition). Let Ω = (c1, . . . , cr) be a
complete orthogonal system of idempotents in J.

(a) Setting Ji j := Ji j(Ω) := Im(Ei j(Ω)) in the notation of Prop. 32.12, we
have Ji j = J ji for 1 ≤ i, j ≤ r and

J =
⊕

1≤i≤ j≤r

Ji j (1)
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as a direct sum of submodules, called the Peirce components of J rel-
ative to Ω. Furthermore, the following relations hold, for all i, j =
1, . . . , r:

J2(ci) = Jii, J1(ci) =
∑
l,i

Jil, J0(ci) =
∑
l,m,i

Jlm, (2)

Ji j = J1(ci) ∩ J1(c j) (i , j). (3)

(b) More generally, if I ⊆ {1, . . . , r}, then cI :=
∑

i∈I ci is an idempotent in
J with the Peirce components

J2(cI) =
∑
i, j∈I

Ji j, J1(cI) =
∑

i∈I, j<I

Ji j, J0(cI) =
∑
i, j<I

Ji j. (4)

(c) The composition rule

{Ji jJ jlJlm} ⊆ Jim (5)

holds for all i, j, l,m = 1, . . . , r. Moreover, if the Peirce triple (i j, jl, i j)
is connected, there exists a unique m = 1, . . . , r such that i j = lm, and
we have

UJi j J jl ⊆ Jim. (6)

In particular,

UJi j Ji j ⊆ Ji j. (7)

Finally, if (i j, lm, np) (resp. (i j, lm, i j)) is not connected, then

{Ji jJlmJnp} = {0} (resp. UJi j Jlm = {0}). (8)

Proof (a), (b). The first assertion of (a) and eqn. (1) follow immediately from
Prop. 32.12, eqn. (3) is a consequence of (2), and (2) is a special case of (4).
In order to complete the proof of (a) and (b) , it therefore suffices to establish
(4). To this end, we put dI := 1J − cI =

∑
i<I ci and apply Thm. 32.2 to obtain

J2(cI) = Im(UcI ) = Im(
∑

i, j∈I,i≤ j

Ei j) =
∑
i, j∈I

Ji j,

J1(cI) = Im(UcI ,dI ) = Im(
∑

i∈I, j<I

Ei j) =
∑

i∈I, j<I

Ji j,

J0(cI) = Im(UdI ) =
∑
i, j<I

Ji j.

(c) Let R := k[t±1
1 , . . . , t±1

r ] be the ring of Laurent polynomials over k in the
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variables t1, . . . , tr, which is free as a k-module with basis (ti1
1 · · · t

ir
r )i1,...,ir∈Z.

Thus the identifications of 12.4 imply

J ⊆ JR =
⊕

i1,...,ir∈Z

(ti1
1 · · · t

ir
r J),

Endk(J) ⊆ Endk(J)R =
⊕

i1,...,ir∈Z

(
ti1
1 · · · t

ir
r Endk(J)

)
⊆ EndR(JR)

as direct sums of k-modules. We now claim

w :=
r∑

λ=1

tλcλ ∈ J×R and w−1 =

r∑
λ=1

t−1
λ cλ. (9)

Indeed, since tλ ∈ R× for 1 ≤ λ ≤ r, Cor. 32.13 shows not only Uw ∈ GL(JR)
but also Uw′ = U−1

w , where w′ =
∑

t−1
λ cλ. Hence w ∈ J×R by Prop. 31.2, and

since cλ ∈ Jλλ by (2), we conclude

Uww′ =
∑
i≤ j

tit jEi j

∑
λ

t−1
λ cλ =

r∑
i=1

t2
i t−1

i ci =

r∑
i=1

tici = w,

which in turn implies w′ = U−1
w w = w−1 by (31.2.1). Next we claim

Ji j = {x ∈ J | Uwx = tit jx} = {x ∈ J | Uw−1 x = t−1
i t−1

j x}. (10)

Indeed, given x ∈ J, the expansion Uwx =
∑
λ≤µ tλtµEλµx, where Eλµx ∈ Jλµ,

combined with (1) yields the first equation of (10), while the second follows
from the first. We now put

T := {ti1
1 · · · t

ir
r | i1, . . . , ir ∈ Z}, T0 := {tit j | 1 ≤ i, j ≤ r}

and claim

(∗) Every t ∈ T such that Uwx = tx for some non-zero x ∈ J belongs to T0.

In order to see this, we write x =
∑

i≤ j xi j, xi j ∈ Ji j, and deduce∑
i≤ j

txi j = tx = Uwx =
∑
i≤ j

tit jxi j

from (10), and comparing Peirce components, the assertion follows. Now fix
integers i, j, l,m, n, p = 1, . . . , r and x ∈ Ji j, y ∈ Jlm, z ∈ Jnp. Then we claim

Uw{xyz} = tit jt−1
l t−1

m tntp{xyz}, (11)

UwUxy = t2
i t2

j t
−1
l t−1

m Uxy. (12)

In order to prove (11), we apply (9), (10), (29a.3) and obtain

Uw{xyz} = UwUx,zUwUw−1 y = UUw x,UwzUw−1 y = Utit j x,tntpzt−1
l t−1

m y,
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hence (11). Similarly,

UwUxy = UwUxUwUw−1 y = UUw xUw−1 y = Utit j xt−1
l t−1

m y,

and this yields (12). Now (5) follows by specializing l = j, n = m = l, p = m in
(11) and applying (10). Next suppose the Peirce triple (i j, jl, i j) is connected.
By Exc. 32.21 below, there is a unique m = 1, . . . , r such that i j = lm, and
specializing l = j, m = l in (12) gives t2

i t2
j t
−1
l t−1

m = titit jt−1
l = titm, hence (6),

which for l = i specializes to (7). It remains to establish (8). To this end, assume
first that (i j, lm, np) is not connected. If {i, j} ∩ {l,m} = ∅ = {l,m} ∩ {n, p}, then
tit jt−1

l t−1
m tntp < T0, and (∗) implies {xyz} = 0. Otherwise, since the k-module

{Ji jJlmJnp} remains unaffected by the identification of Peirce triples described
in 32.14, Exc. 32.21 below allows us to assume l = n = j, m = l, p = n, with
l , i, j, n, which implies tit jt−1

l t−1
m tntp = tit jt−1

l tn < T0, hence again {xyz} = 0.
This proves the first part of (8). As to the second, assume that (i j, lm, i j) is not
connected. If {i, j} ∩ {l,m} = ∅, the t2

i t2
j t
−1
l t−1

m < T0, and we conclude Uxy = 0
from (∗). Otherwise, we may assume l = j, put m := l and have i , l , j,
hence t2

i t2
j t
−1
l t−1

m = t2
i t jt−1

l < T0, This again implies Uxy = 0 and completes the
proof of (8). □

32.16 Corollary. Let Ω = (c1, . . . , cr) be a complete orthogonal system of
idempotents in J.

(a) For R ∈ k-alg, ΩR := (c1R, . . . , crR) is a complete orthogonal system of
idempotents in JR and there are canonical identifications

(JR)i j(ΩR) = Ji j(Ω)R (1 ≤ i, j ≤ r). (1)

(b) For 1 ≤ i ≤ r, the k-module Jii(Ω) is a Jordan algebra over k with
unit element ci whose U-operator is derived from the U-operator of J
by means of restriction. Moreover

⊕r
i=1 Jii(Ω) is a direct sum of ideals

and a subalgebra of J.
(c) The Peirce components of J relative to Ω satisfy the bilinear composi-

tion rules

Ji j(Ω) ◦ J jl(Ω) ⊆ Jil(Ω), Ji j(Ω) ◦ Ji j(Ω) ⊆ Jii(Ω) + J j j(Ω)

for 1 ≤ i ≤ j ≤ l ≤ r.

Proof This is established in exactly the same manner as Cor. 32.3 has been
derived from Thm. 32.2. □

32.17 Example. Let’s consider the Multiple Peirce Decomposition for J =
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Her3(D) with respect to the complete system (c1, c2, c3) of orthogonal idem-
potents where ci := eii. Consulting the calculation for the Singular Peirce De-
composition in 32.6 and applying symmetry, we find that Jii = Reii and, for
i j = 12, 23, or 31, we have Ji j = D[i j]. To say the same thing in a different
way: Ji j consists of elements that have zeros except possibly in the (i, j) and
( j, i)-entries.

Exercises
32.18. Show that J is linear at c, for every idempotent c ∈ J.

32.19. Let c ∈ J be an idempotent and suppose v ∈ J1(c) is invertible in J. Prove that
Uv via restriction induces an isotopy from J2(c) onto J0(c). Moreover, this isotopy is an
isomorphism if and only if v2 = 1J .

32.20. Let c be an idempotent in J and put Ji := Ji(c) for i = 0, 1, 2. Then prove that

φ : J2 −→ Endk(J1), x 7−→ Vx|J1 ,

is a homomorphism of Jordan algebras. Conclude that, if the Jordan algebra J2 is simple
and J1 , {0}, then J2 is special.
Remark. By a theorem of McCrimmon [188], if J is simple, then so is J2. Moreover,
if c , 0, 1J , then J1 , {0} by Cor. 32.3 (b). Thus for a simple Jordan algebra J and an
idempotent c , 0, 1J in J, the Jordan algebra J2(c) is special.

32.21. Show for a Peirce triple T := (i j, lm, np) that the following conditions are equiv-
alent.

(i) T is not connected.
(ii) Always up to the identification of 32.14, either {i, j} ∩ {l,m} = ∅ or

T = (i j, jm, jp), m , i, j, p.

Conclude that a Peirce triple (i j, jl, i j) is connected if and only if l = i or l = j, in which
case there is a unique positive integer m such that i j = lm.

32.22. The multiple Peirce decomposition for alternative algebras (cf. Schafer [254]).
Let A be a unital alternative algebra over k and Ω := (c1, . . . , cr) a complete orthogonal
system of idempotents in A.

(a) Put

Ei j := Ei j(Ω) := Lci Rc j (1 ≤ i, j ≤ r) (1)

and show that (Ei j)1≤i, j≤r is a family of orthogonal projections of A whose sum
is the identity. Conclude

A =
⊕

1≤i, j≤r

Ai j (2)

as a direct sum of k-modules, where Ai j := Ai j(Ω) = Im(Ei j) for 1 ≤ i, j ≤ r.
The Ai j are called the Peirce components of A relative to Ω.
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(b) Show

Ai j = {x ∈ A | cl x = δil x, xcl = δ jl x (1 ≤ l ≤ r)} (3)

for 1 ≤ i, j ≤ r.
(c) Prove that the Peirce components of A relative to Ω satisfy the following com-

position rules, for all i, j, l,m = 1, . . . , r.

Ai jA jl ⊆ Ail, (4)

A2
i j ⊆ A ji, (5)

Ai jAlm = {0}
(
j , l, (i, j) , (l,m)

)
(6)

Finally, prove x2 = 0 for all x ∈ Ai j, 1 ≤ i, j ≤ r, i , j.
(d) Note by Exc. 28.25 (b) that Ω is a complete orthogonal system of idempotents

in A(+), with Peirce components A(+)
i j := A(+)

i j (Ω) (1 ≤ i ≤ j ≤ r), and prove

A(+)
ii = Aii (1 ≤ i ≤ r), A(+)

i j = Ai j ⊕ A ji (1 ≤ i < j ≤ r).

32.23. Connectedness in complete orthogonal systems of idempotents (Jacobson [140,
Prop. 5.3.3]). Let Ω = (c1, . . . , cr) be a complete orthogonal system of idempotents in
J, with Peirce components Ji j = Ji j(Ω), 1 ≤ i, j ≤ r. Fix indices i, j = 1, . . . , r with
i , j and prove:

(a) For vi j ∈ Ji j, the following conditions are equivalent.

(i) vi j ∈ J2(ci + c j)×.
(ii) Uvi j J

×
ii ⊆ J×j j, Uvi j J

×
j j ⊆ J×ii .

(iii) Uvi j ci ∈ J×j j, Uvi j c j ∈ J×ii .
(iv) v2

i j ∈ (Jii ⊕ J j j)×.

In this case, ci and c j are said to be connected by vi j. We say ci and c j are
connected if vi j ∈ Ji j exists connecting ci and c j. And finally, we say Ω is
connected if ci and c j are connected, for all i, j = 1, . . . , r distinct.

(b) For vi j ∈ Ji j, the following conditions are equivalent.

(i) v2
i j = ci + c j.

(ii) Uvi j ci = c j, Uvi j c j = ci

In this case, ci and c j are said to be strongly connected by vi j. We say ci and
c j are strongly connected if vi j ∈ Ji j exists strongly connecting ci and c j. And
finally, we say Ω is strongly connected if ci and c j are strongly connected, for
all i, j = 1, . . . , r distinct.

(c) Let 1 ≤ l ≤ r and assume i , l , j. If ci and c j are (strongly) connected by
vi j ∈ Ji j, and c j and cl are (strongly) connected by v jl ∈ J jl, then ci and cl are
(strongly) connected by vi j ◦ v jl ∈ Jil.

32.24. Isotopes and complete orthogonal systems of idempotents (Jacobson [140, Prop.
5.3.4]). Let Ω = (c1, . . . , cr) be a complete orthogonal system of idempotents in J, with
Peirce components Ji j := Ji j(Ω), 1 ≤ i, j ≤ r. Following Cor. 32.16 (b), consider the
subalgebra of J defined by

DiagΩ(J) :=
r⊕

i=1

Jii (1)
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as a direct sum of ideals. For 1 ≤ i ≤ r, let pi ∈ J×ii and put

p :=
r∑

i=1

pi ∈ DiagΩ(J)× ⊆ J×. (2)

(a) Put c(p)
i := p−1

i ∈ Jii (the inverse of pi in Jii) for 1 ≤ i ≤ r and show that

Ω(p) := (c(p)
1 , . . . , c(p)

r )

is a complete orthogonal system of idempotents in the isotope J(p) such that

J(p)
i j := (J(p))i j(Ω(p)) = Ji j (3)

for 1 ≤ i, j ≤ r. In particular, DiagΩ(p) (J(p)) = DiagΩ(J)(p).
(b) Let also qi ∈ J×ii for 1 ≤ i ≤ r and q :=

∑r
i=1 qi ∈ DiagΩ(J)×. Then show

(Ω(p))(q) = Ω(Upq).
(c) Assume c1 and ci are connected for 2 ≤ i ≤ r (cf. Exc. 32.23). Show that there

exist pi ∈ J×ii , 1 ≤ i ≤ r, such that c(p)
1 and c(p)

i with p :=
∑r

j=1 p j are strongly
connected in their capacity as members of the complete orthogonal systemΩ(p)

of idempotents in J(p).

32.25. Lifting of complete orthogonal systems of idempotents. Let φ : J → J′ be a
surjective homomorphism of Jordan algebras and suppose Ker(φ) ⊆ J is a nil ideal.
Show that every complete orthogonal system (c′1, . . . , c

′
r) of idempotents in J′ can be

lifted to J: there exists a complete orthogonal system (c1, . . . , cr) of idempotents in J
such that φ(ci) = c′i for 1 ≤ i ≤ r.

32.26. Simple Jordan algebras of Clifford type (compare Jacobson-McCrimmon [144,
Thm. 11]). Let (M, q, e) be a non-zero pointed quadratic module over a field F and
suppose q is non-degenerate. Show that the Jordan algebra J(M, q, e) is either simple or
isomorphic to (F × F)(+).
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VI

Cubic Jordan algebras

With the aim of describing an adequate framework for the study of octonion
algebras over commutative rings, we investigated in Chap. IV a class of al-
gebraic structures where all elements satisfy a universal algebraic equation of
degree 2. In particular, we considered multiplicative conic alternative algebras
in section 17 which, as a category, allow a natural faithful (though not full)
embedding into arbitrary (unital) alternative algebras (17.7). Within this cate-
gory, we then singled out composition algebras by certain regularity conditions
(Thm. 19.13). And, finally, we defined octonion algebras as composition alge-
bras of the greatest possible rank.

In the present chapter, an analogous approach will be adopted for the study
of Albert algebras over commutative rings. After having prepared the ground
by introducing the concept of a cubic norm structure in section 33, we pro-
ceed to define cubic Jordan algebras in section 34, where all elements satisfy
a universal algebraic equation of degree 3, and which, as a category, allow
a natural faithful non-full embedding into arbitrary Jordan algebras. We then
consider Freudenthal algebras as cubic Jordan algebras with certain regularity
properties, which in turn will allow us to define Albert algebras as Freudenthal
algebras of the greatest possible rank.

In order to carry out this program, quite a few technical difficulties that did
not show up in the octonionic setting will have to be overcome. These difficul-
ties, some of which are already implicit in the need to consider para-quadratic
algebras (section 28) rather than linear non-associative ones, will be addressed
further as we go along and show up, most conspicuously, in section 35. Cubic
Jordan matrix algebras, the most “hands-on” examples of cubic Jordan alge-
bras, will be investigated in section 36, emphasizing a presentation that, un-
der very general circumstances, commutes with arbitrary base change. Section
37 is devoted to elementary idempotents in cubic Jordan algebras and culmi-
nates in a proof of the Jacobson co-ordinatization theorem. The chapter con-
cludes with exhibiting classifying invariants of reduced Freudenthal algebras
over fields in section 41.

316
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33 Cubic norm structures

Cubic norm structures form an important auxiliary notion that will pave the
way to our understanding of cubic Jordan algebras. They will be investigated
here by closely following the treatment of McCrimmon [183].

Throughout k stands for an arbitrary commutative ring. Relaxing our pre-
vious conventions, we do not distinguish anymore between the notation for a
polynomial law f : M → N and that for its induced set maps f = fR : MR →

NR,R ∈ k-alg. We begin with a preliminary concept of a more technical nature
that will be included here only for convenience.

33.1 Cubic arrays. By a cubic array over k we mean a k-module X together
with

• a distinguished element 1X ∈ X (the base point),
• a quadratic map ♯ = ♯X : X → X, x 7→ x♯ (the adjoint, dependence on X

most of the time being understood),
• a cubic form NX : X → k (the norm)

such that the following conditions are fulfilled.

(i) 1X ∈ X is unimodular.
(ii) The base point identities hold:

1♯X = 1X , NX(1X) = 1. (1)

We claim: If X is projective as a k-module, then (ii) implies (i). Indeed, Exercise
12.44 yields a trilinear form T : X × X × X → k such that NX(x) = T (x, x, x) in
all scalar extensions, so the linear form λ : X → k, x 7→ T (x, 1X , 1X) by (ii) has
λ(1X) = 1, making 1X ∈ X unimodular, as claimed.

Given another cubic array X′ over k, a homomorphism from X to X′ is de-
fined as a linear map φ : X → X′ preserving base points, adjoints and norms:
φ(1X) = 1X′ , φ(x♯X ) = φ(x)♯X′ for all x ∈ X, and NX′ ◦ φ = NX as polynomial
laws over k. In this way, we obtain the category of cubic arrays over k, de-
noted by k-cuar. For R ∈ k-alg, the R-module XR together with the base point
1XR := (1X)R ∈ XR, the adjoint ♯ = ♯XR = (♯X)R : XR → XR defined as the R-
quadratic extension of the adjoint of X, and the norm NXR := NX ⊗ R : XR → R
as a cubic form over R is a cubic array over R, called the scalar extension or
base change of X from k to R.

33.2 Traces of cubic arrays. Let X be a cubic array over k. We write

x × y := (D♯)(x, y) = (x + y)♯ − x♯ − y♯ (1)

for the bilinearization of the adjoint and, with regard to the norm, combine the
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notational simplifications of Exc. 12.40 with (12.16.2) and Cor. 12.22 to obtain
not only

NX(x, y) = (DNX)(x, y) = (D2NX)(y, x) = (∂yNX)(x) (2)

but also

NX(x, y, z) = (∂y∂zNX)(x) = (Π(1,1,1)NX)(x, y, z) (3)

for the total linearization of the cubic form NX , which is therefore trilinear and
totally symmetric in x, y, z (cf. 12.10 (c)). Recall further from Exc. 12.40 that

NX(x + y) = NX(x) + NX(x, y) + NX(y, x) + NX(y), (4)

NX(x, y, z) = NX(x + y, z) − NX(x, z) − NX(y, z). (5)

The linear map

TX : X −→ k, y 7−→ TX(y) := NX(1X , y), (6)

is called the linear trace of X, while the quadratic form

S X : X −→ k, y 7−→ S X(y) := NX(y, 1X) (7)

is called the quadratic trace of X. And finally, we define the bilinear trace of
X as the symmetric bilinear form TX : X × X → k given by

TX(y, z) = (∂yNX)(1X)(∂zNX)(1X) − (∂y∂zNX)(1X) (8)

= NX(1X , y)NX(1X , z) − NX(y, z, 1X),

which up to a sign agrees with the logarithmic Hessian of NX at 1X:

TX(y, z) = −(∂y∂zlog NX)(1X) = −∂y

(∂zNX

NX

)
(1X). (9)

In view of (5)–(7), we may rewrite (8) as

TX(y, z) = TX(y)TX(z) − S X(y, z). (10)

Combining all this with Euler’s differential equation (12.16.3) and (33.1.1), we
obtain

TX(1X) = S X(1X) = 3, TX(y, 1X) = TX(y) (11)

since (5) and (7) yield S X(y, 1X) = NX(y, 1X , 1X) = N(1X , 1X , y) = 2N(1X , y),
hence

S X(y, 1X) = 2TX(y). (12)
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If φ : X → X′ is a homomorphism of cubic arrays, then the chain rule (12.17.4)
and (5) yield

NX′
(
φ(x), φ(y)

)
= NX(x, y), NX′

(
φ(x), φ(y), φ(z)

)
= NX(x, y, z). (13)

Combining this with (6)–(8) and the property of φ to preserve base points, we
conclude that φ preserves (bi-)linear and quadratic traces:

TX′
(
φ(y)

)
= TX(y), TX′

(
φ(y), φ(z)

)
= TX(y, z), S X′

(
φ(y)

)
= S X(y). (14)

33.3 Regularity. A cubic array X over k is said to be regular if it is finitely
generated projective as a k-module and its bilinear trace, TX , is regular as a
symmetric bilinear form, i.e., if TX induces a linear isomorphism from the k-
module X onto its dual module X∗ in the usual way. This notion is clearly stable
under base change: if X is regular, then so is XR, for all R ∈ k-alg.

33.4 The concept of a cubic norm structure. By a cubic norm structure over
k we mean a cubic k-array X satisfying the following identities strictly, i.e., in
all scalar extensions:

1X × x = TX(x)1X − x (unit identity), (1)

NX(x, y) = TX(x♯, y) (gradient identity), (2)

x♯♯ = NX(x)x (adjoint identity). (3)

A homomorphism of cubic norm structures is defined as a homomorphism of
them as cubic arrays. Thus cubic norm structures over k form a full subcategory
of k-cuar denoted by k-cuno. By definition, cubic norm structures are stable
under base change, so if X is a cubic norm structure over k, then the cubic array
XR over R is, in fact, a cubic norm structure, for all R ∈ k-alg.

33.5 Cubic norm substructures. Let X be a cubic array over k. By a cubic
subarray of X we mean a cubic array Y such that Y ⊆ X is a k-submodule and
the inclusion i : Y → X is a homomorphism of cubic arrays. This is equivalent
to requiring (i) 1X ∈ Y , (ii) Y♯ ⊆ Y , i.e., Y is stabilized by the adjoint of X, and
(iii) NX ◦ i = NY as polynomial laws over k, i.e., (NX)R ◦ iR = (NY )R as set maps
YR → R, for all R ∈ k-alg. Thus any submodule Y of X, with corresponding
inclusion i : Y → X, that contains 1X and is stabilized by the adjoint of X may
canonically be regarded as a cubic subarray of X, with base point 1Y = 1X ,
adjoint ♯ : Y → Y given by restricting the adjoint ♯ : X → X of X to Y , and
norm NY := NX |Y := NX ◦ i. In this case, the (bi-)linear and quadratic traces of
Y by (33.2.14) are just the corresponding objects of X restricted to Y (resp. to
Y × Y).

Now suppose X is a cubic norm structure over k and let Y ⊆ X be a cubic
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subarray. Then it follows either from Cor. 12.11 or from Exc. 33.14 that Y is,
in fact, a cubic norm structure, called a cubic norm substructure of X. If E ⊆ X
is an arbitrary subset, the smallest cubic norm substructure of X containing E
is called the cubic norm substructure generated by E.

Our next aim will be to derive a number of basic identities for cubic norm
structures. In order to do so, we require two preparations, the first one connect-
ing cubic norm structures with para-quadratic algebras, the second one spelling
out a sufficient condition for elements of a cubic array to be unimodular.

33.6 Connecting with para-quadratic algebras. Let X be a cubic array over
k. We define a U-operator, i.e., a quadratic map U : X → Endk(X), x 7→ Ux, by

Uxy := TX(x, y)x − x♯ × y (x, y ∈ X), (1)

which in analogy to (28.1.3), (28.1.5) linearizes to the associated triple product

{xyz} := Vx,yz := Ux,zy = TX(x, y)z + TX(y, z)x − (z × x) × y (2)

for x, y, z ∈ X. Moreover, if X is a cubic norm structure, then the unit identity
(33.4.1) shows U1X = 1X . Hence the k-module X together with the U-operator
(1) and the base point 1X ∈ X forms a para-quadratic algebra over k, which we
denote by J(X) and call the para-quadratic algebra associated with or corre-
sponding to X. It will be shown in due course to be a Jordan algebra. Passing
from X to J(X) is clearly compatible with base change: J(XR) = J(X)R for all
R ∈ k-alg.

33.7 Lemma. Let X be a cubic array over k such that

{xx♯y} = 2NX(x)y

for all x, y ∈ X. Then every element x ∈ X such that NX(x) ∈ k× is unimodular.

Proof Since 1X ∈ X is unimodular by definition, there exists a linear form
λ : X → k such that λ(1X) = 1. Now suppose x ∈ X satisfies NX(x) ∈ k×.
Thanks to Euler’s differential equation combined with the hypothesis of the
lemma, the linear form

λx : X −→ k, y 7−→ NX(x)−1(NX(x, y) − λ({yx♯1X})
)

satisfies λx(x) = 1. Hence x is unimodular. □

33.8 Basic identities for cubic norm structures. Let X be a cubic norm struc-
ture over k. Using the abbreviations 1 := 1X , N := NX , T := TX , S := S X , we
claim that the identities in Figure 33a hold strictly in X. (In compiling the list
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1♯ = 1, N(1) = 1, (1)

T (1) = S (1) = 3, T (y, 1) = T (y), S (y, 1) = 2T (y), (2)

1 × x = T (x)1 − x, (3)

N(x, y) = T (x♯, y), (4)

x♯♯ = N(x)x, (5)

N(x + y) = N(x) + T (x♯, y) + T (x, y♯) + N(y), (6)

T (x × y, z) = T (x, y × z), (7)

x♯ × (x × y) = N(x)y + T (x♯, y)x, (8)

(x × y) × (x × z) + x♯ × (y × z) = T (x♯, y)z + T (x♯, z)y + T (x × y, z)x, (9)

x♯ × y♯ + (x × y)♯ = T (x♯, y)y + T (x, y♯)x, (10)

T (x♯, x) = 3N(x), (11)

S (x) = T (x♯), (12)

S (x, y) = T (x × y) = T (x)T (y) − T (x, y), (13)

x♯ × x =
(
T (x)S (x) − N(x)

)
1 − S (x)x − T (x)x♯, (14)

Uxy = T (x, y)x − x♯ × y, (15)

Ux(x × y) = T (x♯, y)x − N(x)y, (16)

{xx♯y} = 2N(x)y, (17)

N(x♯) = N(x)2, (18)

x × (x♯ × y) = N(x)y + T (x, y)x♯, (19)

(Uxy)♯ = Ux♯y
♯ = T (x♯, y♯)x♯ − N(x)x × y♯, (20)

N(Uxy) = N(x)2N(y), (21)

x♯ = x2 − T (x)x + S (x)1, (22)

x × y = x ◦ y − T (x)y − T (y)x +
(
T (x)T (y) − T (x, y)

)
1, (23)

T (x ◦ y) = 2T (x, y), (24)

(x × y) × (z × w) + (y × z) × (x × w) + (z × x) × (y × w) (25)

= T (x × y, z)w + T (y × z,w)x + T (z × w, x)y + T (w × x, y)z,

x ×
(
y × (x × z)

)
= T (x, y)x × z + T (x♯, z)y + T (y, z)x♯ − (x♯ × y) × z (26)

= (Uxy) × z + T (x♯, z)y + T (y, z)x♯,

x ×
(
y × (z × w)

)
+ z ×

(
y × (w × x)

)
+ w ×

(
y × (x × z)

)
(27)

= T (x, y)z × w + T (z, y)w × x + T (w, y)x × z + T (x × z,w)y,

x × (x × y) =
(
T (x)S (x, y) + S (x)T (y) − T (x♯, y)

)
1− (28)

S (x, y)x − S (x)y − T (x)x × y − T (y)x♯ − x♯ × y,

N(x × y) = T (x♯, y)T (x, y♯) − N(x)N(y), (29)

{xyz} = Vx,yz = Ux,zy = T (x, y)z + T (y, z)x − (z × x) × y, (30)

T (Uxy, z) = T (y,Uxz), (31)

T
(
{xyz},w

)
= T

(
z, {yxw}

)
, (32)

T (x ◦ y, z) = T (x, y ◦ z). (33)

Table of Identities 33a Identities holding in a cubic norm structure.
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of identities, we do not hesitate to include identities that have been introduced
or derived earlier.)

Proof It clearly suffices to verify these identities for all x, y, z,w ∈ X. More-
over, thanks to Prop. 12.24, we may always assume if necessary that some of
the elements involved have an invertible norm. Now, while the base point iden-
tities (1) are valid even in arbitrary cubic arrays and (3)–(5) belong to the very
definition of a cubic norm structure, (2) has been observed already in (33.2.11),
(33.2.12). Next, combining (33.2.4) with the gradient identity (4), we obtain
(6). Differentiating the gradient identity gives T (x × y, z) = N(x, y, z), which
is totally symmetric in x, y, z. Hence (7) follows. To establish (8), we differen-
tiate the adjoint identity (5) by making use of the chain and the product rule.
Linearizing still further and using (7) yields (9), while (10) follows from (5)
combined with the second order chain and product rules (12.17.6), (12.17.7).
To derive (11), we combine the gradient identity (4) with Euler’s differential
equation (12.3). The gradient identity (4) for y = 1 and (2) imply (12). To
establish (13), we linearize (12) and apply (33.2.10). Similarly, specializing
y = 1 in (8) and observing (3), we obtain (14), while (15) is just a repeti-
tion of (33.6.1). To derive (16), we combine (7) with (1), (8) and conclude
Ux(x × y) = T (x, x × y)x − x♯ × (x × y) = T (x × x, y)x − N(x)y − T (x♯, y)x,
hence (16) since x × x = 2x♯. Next, (15) linearized, (11) and (8) immediately
imply (17). Combining this with Lemma 33.7, we can therefore conclude that
all elements of X with invertible norm are unimodular. To establish (18), we
assume N(x) ∈ k×, apply the adjoint identity (5) and obtain

N(x♯)x♯ = x♯♯♯ = N(x)2x♯. (34)

Taking adjoints again, we deduce N(x♯)2x = N(x)4x, hence N(x♯)2 = N(x)4 ∈

k× since x is unimodular. This shows that N(x♯) ∈ k×, and (18) follows from
(34). Turning to (19), we again assume that N(x) ∈ k×, replace x by x♯ in
(8), observe (18) and obtain N(x)x × (x♯ × y) = N(x♯)y + N(x)T (x, y)x♯ =
N(x)(N(x)y + T (x, y)x♯), hence (19). Now (20) follows by expanding the left-
hand side and observing (19), (10) as well as the adjoint identity (5). In (21),
we may assume that the norm of Uxy is invertible since U11 = 1. Then (20) and
the adjoint identity yield N(Uxy)Uxy = (Uxy)♯♯ = Ux♯♯y♯♯ = N(x)2N(y)Uxy, so
the assertion follows from the unimodularity of Uxy. To derive (22), we note
that x2 = Ux1 = T (x, 1)x − x♯ × 1, whence the unit identity (3) and (12) lead
to the desired conclusion. (23) follows immediately from linearizing (22) and
observing (13). Combining (23) with (13), we deduce

T (x)T (y) − T (x, y) = T (x × y) = T (x ◦ y) − 2T (x)T (y) + 3
(
T (x)T (y) − T (x, y)

)
,
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hence (24). Next, linearizing (9), we obtain (w× y)× (x× z)+ (x× y)× (w× z)+
(x×w)× (y×z) = T (x×w, y)z+T (x×w, z)y+T (x×y, z)w+T (w×y, z)x, and (7)
yields (25). Similarly, (19) and (4) imply z×(x♯×y)+x×((x×z)×y) = T (x♯, z)y+
T (z, y)x♯+T (x, y)x×z, hence the first part of (26), while the remaining one now
follows from (15). Linearizing (26) gives x× (y× (w× z))+w× (y× (x× z)) =
T (w, y)x× z+ T (x, y)w× z+ T (x×w, z)y+ T (y, z)x×w− ((x×w)× y)× z, and
after interchanging w with z, we obtain (27). Similarly, (14) implies (x × y) ×
x+ x♯×y = (T (y)S (x)+T (x)S (x, y)−T (x♯, y))1−S (x, y)x−S (x)y−T (x)x×y−
T (y)x♯, hence (28). In order to derive (29), we combine the third-order chain
rule (Exc. 12.42) with the observations of 12.15 and the equations (12.16.3),
(4) linearized, (8), (11) to obtain(

D3(N ◦ ♯)
)
(x, y) = 3N(x)N(y) + T (x♯, y)T (x, y♯) + N(x × y).

On the other hand, the third order product rule (12.17.8) (for n = 3) yields

(D3N2)(x, y) = 2N(x)N(y) + 2T (x♯, y)T (x, y♯).

Comparing and invoking (18), we indeed end up with (29). Equation (30) has
already been noted in (33.6.2). To derive (31), we expand the left-hand side
by (15) and, using (7), obtain the expression T (Uxy, z) = T (T (x, y)x − x♯ ×
y, z) = T (x, y)T (x, z)−T (x♯, y×z), which is symmetric in y, z; hence (31) holds.
Similarly, (30) yields T ({xyz},w) = T (x, y)T (z,w)+T (y, z)T (x,w)−T ((z× x)×
y,w), which by (7) remains unchanged under the substitution x ↔ y, z ↔ w.
This yields (32), while (33) follows from (23) and the fact that the right-hand
side of T (x ◦ y, z) = T (x × y, z) + T (x)T (y, z) + T (y)T (x, z) − T ((T (x)T (y) −
T (x, y))1, z) = T (x×y, z)+T (x)T (y, z)+T (y)T (z, x)+T (z)T (x, y)−T (x)T (y)T (z)
is totally symmetric in x, y, z. □

After these preparations, we are ready for the first main result of this section.

33.9 Theorem (McCrimmon [183, Thm. 1]). Let X be a cubic norm structure
over k. Then J(X), the para-quadratic algebra associated with X, having base
point 1X and U-operator given by

Uxy := TX(x, y)x − x♯ × y, (1)

is a Jordan algebra over k such that the identities

x3 − TX(x)x2 + S X(x)x − NX(x)1X = 0, (2)

x4 − TX(x)x3 + S X(x)x2 − NX(x)x = 0, (3)

Uxx♯ = NX(x)x, Uxx♯2 = NX(x)21X , (4)

hold strictly in J(X).
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Proof For J = J(X) to be a Jordan algebra we must show that the identities

U1X x = x, (5)

UUxyz = UxUyUxz, (6)

Ux{yxz} = {xyUxz} (7)

hold for all x, y, z ∈ X. Here (5) follows immediately from J being para-
quadratic (33.6). To establish (6), we abbreviate 1 := 1X , N := NX , T := TX ,
S := S X and first combine (33a.19) with (33a.7) to conclude

T (x × y, x♯ × z) = N(x)T (y, z) + T (x♯, y)T (x, z) = T
(
x, (x♯ × z) × y

)
. (8)

Next we expand the left-hand side of (6), using the definition of the U-operator
(1) and (33a.20). A short computation gives

UUxyz =
(
T (x, y)T (x, z) − T (x♯ × y, z)

)
Uxy

− T (x♯, y♯)x♯ × z + N(x)(x × y♯) × z.

Similarly, expanding the right-hand side of (6) and applying (33a.7), (33a.16),
(33a.8), we obtain

UxUyUxz =
(
T (x, y)T (x, z) − T (x♯ × y, z)

)
Uxy + N(x)T (y♯, z)x

+ N(x)T (x, z)y♯ − x♯ ×
(
y♯ × (x♯ × z)

)
.

To establish (6), we therefore have to prove

x♯ ×
(
y♯ × (x♯ × z)

)
= N(x)T (y♯, z)x + N(x)T (x, z)y♯

+ T (x♯, y♯)x♯ × z − N(x)(x × y♯) × z.

But this follows immediately from (33a.26) combined with the adjoint identity
(33a.5). Finally, we must prove (7), which is less troublesome. One simply
expands the left-hand side, using (1), (33.6.2), and applies (33a.16) to obtain

Ux{yxz} = T (x, y)Uxz +
(
T (x, y)T (x, z) − T (x♯ × y, z)

)
x

− T (x, z)x♯ × y + N(x)y × z.

Similarly, one expands the right-hand side, using (33a.19), and arrives at the
same expression. Thus J is a Jordan algebra, and it remains to verify (2), (3),
(4). Observing T (x, x) = T (x)2 − 2S (x) by (33a.13), we further obtain, using
(33a.14),

x3 = Uxx = T (x, x)x − x♯ × x

=
(
T (x)2 − 2S (x)

)
x −

(
T (x)S (x) − N(x)

)
1 + S (x)x + T (x)x♯,
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which by (33a.22) yields (2). Before dealing with (3), we turn to (4). From (1),
(33a.11) and (33a.5) we deduce Uxx♯ = T (x, x♯)x − x♯ × x♯ = 3N(x)x − 2x♯♯ =
3N(x)x − 2N(x)x, giving the first equation of (4). As to the second, we apply
the first, (33a.22), (33a.12), (33a.5) and obtain Uxx♯2 = Ux(x♯♯ + T (x♯)x♯ −
S (x♯)1) = N(x)x3 + S (x)N(x)x − T (x)N(x)x2, and (2) completes the proof of
(4).

Applying (4) and again (33a.22), we now conclude

x4 = Uxx2 = Uxx♯ + T (x)Uxx − S (x)Ux1

= N(x)x + T (x)x3 − S (x)x2,

hence (3). Strictness is clear. □

For a cubic norm structure X over k, we henceforth refer to J(X) as the
Jordan algebra associated with or corresponding to X.

33.10 Corollary (McCrimmon [183, Thm. 2]). Let X be a cubic norm struc-
ture over k and J = J(X) the Jordan algebra associated with X. An element
x ∈ X is invertible in J if and only if NX(x) is invertible in k. In this case,

x−1 = NX(x)−1x♯, (x−1)♯ = NX(x)−1x, NX(x−1) = NX(x)−1. (1)

Proof Put 1 := 1X , N := NX . If x ∈ J×, then (33a.21) implies 1 = N(1) =
N(Uxx−2) = N(x)2N(x−2), hence N(x) ∈ k×. Conversely, assume N(x) ∈ k× and
put y := N(x)−1x♯. From (33.9.4) we then deduce Uxy = x, Uxy2 = 1, hence
x ∈ J× and the first equation of (1) holds. Taking adjoints, we immediately
obtain the second. In order to prove the third, we again apply (33a.21) to obtain
N(x) = N(Uxx−1) = N(x)2N(x−1) and therefore N(x−1) = N(x)−1. □

33.11 Isotopes of cubic norm structures. Isotopes of Jordan algebras have
a counterpart on the level of cubic norm structures which we now proceed to
discuss. Let X be a cubic norm structure over k. Given an element p ∈ X that
is invertible in J := J(X) and writing p−1 for the corresponding inverse (cf.
Cor. 33.10), we claim that the k-module X(p) := X together with the base point
1X(p) := 1(p)

X ∈ X(p), the adjoint x 7→ x(♯,p) (a quadratic map X → X), and the
norm NX(p) := N(p)

X (a cubic form X(p) → k) defined respectively by

1X(p) := 1(p)
X := p−1, (1)

x(♯,p) := NX(p)Up−1 x♯ = NX(p)U−1
p x♯, (2)

NX(p) (x) := N(p)
X (x) = NX(p)NX(x) (3)

in all scalar extensions is a cubic norm structure over k, denoted by X(p) and
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called the p-isotope of X. Moreover, the (bi-)linear trace TX(p) =: T (p)
X and the

quadratic trace S X(p) =: S (p)
X of X(p) are given by

TX(p) (y, z) = T (p)
X (y, z) = TX(Upy, z), (4)

TX(p) (y) = T (p)
X (y) = TX(p, y), (5)

S X(p) (y) = S (p)
X (y) = TX(p♯, y♯) (6)

for all y, z ∈ X. Indeed, dropping the subscripts for convenience, (33.10.1)
combined with (33a.17) and Lemma 33.7 shows that X(p) is a cubic array over
k whose bilinear trace by (33.2.8), (33a.7), (1) and the gradient identity (33a.4)
has the form

T (p)(y, z) = N(p)(p−1, y)N(p)(p−1, z) − N(p)(p−1, y, z)

= N(p)2T (p−1♯, y)T (p−1♯, z) − N(p)T (p−1 × y, z)

= T (p, y)T (p, z) − T (p♯ × y, z).

Hence (4) holds, as do (5), (6). The defining conditions, (33a.3), (33a.4), (33a.5),
of a cubic norm structure are now straightforward to check, using the relation
y ×(p) z = N(p)U−1

p (y × z) for the bilinearization of (♯, p). As an example,
verifying the adjoint identity, we apply (33.10.1), (33a.20) and obtain

x(♯,p)(♯,p) = N(p)U−1
p

(
N(p)Up−1 x♯

)♯
= N(p)3U−1

p Up−1♯ x♯♯

= N(p)3U−1
p UN(p)−1 px♯♯ = N(p)U−1

p Upx♯♯

= N(p)N(x)x = N(p)(x)x.

33.12 Proposition (McCrimmon [183]). Let X be a cubic norm structure over
k.

(a) If p ∈ X is invertible in J(X), then J(X(p)) = J(X)(p) is the p-isotope of
the Jordan algebra associated with X.

(b) If p, q ∈ X are invertible in J(X), then so is Upq and (X(p))(q) = X(Upq).

Proof (a) Both algebras live on the same k-module and have the same unit
element, so it remains to show that they have the same U-operator as well.
To do so, we write U′ for the U-operator of J(X(p)), abbreviate T := TX and
obtain, combining (33a.20) with (33.11.2) and its linearization,

U′xy = T (p)(x, y)x − x(♯,p) ×(p) y = T (Upx, y)x − N(p)2U−1
p

(
(Up−1 x♯) × y

)
= T (Upx, y)x − U−1

p
(
(Up♯ x

♯) × y
)
= T (Upx, y)x − U−1

p
(
(Upx)♯ × y

)
= U−1

p
(
T (Upx, y)Upx − (Upx)♯ × y

)
= U−1

p UUp xy = U−1
p UpUxUpy = UxUpy = U(p)

x y,
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which is exactly what we had to prove.
(b) The first part follows from (33a.21) and Cor. 33.10, the rest from (a) and

a straightforward computation. □

Exercises
33.13. Regular pointed cubic forms (Springer [266], McCrimmon [183]). By a pointed
cubic form over k we mean a k-module X together with a distinguished element 1 =
1X ∈ X (the base point) and a cubic form N = NX : X → k (the norm) such that
N(1) = 1. We then define the associated (bilinear) trace of X as the symmetric bilinear
form T = TX : X × X → k given by

T (y, z) := N(1, y)N(1, z) − N(1, y, z) (y, z ∈ X).

A homomorphism of pointed cubic forms is a linear map preserving norms and base
points. A pointed cubic form X with base point 1, norm N and trace T is said to be reg-
ular if X is finitely generated projective as a k-module and T is regular as a symmetric
bilinear form, i.e., it induces an isomorphism from X onto its dual X∗ in the usual way.

Now let X be a regular pointed cubic form over k as above.

(a) Show that there is a unique map x 7→ x♯ from X to X satisfying the gradient
identity

T (x♯, y) = N(x, y) (x, y ∈ X).

Conclude that X together with 1, ♯ and N is a cubic array satisfying the unit
identity. In particular, X is a cubic norm structure if and only if the adjoint
identity holds.

(b) Let φ : X → X′ be a surjective homomorphism of pointed cubic forms and
assume X′ is finitely generated projective as a k-module. Show that X′ is regular
and φ is an isomorphism of cubic arrays.

33.14. Show that a cubic array X over k is a cubic norm structure if and only if the
identities

1 × x = T (x)1 − x, (1)

N(x, y) = T (x♯, y), (2)

x♯♯ = N(x)x, (3)

x♯ × y♯ + (x × y)♯ = T (x♯, y)y + T (x, y♯)x, (4)

x♯ × (x × y) = T (x♯, y)x + N(x)y. (5)

hold for all x, y, z ∈ X.

33.15 (Brühne [41]). Let X be a cubic norm structure over k. Show that the cubic norm
substructure of X generated by arbitrary elements x, y ∈ X is spanned as a k-module by

1, x, x♯, y, y♯, x × y, x♯ × y, x × y♯, x♯ × y♯. (1)
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34 Basic properties of cubic Jordan algebras

In this section, cubic Jordan algebras will be defined and it will be shown that
they are categorically isomorphic to cubic norm structures. We also define cu-
bic alternative algebras and clarify their connection with cubic Jordan algebras.

34.1 The concept of a cubic Jordan algebra. In analogy to the concept of
a multiplicative conic alternative algebra as in 17.4–17.7, we define a cubic
Jordan algebra over k as a Jordan k-algebra J together with a cubic form
NJ : J → k (the norm) such that the following conditions hold.

(i) 1J ∈ J is unimodular.
(ii) The norm of J permits Jordan composition in the sense that the equa-

tions

NJ(1J) = 1, NJ(Uxy) = NJ(x)2NJ(y) (1)

hold strictly in J.
(iii) For all R ∈ k-alg and all x ∈ JR, the monic cubic polynomial

mJ,x(t) := NJ(t1JR − x) ∈ R[t]

satisfies the equations

mJ,x(x) = (tmJ,x)(x) = 0.

As in the case of cubic arrays, the unimodularity condition (i) by Exc. 12.44
holds automatically if J is projective as a k-module. By definition, cubic Jordan
algebras are invariant under base change. If J′ is another cubic Jordan algebra
over k, a homomorphism φ : J → J′ of cubic Jordan algebras is defined as a
homomorphism of Jordan algebras preserving norms in the sense that NJ′ ◦φ =

NJ as polynomial laws over k. In this way we obtain the category of cubic
Jordan algebras over k, denoted by k-cujo. Note that, strictly speaking, the
objects of k-cujo are pairs (J,N) consisting of a Jordan k-algebra J and a cubic
form N : J → k such that conditions (i)–(iii) above are fulfilled. The forgetful
functor defined by (J,N) 7→ J on objects and by the identity on morphisms is
a faithful embedding from k-cujo into k-jord, the category of Jordan algebras
over k, but not a full one, as we shall see in 34.15 below. Compare with the
analogous situation for multiplicative conic alternative algebras (17.7).

In order to make condition (iii) above more explicit, we imitate the proce-
dure of 33.2 to define the linear trace of J as the linear map

TJ : J −→ k, x 7−→ TJ(x) := NJ(1J , x), (2)
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as well as the quadratic trace of J as the quadratic form

S J : J −→ k, x 7−→ S J(x) := NJ(x, 1J). (3)

Then condition (iii) above is equivalent to the strict validity of the equations

x3 − TJ(x)x2 + S J(x)x − NJ(x)1J = 0, (4)

x4 − TJ(x)x3 + S J(x)x2 − NJ(x)x = 0 (5)

in J. Note that (4) implies (5) if 2 ∈ k× since J is then a linear Jordan algebra.
Furthermore, (2), (3) combined with Euler’s differential equation imply

TJ(1J) = S J(1J) = 3. (6)

Inspired by (33a.22), we define the adjoint of J as the quadratic map ♯ =

♯J : J → J, x 7→ x♯ from J to J given by

x♯ := x2 − TJ(x)x + S J(x)1J , (7)

dependence on J being understood. The adjoint linearizes to

x × y := (x + y)♯ − x♯ − y♯ = x ◦ y − TJ(x)y − TJ(y)x + S J(x, y)1J . (8)

Combining (7) with (6), we conclude 1♯J = 1J , so the k-module J together
with the base point 1J , the adjoint ♯ and the norm NJ is a cubic array over k,
denoted by X(J). In particular, we have the bilinear trace of X(J), which we call
the bilinear trace of J, denoted by TJ : J × J → k. Summing up, we conclude
that not only the norm and adjoint but also the (bi-)linear and quadratic trace
of J and X(J) are the same.

Clearly, every homomorphism of cubic Jordan algebras preserves not only
norms but also (bi-)linear and quadratic traces. If there is no danger of con-
fusion, we will always extend the notational conventions spelled out for cubic
arrays in 33.1 to cubic Jordan algebras by writing their identity elements as 1,
their norms as N, and their (bi-)linear and quadratic traces as T, S , respectively.

Before we can proceed, we need a lemma.

34.2 Lemma. Let X be a cubic array over k such that the unit identity and the
adjoint identity hold strictly in X:

1X × x = TX(x)1X − x, x♯♯ = NX(x)x. (1)

Then

S X(x) = TX(x♯) (2)

for all x ∈ X.
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Proof Applying the second order chain and product rules to the second equa-
tion of (1), we obtain

x♯ × y♯ + (x × y)♯ = NX(x, y)y + NX(y, x)x.

Putting y = 1X and combining with the first equation of (1), we obtain

S X(x)1X + TX(x)x = TX(x♯)1X − x♯ +
(
TX(x)1X − x

)♯
= TX(x♯)1X − x♯ + TX(x)21X − TX(x)

(
TX(x)1X − x

)
+ x♯

= TX(x♯)1X + TX(x)x,

and since 1X is unimodular, the assertion follows. □

34.3 Theorem. Let J be a cubic Jordan algebra over k.

(a) The cubic array X := X(J) of 34.1 is a cubic norm structure over k such
that J = J(X).

(b) An element x of a cubic Jordan k-algebra J is invertible in J if and only if
NJ(x) is invertible in k. In this case, x−1 = NJ(x)−1x♯ and x is unimodular.

Proof We always drop the subscript “X” for convenience and then proceed
in several steps, where we try to read some of the preceding arguments back-
wards.

1◦. An element x ∈ J is invertible in J if and only if N(x) is invertible in k.
In this case, x−1 = N(x)−1x♯ and N(x−1) = N(x)−1. Indeed, assume first x ∈
J×. Since N permits Jordan composition, we obtain 1 = N(1) = N(Uxx−2) =
N(x)2N(x−2), hence N(x) ∈ k×, and N(x) = N(Uxx−1) = N(x)2N(x−1) implies
N(x−1) = N(x)−1. Before proving the converse of our assertion, assume for the
time being that x is arbitrary. Combining (34.1.5) with (34.1.7) we obtain

Uxx♯ = N(x)x, (1)

while Thm. 30.1 and (34.1.4) yield UxUx♯ = N(x)21J , hence

Uxx♯2 = N(x)21. (2)

Now suppose N(x) ∈ k×. Then (1) and (2) show that y := N(x)−1x♯ satisfies
Uxy = x, Uxy2 = 1, hence x ∈ J× and y = x−1. In particular, we have thus
proved part (b) of the theorem.
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2◦. The following identities hold strictly in J.

1 × x = T (x)1 − x, (3)

x♯♯ = N(x)x, (4)

N(x♯) = N(x)2, (5)

S (x) = T (x♯), (6)

{xx♯y} = 2N(x)y = {x♯xy}, (7)

Ux(x × y) = N(x, y)x − N(x)y, (8)

(Uxy)♯ = Ux♯y
♯, (9)

N(Uxy,Uxz) = N(x)2N(y, z), (10)

N(x)Uxy = N(x♯, y)x − N(x)x♯ × y. (11)

We put y = 1 in (34.1.8) and obtain 1 × x = 2x − T (x)1 − 3x + S (x, 1)1, which
implies (3) since S (x, 1) = T (x)T (1) − T (x, 1) = 2T (x) by (33.2.10) (34.1.6).
Turning to (4), (5), Prop. 12.24 and 1◦ allow us to assume that x is invertible.
Then 1◦ implies x♯♯ = (N(x)x−1)♯ = N(x)2(x−1)♯ = N(x)2N(x−1)(x−1)−1 =

N(x)x, hence (4). But then (1) implies N(x)4 = N(N(x)x) = N(Uxx♯) =
N(x)2N(x♯), and (5) drops out as well. Identity (6) follows from (3), (4) and
Lemma 34.2. For the first part of (7) we combine (34.1.7) with (30.4.4) and
(34.1.4) and obtain

{xx♯y} = Vx,x♯y =
(
Vx,x2 − T (x)Vx,x + S (x)Vx

)
y

=
(
Vx3 − T (x)Vx2 + S (x)Vx

)
y =

(
x3 − T (x)x2 + S (x)x

)
◦ y

= N(x)1 ◦ y = 2N(x)y,

as desired. The second equation follows analogously. In order to derive (8), we
differentiate (1) in the direction y, which yields N(x, y)x + N(x)y = Ux,yx♯ +
Ux(x × y) = {xx♯y} + Ux(x × y), and (8) follows from (7). In (9), we apply
Prop. 12.24 to the polynomial law g : J× J → Endk(J) given by g(x, y) := Uxy.
Hence we may assume that x and y are both invertible. Then so is Uxy by
Prop. 31.3, and 1◦ combined with (31.3.2) implies

(Uxy)♯ = N(Uxy)(Uxy)−1 = N(x)2N(y)Ux−1 y−1 = UN(x)x−1 N(y)y−1 = Ux♯y
♯.

Equation (10) follows by fixing x and differentiating (34.1.1) at y in the di-
rection z. Finally, in order to derive (11), we replace x by x♯ in (1) and obtain
N(x)Ux♯ x = N(x)2x♯, hence Ux♯ x = N(x)x♯ first for x invertible and then in full
generality. Differentiating in the direction y, we conclude N(x, y)x♯ + N(x)x ×
y = Ux♯,x×yx + Ux♯y = {x♯x(x × y)} + Ux♯y = 2N(x)x × y + Ux♯y by (7). Thus

Ux♯y = N(x, y)x♯ − N(x)x × y.
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Here we replace x by x♯ to deduce N(x)2Uxy = N(x)N(x♯, y)x − N(x)2x♯ × y,
which yields (11) first for x ∈ J× and then in full generality.

3◦. For p ∈ J×, the k-module J together with the base point 1(p) := p−1, the
adjoint x 7→ x(♯,p) := N(p)Up−1 x♯ and the norm N(p) := N(p)N : J → k is a
cubic array X(p) whose linear and quadratic traces are given by

T (p)(x) = N(p)N(p−1, x), S (p)(x) = N(x, p♯). (12)

Moreover, X(p) strictly satisfies the unit and adjoint identities:

1(p) ×(p) x = T (p)(x)1(p) − x, x(♯,p)(♯,p) = N(p)(x)x, (13)

where ×(p) stands for the bilinearized adjoint of X(p). The straightforward veri-
fication that X(p) is a cubic array satisfying (12) is left to the reader. It therefore
remains to check (13). First of all, 1◦ and (8), (12) imply

1(p) ×(p) x = N(p)Up−1 (p−1 × x) = N(p)N(p−1, x)p−1 − N(p)N(p−1)x

= T (p)(x)1(p) − x,

while 1◦, (9), (4), (34.1.1) yield

x(♯,p)(♯,p) =
(
N(p)Up−1 x♯

)(♯,p)
= N(p)Up−1

((
N(p)Up−1 x♯

)♯)
= N(p)Up−1

((
N(p)−1Up♯ x

♯)♯) = N(p)−1Up−1
(
(Upx)♯♯

)
= N(p)−1U−1

p
(
N(Upx)Upx

)
= N(p)N(x)x = N(p)(x)x,

as claimed.

4◦. We can now show that X is a cubic norm structure. In view of (3), (4),
we only have to verify the gradient identity. To this end, let p ∈ J×. Then 3◦

and (34.2.2) imply S (p)(x) = T (p)(x(♯,p)). But S (p)(x) = N(x, p♯) by (12), while
(12) and (10) imply

T (p)(x(♯,p)) = N(p)N
(
p−1,N(p)Up−1 x♯)

)
= N(p)2N(Up−1 p,Up−1 x♯) = N(p, x♯).

Thus N(x, p♯) = N(p, x♯), and in view of Prop. 12.24, we have shown that the
identity

N(x, y♯) = N(y, x♯)

holds strictly in J. Differentiating in the direction y, we conclude

N(x, y × z) = N(y, z, x♯).
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Putting z = 1 and applying (34.1.3), (3), (33.1.10), (6), we therefore obtain

T (y)S (x) − N(x, y) = T (y)N(x, 1) − N(x, y) = N(x,T (y)1 − y) = N(x, y × 1)

= N(y, 1, x♯) = N(x♯, y, 1) = S (x♯, y) = T (x♯)T (y) − T (x♯, y)

= S (x)T (y) − T (x♯, y),

and the gradient identity is proved. It remains to show that J = J(X) is the Jor-
dan algebra associated with X. In (11), the gradient identity implies N(x♯, y) =
T (x♯♯, y) = N(x)T (x, y), and the formula Uxy = T (x, y)x − x♯ × y drops out for
x invertible, hence in full generality. But this means J = J(X).

The second part of (b) now follows from Lemma 33.7 and (33a.17). □

34.4 Remark. In case J is finitely generated projective as a k-module, part (b)
of Thm. 34.3 may also be derived as follows: NJ(x) is invertible in k, hence
unimodular, which implies that so is x, by Exc. 12.37.

34.5 Towards an isomorphism of categories. Let J be a cubic Jordan alge-
bra over k. Then Thm. 34.3 (a) shows J = J(X(J)). Conversely, let X be a
cubic norm structure over k. By Thm. 33.9 combined with (33a.21), J(X), al-
ways considered together with the norm of X: NJ(X) = NX , is a cubic Jordan
algebra, and (33a.22) implies X = X(J(X)). Now let φ : X → X′ be a homo-
morphism of cubic norm structures. Since φ preserves not only base points,
adjoints and norms but also linear and quadratic traces, it is a homomorphism
φ : J(X) → J(X′) of cubic Jordan algebras. Conversely let φ : J → J′ be a
homomorphism of cubic Jordan algebras. Since φ preserves units, norms, lin-
ear and quadratic traces, it follows from (34.1.7) that it preserves adjoints as
well. Thus φ : X(J) → X(J′) is a homomorphism of cubic norm structures.
Summing up, we have shown the following result.

34.6 Corollary. The formalism set up in 34.5 yields an isomorphism of cate-
gories between cubic norm structures and cubic Jordan algebras over k. □

34.7 Convention. Cor. 34.6 may be used to identify cubic norm structures and
cubic Jordan algebras over k canonically. Thus the two terms will sometimes
be employed interchangeably.

34.8 Example. Isotopes of cubic Jordan algebras are cubic Jordan algebras.
More precisely, let J be a cubic Jordan k-algebra with norm NJ and suppose
J′ is an isotope of J, so J′ = J(p) for some invertible element p ∈ J. Then
J = J(X) for X = X(J) (Thm. 34.3 (a)), and we conclude NJ(p) ∈ k× from
Thm. 34.3 (b). Now Prop. 33.12 (a) implies that J′ = J(X(p)) is a cubic Jordan
algebra with norm NJ′ = NJ(p)NJ .
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34.9 Examples (Inner ideals). Let J be a cubic Jordan algebra over a ring k.

(a) If I is a k-submodule of J such that x♯ = 0 for every x ∈ I, then I is an
inner ideal. Indeed, the hypothesis on x implies that Uxy = T (x, y)x ∈ kx ⊆ I
for all y ∈ J.

(b) If x ∈ J satisfies x♯ = 0, then (x × J)♯ is an inner ideal contained in kx.
Indeed, for y ∈ J, we have

(x × y)♯ = T (x, y♯)x (1)

by (33a.10), verifying the second claim. The first claim follows immediately
from the formula (33.9.1).

(c) Consider the special case J = Mat3(F)(+) for a field F. An element x ∈ J
has x♯ = 0 if and only if it has rank ≤ 1 as a matrix, therefore a nonzero element
x ∈ J has x♯ = 0 if and only if x has rank 1 as a matrix. See Exc. 40.15 and
41.28 below for generalizations.

34.10 Semi-linear homomorphisms of cubic gadgets. Just as semi-linear ho-
momorphisms play a useful role in, e.g., associative algebras, they are also
relevant in the context of cubic Jordan algebras. Although they will be used
only in a few exercises below or much later in the main text of the book, we
find it convenient to present the relevant definitions already at this stage. Let
σ : K → K′ be a morphism in k-alg.

(a) If X (resp. X′) are cubic arrays over K (resp. K′), a map φ : X → X′ is said
to be a semi-linear homomorphism of cubic arrays if the following conditions
are fulfilled.

(i) φ is σ-semi-linear.
(ii) φ(1X) = 1X′ .
(iii) The σ-semi-linear polynomial squares

X
φ
//

♯X

��

X′

♯X′

��
X

φ
// X′

(1)

and

X
φ
//

NX

��

X′

NX′

��
K

σ
// K′

(2)

commute in the sense of 12.28.
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Note that this definition in particular applies to cubic norm structures.

(b) If J (resp. J′) are cubic Jordan algebras over K (resp. K′), a map φ : J → J′

is a σ-semi-linear homomorphism of cubic Jordan algebras if the following
conditions are fulfilled.

(i) φ is σ-semi-linear.
(ii) φ : J → J′ is a homomorphism of Jordan algebras over k.
(iii) The σ-semi-linear polynomial square

J
φ
//

NJ

��

J′

NJ′

��
K

σ
// K′

(3)

is commutative.

Note that (iii) amounts to

k J
kφ
//

k(NJ )

��

k J′

k(NJ′ )
��

kK
kσ
// kK′

(4)

being a commutative diagram of polynomial laws over k. Combining (4) with
the differential calculus 12.17, Exc. 12.46, (33.2.6), (33.2.7) and (33.2.10), we
conclude

NJ′
(
φ(x), φ(y)

)
= σ

(
NJ(x, y)

)
, TJ′

(
φ(x)

)
= σ

(
TJ(x)

)
, (5)

S J′
(
φ(x)

)
= σ

(
S J(x)

)
, TJ′

(
φ(x), φ(y

)
= σ

(
TJ(x, y)

)
for all x, y ∈ J, while (34.1.7) and (5) imply

φ(x♯J ) = φ(x)♯J′ (6)

for all x ∈ J.

(c) Let X (resp. X′) be a cubic norm structure over K (resp. K′). By (5), (6),
a map φ : X → X′ is a σ-semi-linear homomorphism of cubic norm structures
if and only if φ : J(X) → J(X′) is a σ-semi-linear homomorphism of cubic
Jordan algebras.

(d) Let X be a cubic array over k and σ : k → K the unit morphism of K ∈
k-alg. Then the σ-semi-linear map canX,K : X → XK is, in fact, a σ-semi-
linear homomorphism of cubic arrays since (1), (2) follow immediately from
(12.29.2) for M := X.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

336 Cubic Jordan algebras

34.11 Cubic alternative algebras. By a cubic alternative algebra over k we
mean a unital alternative algebra A over k together with a cubic form NA : A→
k (the norm) such that the following conditions are fulfilled.

(i) 1A ∈ A is unimodular.
(ii) The norm of A permits composition: the equations

NA(1A) = 1, NA(xy) = NA(x)NA(y) (1)

hold strictly in A.
(iii) For all R ∈ k-alg and all x ∈ AR, the monic polynomial

mA,x(t) = NA(t1AR − x) ∈ R[t]

annihilates x:

mA,x(x) = 0.

As in the case of cubic Jordan algebras, we then define the linear and the
quadratic trace of A by

TA : A −→ k, x 7−→ TA(x) := NA(1A, x), (2)

S A : A −→ k, x 7−→ S A(x) := NA(x, 1A), (3)

respectively. Condition (iii) may then be rephrased by saying that the equation

x3 − TA(x)x2 + S A(x)x − NA(x)1A = 0 (4)

holds strictly in A. If A′ is another cubic alternative k-algebra, a homomorphism
φ : A → A′ of cubic alternative k-algebras is defined as a homomorphism of
unital k-algebras that preserves norms: NA′ ◦φ = NA as polynomial laws over k.
In this way we obtain the category of cubic alternative algebras over k, denoted
by k-cual. Strictly speaking, the objects of k-cual are pairs (A,N) consisting
of a unital alternative k-algebra A and a cubic form N : A → k (the norm)
such that the conditions (i)–(iii) above are fulfilled. Ignoring the norm, i.e.,
passing from (A,N) to A and acting as the identity on morphisms, we obtain
the forgetful functor from k-cual to k-alt1, which is obviously faithful but, as
will be seen in 34.15 below, is not full.

If A in the preceding discussion is associative, then we speak of a cubic ass-
ociative algebra over k. Cubic associative k-algebras may and always will be
viewed canonically as a full subcategory, denoted by k-cuas, of cubic alterna-
tive k-algebras. Similar conventions apply to commutative associative algebras.

By definition cubic alternative algebras are stable under base change. More-
over, combining Exc. 17.8 with Exc. 34.24 below, it follows that condition (ii)
above does not follow from (i) and (iii); also, the norm of a cubic alternative
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algebra need not be uniquely determined by the algebra structure alone. For ex-
amples of cubic alternative algebras that are not associative, see Exc. 34.24 (b).

34.12 Proposition. Let A be a cubic alternative algebra over k. Then A(+)

together with the norm NA(+) := NA is a cubic Jordan algebra over k whose
linear and quadratic traces agree with those of A: TA(+) = TA, S A(+) = S A.
Moreover, the bilinear trace of A(+) is given by TA(+) (x, y) = TA(xy) for all
x, y ∈ A.

Proof Equation (34.1.4) agrees with (34.11.4), while (34.1.5) follows after
multiplying (34.11.4) by x in A. Moreover, from (34.11.1) we deduce that
N := NA = NA(+) permits Jordan composition: N(Uxy) = N(xyx) = N(x)2N(y)
holds strictly in J := A(+). Thus J together with N is a cubic Jordan alge-
bra whose linear and quadratic traces by definition are the same as those of
A. With T := TA (the linear trace of A, hence of J) and T ′ := TJ (the bi-
linear trace of J), it remains to show T ′(x, y) = T (xy) for all x, y ∈ A. By
Prop. 12.24, we may assume p := y ∈ A×. From (33.11.5) combined with
Prop. 33.12 and Thm. 34.3 (a) we therefore conclude that J(p) is a cubic Jordan
algebra with linear trace T (p) given by T (p)(x) = T ′(x, p) for all x ∈ A. On the
other hand, since NA permits composition, Rp : J(p) → J by 31.13 is an iso-
morphism of cubic Jordan algebras. As such it preserves linear traces, which
implies T (xp) = T (p)(x) = T ′(x, p), as claimed. □

34.13 The bilinear trace revisited. Let A be a cubic alternative algebra over k.
Inspired by the preceding proposition, we define the bilinear trace of A, under
the same notation as the linear one, as the bilinear form

TA : A × A −→ k, (x, y) 7−→ TA(x, y) := TA(xy).

It is the same as the bilinear trace of the cubic Jordan algebra A(+) and, in
particular, a symmetric bilinear form.

34.14 Example. The base ring carries the structure of a cubic commutative
associative k-algebra through the cubic form Nk : k → k given by

Nk(r) := r3 (r ∈ R, R ∈ k-alg). (1)

The linear and quadratic traces of k as well as its adjoint have the form

Tk(α) = 3α, S k(α) = 3α2, α♯ = α2 (α ∈ k). (2)

In view of all this, we can now speak of k(+) as a cubic Jordan algebra over k. In
fact, since the norm of a cubic Jordan algebra J sends 1J to 1 ∈ k, by (34.1.1),
Nk(+) := Nk as defined in (1) is the unique cubic form making k(+) a cubic
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Jordan algebra. It follows that k(+) is the initial object in the category k-cujo,
so every cubic Jordan k-algebra J allows a unique homomorphism k(+) → J of
cubic Jordan algebras, namely the map α 7→ α1J .

We remark that k(+) is regular (as a cubic Jordan algebra) if and only if 3 is
invertible in k.

34.15 Cubic structures on the split quadratic étale algebra. Let C := k×k be
the split quadratic étale k-algebra as in 21.19. Define a cubic form N : C → k
by

N
(
(r1, r2)

)
:= r1r2

2 (1)

for R ∈ k-alg and r1, r2 ∈ R. If also s1, s2 ∈ R, then

N
(
(r1, r2), (s1, s2)

)
= s1r2

2 + 2r1r2s2,

hence

T
(
(r1, r2)

)
= r1 + 2r2, S

(
(r1, r2)

)
= 2r1r2 + r2

2. (2)

It follows immediately from (1) that N permits composition. Also, a straight-
forward verification shows

x3 − T (x)x2 + S (x)x − N(x)1C = 0

for x = (r1, r2) ∈ CR = R × R. Thus C together with the norm N is a cubic
commutative associative algebra over k, which we denote by

(k × k)cub.

Note that

x♯ = (r2
2, r1r2) (3)

for x = (r1, r2) ∈ CR = R×R, which follows immediately from (2) and (33a.22),
applied to the cubic Jordan algebra C(+).

On the other hand, we may define a cubic form N′ : C → k by

N′
(
(r1, r2)

)
:= r2

1r2

for R ∈ k-alg and r1, r2 ∈ R. Arguing as before, it follows that C together with
the norm N′ is a cubic commutative associative algebra over k as well, which
we denote by

(k × k)op
cub.

Thus the algebra structure alone of a cubic alternative algebra will in general
not determine its norm uniquely, even if the underlying module is free of finite
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rank. Returning to our example, the conjugation of C is an automorphism of C
but is not an automorphism of (k × k)cub nor one of (k × k)op

cub; in fact, it is an
isomorphism from the former to the latter:

ιk×k : (k × k)cub
∼
−→ (k × k)op

cub.

In particular, the forgetful functor k-cual → k-alt1 is not a full embedding,
and neither is the forgetful functor k-cujo → k-jord, as may be seen from the
present example by passing from C to C(+).

34.16 Example: 3-by-3 matrices. Mat3(k) is a cubic associative k-algebra with
norm (resp. linear trace) given by the ordinary determinant (resp. trace) of
matrices since det(13, x) = tr(x) for all x ∈ Mat3(k). On the other hand, the
bilinear trace of Mat3(k)(+), viewed as a cubic Jordan algebra, may be read
off from Prop. 34.12: T (x, y) = tr(xy). In particular, the cubic Jordan matrix
algebra Mat3(k)(+) is regular. The adjoint of Mat3(k)(+) is the usual adjoint of
matrices, by its definition (34.1.7).

34.17 Examples: cubic étale algebras. Let E be a unital commutative ass-
ociative k-algebra that is finitely generated projective of rank 3 as a k-module
and finite étale (in the sense of 19.19) as an algebra over k. Then N(x) :=
det(Lx) for x in any scalar extension of E, where L stands for the left multi-
plication of E, defines a cubic form N = NE : E → k which converts E into
a cubic commutative associative k-algebra; we speak of a cubic étale algebra
in this context. The linear trace of E is then given by T (x) = tr(Lx), while
the bilinear one by Prop. 34.12 has the form T (x, y) = tr(Lxy). It follows from
19.19, therefore, that E(+), viewed as a cubic Jordan algebra over k, is regular.
By abuse of language, we often say a Jordan algebra is cubic étale if it is cubic
and, as such, isomorphic to E(+), for some cubic étale algebra E.

A particularly simple case is that of the split cubic étale k-algebra defined
by E = k×k×k as a direct product of ideals, with identity element 1E = (1, 1, 1)
and norm N = NE : E → k given by

N(x) = ξ1ξ2ξ3 (1)

for x = (ξ1, ξ2, ξ3) ∈ ER, R ∈ k-alg. The linear and quadratic traces of E have
the form

T (x) = ξ1 + ξ2 + ξ3, (2)

S (x) = ξ2ξ3 + ξ3ξ1 + ξ1ξ2, (3)
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while the adjoint and the bilinear trace of E(+) are given by

x♯ = (ξ2ξ3, ξ3ξ1, ξ1ξ2), (4)

T (x, y) = ξ1η1 + ξ2η2 + ξ3η3 (5)

for y = (η1, η2, η3) ∈ ER. It is sometimes convenient to identify E canonically
with the algebra of 3-by-3 diagonal matrices over k:

E = Diag3(k) = {diag(γ1, γ2, γ3) | γ1, γ2, γ3 ∈ k}, (6)

viewed as a cubic commutative associative subalgebra of Mat3(k). For

Γ = diag(γ1, γ2, γ3) ∈ Diag3(k)

we have

N(Γ) = det(Γ) = γ1γ2γ3, (7)

T (Γ) = tr(Γ) = γ1 + γ2 + γ3, (8)

S (Γ) = γ2γ3 + γ3γ1 + γ1γ2, (9)

Γ♯ = diag(γ2γ3, γ3γ1, γ1γ2). (10)

Exercises
34.18. Let φ : J → J′ be a k-linear map of cubic Jordan algebras over k. Prove that φ is

(a) a homomorphism of cubic Jordan algebras if it preserves unit elements and
adjoints,

(b) an isomorphism of cubic Jordan algebras if J is regular, J′ is finitely gener-
ated projective as a k-module and φ is surjective preserving unit elements and
norms.

34.19. Traceless cubic Jordan algebras. Let J be a cubic Jordan algebra over k which
is traceless in the sense that its linear trace vanishes identically. Show 3 = 0 in k and
that J, viewed as a linear Jordan algebra, is a cubic commutative alternative k-algebra.

34.20. Rational cubic norm structures (Tits-Weiss [283], Mühlherr-Weiss [200]). The
following exercise characterizes cubic norm structures in terms of conditions that avoid
scalar extensions. By a rational cubic norm structure over k we mean a k-module X
together with

• a distinguished element 1 ∈ X (the base point),
• a map X → X, x 7→ x♯ (the adjoint),
• a bilinear map X × X → X, (x, y) 7→ x × y (the bilinearized adjoint),
• a symmetric bilinear form T : X × X → k (the bilinear trace),
• a map N : X → k (the norm)

such that the following conditions are fulfilled.

(i) 1 ∈ X is unimodular.
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(ii) The following equations hold for all α ∈ k and all x, y, z ∈ X.

(αx)♯ = α2 x♯, (1)

N(αx) = α3N(x), (2)

(x + y)♯ = x♯ + x × y + y♯, (3)

N(x + y) = N(x) + T (x♯, y) + T (x, y♯) + N(y), (4)

T (x♯, x) = 3N(x), (5)

x♯♯ = N(x)x, (6)

x♯ × y♯ + (x × y)♯ = T (x♯, y)y + T (x, y♯)x, (7)

x♯ × (x × y) = N(x)y + T (x♯, y)x, (8)

1♯ = 1, (9)
1 × y = T (1, y)1 − y. (10)

A homomorphism of rational cubic norm structures over k is defined as a linear map
preserving base points, (bilinearized) adjoints, traces and norms in the obvious sense.
In this way we obtain the category of rational cubic norm structures over k, denoted by
k-racuno. Show for a rational cubic norm structure X over k, with 1, ♯,×,T,N as above,
that x 7→ x♯ is a quadratic map and that there exists a unique cubic form Ñ : X → k
which makes the k-module X together with 1, ♯, Ñ a cubic norm structure over k, written
as X̃, having bilinear trace T and satisfying Ñk = N. Conclude that the assignment
X 7→ X̃ on objects and the identity on morphisms yields an isomorphism of categories
from k-racuno to k-cuno.
Remark. What we call a rational cubic norm structure is called a cubic norm structure
in [283, (15.15)] and [201, 4.1.1]. Moreover, in addition to the identities listed in the
present exercise, both sources require the validity of the formula T (x×y, z) = T (x, y×z).
As our solution will show, however, this formula follows from the other identities we
have displayed.

34.21. Cubic ideals. In this exercise, we extend the notion of a conic ideal as defined
in Exc. 16.24 to the setting of cubic Jordan algebras. Let J be a cubic Jordan algebra
over k. By a cubic ideal in J we mean a pair (a, I) consisting of an ideal a ⊆ k and an
ideal I ⊆ J such that the following conditions are fulfilled.

(i) aJ ⊆ I.
(ii) TJ(x, y),TJ(x♯, y),NJ(x) ∈ a for all x ∈ I, y ∈ J.

A cubic ideal (a, I) in J is said to be separated if

(iii) there exists a k-linear map λ : J → k/a satisfying

λ(1J) = 1k/a, λ(I) = {0}. (1)

(a) Let a ⊆ k be an ideal and I ⊆ J a k-submodule such that conditions (i), (ii) above
are fulfilled. Show that (a, I) is a cubic ideal in J if and only if the relation

(iv) I♯ + I × J ⊆ I
holds.

(b) Let σ : K → K′ be a morphism in k-alg, J1 (resp. J′1) a cubic Jordan algebra over
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K (resp. K′) and φ : J1 → J′1 a σ-semi-linear homomorphism of cubic Jordan algebras
in the sense of 34.10. Prove that

Ker(σ, φ) :=
(
Ker(σ),Ker(φ)

)
is a cubic ideal in J1, and even a separated one if σ is surjective.

(c) Conversely, let (a, I) be a separated cubic ideal in J. Write σ : k → k0 := k/a for
the canonical projection and prove that the “abstract” Jordan algebra J0 := J/I over k
carries a unique cubic Jordan algebra structure over k0 such that the canonical projection
π : J → J0 is a σ-semi-linear homomorphism of cubic Jordan algebras.

(d) Prove that a cubic ideal in J is separated if the linear trace of J is surjective.

(e) Show for every ideal a ⊆ k that (a, aJ) is a separated cubic ideal in J, the corre-
sponding cubic Jordan algebra J0 over k0 defined in (c) being the base change of J from
k to k0. Conversely, can every ideal of J be extended to a cubic one?

(f) Let a ⊆ k (resp. I ⊆ J) be an ideal in k (resp. a k-submodule of J) such that
conditions (i), (iii), (iv) and

(v) NJ(x) ∈ a for all x ∈ J

are fulfilled. Show that (a, I) is a separated cubic ideal in J.

34.22. Let σ : K → K′ be a morphism in k-alg and view K′ as a K-algebra by means
of σ.

(a) Prove for cubic arrays X over K and X′ over K′ that the assignment φ′ 7→ φ′ ◦
canX,K′ , where canX,K′ : X → XK′ is the natural map of 9.2, defines a bijection
from the set of homomorphisms XK′ → X′ of cubic arrays over K′ onto the set
of σ-semi-linear homomorphisms X → X′ of cubic arrays.

(b) Let X (resp. X′) be a cubic norm structure over K (resp. K′). Deduce from
(a) that a map φ : X → X′ is a σ-semi-linear homomorphism of cubic norm
structures if and only if φ is σ-semi-linear, sends 1X to 1X′ , and makes

X
φ
//

♯X

��

X′

♯X′

��
X

φ
// X′

(1)

a commutative diagram of set maps.

34.23 (Petersson-Racine [224], Loos [174]). Let J be a cubic Jordan algebra over k.
Prove that an element x ∈ J is nilpotent if and only if T (x), S (x),N(x) ∈ k are nilpotent.
Conclude that the nil radical of J (Exc. 28.20) can be described as

Nil(J) = {x ∈ J | ∀y ∈ J : T (x, y),T (x♯, y),N(x) ∈ Nil(k)}, (1)
Nil(J) = {x ∈ J | ∀y ∈ J : T (x, y),N(x) ∈ Nil(k)} (if 2 ∈ k×), (2)

Nil(J) = {x ∈ J | ∀y ∈ J : T (x, y),T (x♯, y) ∈ Nil(k)} (if 3 ∈ k×), (3)
Nil(J) = {x ∈ J | ∀y ∈ J : T (x, y) ∈ Nil(k)} (if 6 ∈ k×). (4)
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34.24. In this exercise, cubic Jordan (resp. alternative) algebras will be constructed out
of Jordan algebras of Clifford type (resp. out of conic alternative algebras).

(a) Let (M, q, e) be a pointed quadratic module with trace t and conjugation u 7→ ū
over k, and let J := J(M, q, e) be the corresponding Jordan algebra of Clifford
type. Show that

Ĵ := k(+) × J

as a direct product of ideals in the category of para-quadratic k-algebras is a
cubic Jordan algebra over k, with norm N : Ĵ → k given by

N
(
(r, u)

)
:= rq(u) (R ∈ k-alg, r ∈ R, u ∈ JR) (1)

Show further that the (bi-)linear and quadratic traces of Ĵ as well as its adjoint
have the form

T
(
(α, u), (β, v)

)
= αβ + q(u, v̄), (2)

T
(
(α, u)

)
= α + t(u), (3)

S
(
(α, u)

)
= αt(u) + q(u), (4)

(α, u)♯ =
(
q(u), αū

)
, (5)

(α, u) × (β, v) =
(
q(u, v), αv̄ + βū

)
(6)

for all α, β ∈ k, u, v ∈ J.
(b) Let C be a conic alternative algebra over k. Show that

Cub(C) := Ĉ := k ×C

as a direct product of ideals is a cubic alternative k-algebra if and only if C is
multiplicative. In this case, norm, trace and quadratic trace of Ĉ are given by
(1), (3), (4), respectively, with q systematically replaced by nC . Show further
that Ĉ arises from C by adjoining a unit element. Finally, explain the connection
of this exercise with Example 34.15.

34.25. Let F be a field of characteristic 2. Every quadratic étale F-algebra is of the
form K := F[t]/(t2 + t + β) for some β ∈ F, as recalled in 19.19(iv). Using the notation
[a, b] to denote the regular 2-dimensional quadratic form (x, y) 7→ ax2 + xy+by2 on F2,
we have nK � [1, β]. Prove:

(a) For E := F × K and J := E(+), S J � ⟨1⟩quad ⊥ nK .
(b) The restriction of S J to Ker(TJ) is isomorphic to [1, β + 1].

Remark. The results of [72, p. 49] show that S J � ⟨1⟩quad ⊥ h. In particular, the isomor-
phism class of the quadratic form does not depend on the choice of β (equivalently, K).
On the other hand, the isomorphism class of the restriction of S J to Ker TJ appearing
in (c) does depend on the choice of β, as can be seen by computing the Arf invariant of
[1, β + 1].

34.26. Let F be a field of characteristic , 2. Every quadratic étale F-algebra is of the
form K := F[t]/(t2 − β) for some β ∈ F×, as recalled in 19.19(v), and nK � ⟨1,−β⟩quad.
Prove:

(a) For E := F × K and J := E(+), S J � ⟨−β⟩quad ⊥ h.
(b) The restriction of S J to Ker(TJ) is isomorphic to ⟨−3,−β⟩quad.
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(c) If K is the split algebra F × F, then S 0
J � ⟨−1⟩ ⊗ [1, 1].

Remark. Note in (c) that when char(F) = 2, then β = 0 in the notation of Exc. 34.25,
so part (b) of that exercise says S 0

J � [1, 1]. That is, the expression for S 0
J provided in

(c) of this exercise is valid regardless of char(F).

Remark. The preceding two exercises are closely related to the results of [228, §3].

34.27. Cubic norm structures supported by pointed quadratic modules. Let (M, q, e)
be a pointed quadratic module over k with trace t and conjugation x 7→ x̄. Assume the
k-module M is projective and show that the following conditions are equivalent.

(i) There exists a cubic norm structure X over k such that J(X) = J(M, q, e) as
abstract Jordan algebras.

(ii) There exists a linear form λ : M → k such that λ(e) = 1 and

q(x) = λ(x)λ(x̄) (1)

for all x ∈ M.

If in this case X = (M, e, ♯,N) satisfies (i), then λ as in (ii) may be so chosen that, writing
T (resp. S ) for the (bi-)linear (resp. quadratic) trace of X, the following identities hold
strictly.

t(x) = λ(x) + λ(x̄), (2)

x♯ = λ(x)x̄, (3)

N(x) = λ(x)2λ(x̄), (4)
T (x) = 2λ(x) + λ(x̄), (5)

S (x) = λ(x)2 + 2λ(x)λ(x̄), (6)
T (x, y) = 2λ(x)λ(y) + λ(x̄)λ(ȳ). (7)

Moreover, the nil radical of J can be described as

Nil(J) = {x ∈ J | x is nilpotent} = {x ∈ J | λ(x), λ(x̄) ∈ k are nilpotent}. (8)

Finally, if (M, q, e) is a pointed quadratic space of rank r > 1 over k, then (i), (ii) are
also equivalent to

(iii) J(M, q, e) � (k × k)(+)
cub as abstract Jordan algebras.

In particular, for a quadratic étale k-algebra R to admit a cubic norm structure X over k
having J(X) = R(+) as abstract Jordan algebras it is necessary and sufficient that R be
split.

34.28. Cubic norm pseudo-structures (Petersson-Racine [224]). In this exercise, we
consider a family of objects somewhat more general than cubic norm structures. By a
cubic norm pseudo-structure over k we mean a k-module X together with an element
1 ∈ X, a quadratic map x 7→ x♯ from X to X and a cubic form N : X → k such that
all conditions of 33.1 and 33.4 hold, with the possible exception of the base point 1
being unimodular. As in 33.2, we can then speak of the (bi-)linear and the quadratic
trace of X. Similarly, by a rational cubic norm pseudo-structure over k, we mean a k-
module X together with data 1, ♯,×,T,N as in Exc. 34.20 such that equations (1)–(10)
of that exercise hold for all α ∈ k, x, y, z ∈ X but the base point 1 ∈ X may fail to be
unimodular.
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(a) Show for a rational cubic norm pseudo-structure X over k that there exists a
unique cubic form Ñ : X → k making X together with base point and adjoint a
cubic norm pseudo-structure.

(b) Let V,W be vector spaces over a field F and suppose V is finite-dimensional,
with basis (e1, . . . , en). Given a quadratic map v 7→ v♯ from V to V , with bilin-
earization (v, v′) 7→ v × v′, a symmetric bilinear map σ : V × V → W and
arbitrary elements w1, . . . ,wn ∈ W, show that the following conditions are
equivalent.

(i) There exists a homogeneous polynomial law µ : V → W of degree 3
such that µ(ei) = wi for 1 ≤ i ≤ n and µ(v, v′) = σ(v♯, v′) holds strictly
in V .

(ii) σ(e♯i , ei) = 3wi for 1 ≤ i ≤ n and the trilinear map

V × V × V −→ (v1, v2, v3) 7−→ σ(v1 × v2, v3),

is totally symmetric.
In this case, µ is unique.

(c) Use (a), (b) to give an example of a cubic norm pseudo-structure X such that
the relation N(x♯) = N(x)2 does not always hold and the bilinear trace of X is
different from zero. (Hint: The proof of [224, Thm. 2.10] contains a gap that
should be filled by means of (a).)

35 Building up cubic norm structures

In this rather technical section, we develop some basic tools for constructing a
cubic norm structure out of a cubic norm substructure that will be used espe-
cially in 37.13, 38.7, and many places in Chapter VII. At that extremely coarse
level of detail, this section might be viewed as an analog for cubic Jordan alge-
bras of the construction of composition algebras from ternary hermitian spaces
in section 21. The construction here is connected with Springer’s approach
to twisted compositions as in Springer [267, p. 95], Springer-Veldkamp [270,
6.5], Knus-Merkurjev-Rost-Tignol [160, §38A, p. 527]) (where k is a field of
characteristic not 2) or Petersson-Racine [225, (3.1)] (with a sign change and
X0 coming from a cubic étale k-algebra).

Throughout this section, we fix an arbitrary commutative ring k and a cubic
norm structure X over k, with base point 1 = 1X , adjoint x 7→ x♯, bilinearized
adjoint (x, y) 7→ x × y, norm N = NX , (bi-)linear trace T = TX and quadratic
trace S = S X . Generally speaking, we will be concerned with the question of
which additional ingredients are needed in order to understand X in terms of a
given cubic norm substructure of X. These ingredients are based on a number
of useful identities that are our main focus in the present section. In order
to describe their range of validity in a precise manner, a peculiar conceptual
framework will be needed that we now proceed to consider.
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35.1 The orthogonal complement of a cubic norm substructure. Let X0 be
a cubic norm substructure of X and write

X⊥0 := {u ∈ X | ∀x0 ∈ X0 : T (x0, u) = 0} (1)

for the orthogonal complement of X0 relative to the bilinear trace of X. From
(33a.7) we obtain a well-defined bilinear action

X0 × X⊥0 −→ X⊥0 , (x0, u) 7−→ x0 . u := −x0 × u (2)

that will be of fundamental importance later on. Unfortunately, however, the
ingredients of this action are in general not compatible with base change: for
R ∈ k-alg, the scalar extension X0R need not be a cubic norm substructure of
XR, and even if it is, (X0R)⊥, its orthogonal complement in XR relative to the
bilinear trace, need not be the same as (X⊥0 )R. To remedy this deficiency, the
following refinement of the present set-up will be introduced.

35.2 Complemented cubic norm substructures. By a complemented cubic
norm substructure of X we mean a pair (X0,V) such that X0 ⊆ X is a cubic
norm substructure, V ⊆ X is a k-submodule and the relations

X = X0 ⊕ V, V ⊆ X⊥0 , X0 .V ⊆ V (1)

hold. This concept is clearly compatible with base change, so if (X0,V) is a
complemented cubic norm substructure of X, then (X0,V)R := (X0R,VR) is one
of XR, for all R ∈ k-alg. Note that (1) implies

X⊥0 = (X0 ∩ X⊥0 ) ⊕ V. (2)

35.3 Remark. If X0 ⊆ X is a regular cubic norm substructure, then we deduce
from Lemma 11.10 and (35.2.2) that (X0, X⊥0 ) is the unique complemented
cubic norm substructure of X extended from X0. Conversely, suppose X itself
is regular and (X0,V) is a complemented cubic norm substructure of X. Then
X0 is regular and V = X⊥0 .

35.4 The action of X0 on V . Let (X0,V) be a complemented cubic norm sub-
structure of X and write N0 for the norm of X0. We claim that the following
relations hold, for all R ∈ k-alg and all x0, y0 ∈ X0R, all u ∈ VR.

1 . u = u, (1)

Ux0 u = x♯0 . u, (2)

x0 .
(
y0 . (x0 . u)

)
= (Ux0 y0) . u, (3)

x0 . (x♯0 . u) = N0(x0)u = x♯0 . (x0 . u), (4)

N(x0 . u) = N0(x0)N(u). (5)
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We may assume R = k. Then (1) follows immediately from (35.1.2) and the
unit identity (33a.3), while the definition of the U-operator (33a.15) com-
bined with (35.1.2) and the relation T (x0, u) = 0 gives (2). To derive (3),
we apply (33a.26) with z = u, observe T (x♯0, u) = T (y0, u) = 0 and ob-
tain x0 . (y0 . (x0 . u)) = −x0 × (y0 × (x0 × u)) = −(Ux0 y0) × u = (Ux0 y0) . u,
hence (3). Since T (x0, u) = T (x♯0, u) = 0, we obtain (4) immediately from
(35.1.2) and (33a.8), (33a.19). To prove (5), we observe that (33a.29) reduces
to N(x0 . u) = −N(x0 × u) = N(x0)N(u), and this is (5).

Relations (1), (3) above are equivalent to saying that the linear map σ : J0 :=
J(X0) → Endk(X⊥0 )(+) given by σ(x0)u := x0 . u for x0 ∈ J0, u ∈ X⊥0 is a
homomorphism of Jordan algebras. Thus if k = F is a field, J0 is simple as a
Jordan algebra over F and X⊥0 , {0}, then J0 is special.

35.5 Strong orthogonality. With (X0,V) as in 35.4, an element u ∈ X is said
to be strongly orthogonal (or strongly perpendicular) to X0 if u and u♯ both
belong to V . Note that strong orthogonality depends not only on X0 but, in
fact, on all of (X0,V) and that elements strongly orthogonal to X0 may not
exist. On the other hand, if u ∈ X is strongly orthogonal to X0, so is u♯ by the
adjoint identity. We now claim that the relations in 35a hold, for all R ∈ k-alg,
all x0, y0, z0 ∈ X0R and all u ∈ XR strongly orthogonal to X0R.

(x0 . u)♯ = x♯0 . u
♯, (1)

(x0 . u) × (y0 . u) = (x0 × y0) . u♯, (2)

(x0 . u) × u♯ = −N(u)x0 = (x0 . u♯) × u, (3)

T (x0 . u, y0 . u) = 0, (4)

T (x0 . u, y0 . u♯) = N(u)T0(x0, y0), (5)(
x0 . (y0 . u)

)
× u = T0(x0, y0)u♯ − y0 . (x0 . u♯),

(6)(
x0 . (y0 . u)

)
× u♯ + u ×

(
x0 . (y0 . u♯)

)
= −N(u)x0 ◦ y0, (7)(

x0 . (y0 . u)
)
× (x0 . u♯) = −N(u)Ux0 y0, (8)(

x0 . (y0 . u)
)
× (z0 . u♯) +

(
z0 . (y0 . u)

)
× (x0 . u♯) = −N(u){x0y0z0}, (9)(

x0 . (y0 . u)
)
× u♯ = u ×

(
y0 . (x0 . u♯)

)
= (x0 . u) × (y0 . u♯), (10)

(x0 . u) ×
(
(x0 . u) × (y0 . u♯)

)
= N(u)(Ux0 y0) . u. (11)

Table of Identities 35a Identities considered in 35.5.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

348 Cubic Jordan algebras

Proof As before, we may assume R = k. The relations T (x♯0, u) = T (x0, u♯) =
0 combined with (33a.10) imply (1), which immediately yields (2) after linear-
izing with respect to x0, while the first relation of (3) follows from (x0 . u)×u♯ =
−(x0 × u) × u♯ and (33a.8); the same argument replacing (33a.8) by (33a.19)
also gives the second. To establish (4), (5), we apply (35.1.1), (33a.7) and (2)
to obtain T (x0 . u, y0 . u) = −T (x0 . u, y0 × u) = −T ((x0 . u) × u, y0) = −T ((x0 ×

1) . u♯, y0) = 0 and T (x0 . u, y0 . u♯) = T (x0 × u, y0 × u♯) = T ((x0 × u) × u♯, y) =
N(u)T0(x0, y0). Turning to (6), we put x := u, y := x0, z := y0 in (33a.26) and
obtain u × (x0 . (y0 . u)) = u × (x0 × (u × y0)) = T (u, x0)u × y0 + T (u♯, y0)x0 +

T (x0, y0)u♯ − (u♯ × x0) × y0 = −T (x0, u)y0 . u + T (y0, u♯)x0 + T (x0, y0)u♯ −
y0 . (x0 . u♯); since u is strongly perpendicular to X0, (6) follows. Similarly, set-
ting x := u♯, y := x0, z := y0, w := u in (33a.27) yields

u♯ × (x0 × (y0 × u))+ y0 × (x0 × (u × u♯)) + u × (x0 × (u♯ × y0))

= T (u♯, x0)y0 × u + T (y0, x0)u × u♯ + T (u, x0)u♯ × y0

+ T (u♯ × y0, u)x0.

But u × u♯ = −N(u)1 by (3), which implies T (u♯ × y0, u) = T (y0, u × u♯) =
−N(u)T (y0), and we conclude(

x0 . (y0 . u)
)
× u♯ − N(u)(1 × x0) × y0 + u ×

(
x0 . (y0 . u♯)

)
= −N(u)T (x0, y0)1 − N(u)T (y0)x0,

where

(1 × x0) × y0 = T (x0)1 × y0 − x0 × y0 = T (x0)T (y0)1 − T (x0)y0 − x0 × y0.

Thus(
x0 . (y0 . u)

)
× u♯ + u ×

(
x0 . (y0 . u♯)

)
= −N(u)

(
x0 × y0 + T (x0)y0 + T (y0)x0 −

(
T (x0)T (y0) − T (x0, y0)

)
1
)

= −N(u)x0 ◦ y0

by (33a.23). This proves (7). In (8) we may assume by Lemma 12.25 that x0

is invertible. Then (35.1.4) implies u = x0 . v, where v = x−1
0 . u is strongly

orthogonal to X0 by (1), and using (35.4.3), (1), (35.4.4), (3), (35.4.5), we
obtain(
x0 . (y0 . u)) × (x0 . u♯) =

(
x0 .

(
y0 . (x0 . v)

))
×

(
x0 . (x0 . v)♯)

= ((Ux0 y0) . v) ×
(
x0 . (x♯0 . v

♯)
)

= N0(x0)((Ux0 y0) . v) × v♯

= −N0(x0)N(v)Ux0 y0 = −N0(x0 . v)Ux0 y0 = −N(u)Ux0 y0,
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hence (8), which implies (9) after linearization. Comparing (9) for z0 = 1 with
(7) we obtain (x0 . (y0 . u))×u♯+(y0 . u)×(x0 . u♯) = −N(u)x0◦y0 = (x0 . (y0 . u))×
u♯ + u × (x0 . (y0 . u♯)), giving the second relation of (10) with x0 and y0 inter-
changed. On the other hand, linearizing (35.4.3) we obtain (x0 . (y0 . u)) × u♯ +
(y0 . (x0 . u)) × u♯ = ((x0 ◦ y0) . u) × u♯ = −N(u)x0 ◦ y0 by (3), and comparing
with (7), we also obtain the first relation of (10) with x0 and y0 interchanged.
Finally, to establish (11), we apply (33a.28) to x0 . u, y0 . u♯ instead of x, y, re-
spectively. Since x0 . u, y0 . u♯ are strongly orthogonal to X0 by (1), we have
T (x0 . u) = T (y0 . u♯) = S (x0 . u) = 0, T ((x0 . u)♯, y0 . u♯) = T (x♯0 . u

♯, y0 . u♯) = 0
by (4), S (x0 . u, y0 . u♯) = −T (x0 . u, y0 . u♯) = −N(u)T0(x0, y0) by (5), and
(x0 . u)♯× (y0 . u♯) = (x♯0 . u

♯)× (y0 . u♯) = (x♯0×y0) . u♯♯ = N(u)(x♯0×y0) . u by (1),
(2). Hence (33a.28) yields (x0 . u) × ((x0 . u) × (y0 . u♯)) = N(u)(T0(x0, y0)x0 −

x♯0 × y0) . u = N(u)(Ux0 y0) . u, as desired. □

For the remainder of this section, we fix a complemented cubic norm sub-
structure (X0,V) of X and write N0 for the norm, T0 (resp. S 0) for the (bi-)linear
(resp. quadratic) trace of X0.

35.6 Splitting the adjoint. We define quadratic maps Q : V → X0, H : V → V
by

u♯ = −Q(u) + H(u) (u ∈ V, Q(u) ∈ X0, H(u) ∈ V). (1)

Thus u ∈ X is strongly orthogonal to X0 if and only if u ∈ V and Q(u) = 0. We
claim that the identities

(x0 + u)♯ =
(
x♯0 − Q(u)

)
+

(
−x0 . u + H(u)

)
, (2)

N(x0 + u) = N0(x0) − T0
(
x0,Q(u)

)
+ N(u), (3)

T (y0 + v, z0 + w) = T0(y0, z0) + T0
(
Q(v,w)

)
, (4)

T (y0 + v) = T0(y0), (5)

S (x0 + u) = S 0(x0) − T0
(
Q(u)

)
(6)

hold strictly for x0, y0, z0 ∈ X0, u, v,w ∈ V . Indeed, N(x0 + u) = N0(x0) +
T (x♯0, u)+ T (x0, u♯)+ N(u) = N0(x0)− T0(x0,Q(u))+ N(u) by (35.2.1), (1) and
(x0 + u)♯ = x♯0 + x0 × u + u♯ = x♯0 − x0 . u − Q(u) + H(u) by (35.1.2) and (1).
Finally, T (y0 + v, z0 + w) = T0(y0, z0) + T (v,w), and (33a.13) yields T (v,w) =
T (v)T (w)−T (v×w) = −T (v×w) = T (Q(v,w)−H(v,w)) = T0(Q(v,w)), giving
(4), which immediately implies first (5) and then (6).

35.7 Identities for Q and H. We claim that the identities in 35b hold strictly
for all x0, y0, z0 ∈ X0, u, v,w ∈ V .

Proof (33a.10) yields (x0 . u)♯ = (x0 × u)♯ = T (x♯0, u)u + T (x0, u♯)x0 − x♯0 ×
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Q(x0 . u) = Ux0 Q(u), (1)

Q(x0 . u, y0 . u) = Ux0,y0 Q(u), (2)

Q(x0 . u, x0 . v) = Ux0 Q(u, v), (3)

Q(x0 . u, y0 . v) + Q(x0 . v, y0 . u) = Ux0,y0 Q(u, v), (4)

H(x0 . u) = x♯0 .H(u), (5)

H(x0 . u, y0 . u) = (x0 × y0) .H(u), (6)

H(x0 . u, x0 . v) = x♯0 .H(u, v), (7)

H(x0 . u, y0 . v) + H(x0 . v, y0 . u) = (x0 × y0) .H(u, v), (8)

Q
(
H(u)

)
= Q(u)♯, (9)

H
(
H(u)

)
= N(u)u − Q(u) .H(u), (10)

Q
(
x0 . u,H(u)

)
= N(u)x0 = Q

(
u, x0 .H(u)

)
, (11)

Q
(
H(u), v

)
+ Q

(
u,H(u, v)

)
= T0

(
Q
(
H(u), v

))
1, (12)

H
(
x0 . u,H(u)

)
= T0

(
x0,Q(u)

)
u − Q(u) . (x0 . u), (13)

H
(
u, x0 .H(u)

)
=

(
x0 × Q(u)

)
. u, (14)

T0
(
x0,Q(u, v)

)
= T0

(
Q(x0 . u, v)

)
, (15)

Q
(
H(u, v)

)
+ Q

(
H(u),H(v)

)
= Q(u, v)♯ + Q(u) × Q(v), (16)

H
(
H(u, v)

)
+ H

(
H(u),H(v)

)
= T0

(
Q
(
u,H(v)

))
u + T0

(
Q
(
H(u), v

))
v (17)

− Q(u) .H(v) − Q(u, v) .H(u, v)

− Q(v) .H(u),

N
(
H(u)

)
= N(u)2 − 2N0

(
Q(u)

)
. (18)

Table of Identities 35b Identities considered in 35.7.

u♯ = −T0(x0,Q(u))x0 + x♯0 × Q(u) − x♯0 × H(u) = −Ux0 Q(u) + x♯0 .H(u), and
comparing X0- and V-components by means of (35.6.1), we obtain (1), (5).
(Repeatedly) linearizing (1) (resp. (5)) implies (2)–(4) (resp. (6)–(8)). Simi-
larly, by the adjoint identity and (35.6.2), N(u)u = u♯♯ = (−Q(u) + H(u))♯ =
Q(u)♯ − Q(H(u)) + (Q(u) .H(u) + H(H(u))), which leads to (9),(10). Applying
(33a.8) we obtain N(u)x0−T0(x0,Q(u))u = N(u)x0+T (u♯, x0)u = u♯×(u×x0) =
−(x0 . u)× (−Q(u)+H(u)) = −Q(u) . (x0 . u)+Q(x0 . u,H(u))−H(x0 . u,H(u)),
hence (13) and the first relation of (11). Similarly, (33a.19) implies N(u)x0 =

N(u)x0+T (u, x0)u♯ = u×(u♯×x0) = u×(−Q(u)×x0+H(u)×x0) = (x0×Q(u)) . u−
u×(x0 .H(u)) = (x0×Q(u)) . u+Q(u, x0 .H(u))−H(u, x0 .H(u)) implies (14) and
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the second relation of (11). Linearizing (11) for x0 = 1 with respect to u and
applying (35.6.4) gives Q(v,H(u))+Q(u,H(u, v)) = T (u♯, v)1 = T (H(u), v)1 =
T0(Q(H(u), v))1, hence (12). To derive (15), we apply (1) and (33a.7) to obtain
T0(x0,Q(u, v)) = −T (x0, u × v) = −T (x0 × u, v) = T (x0 . u, v) = T0(Q(x0 . u, v))
by (35.6.4). Next (16), (17) will follow from (9), (10), respectively, by using
the second order chain and product rules of the differential calculus for poly-
nomial laws; we omit the details. And finally, turning to (18), we combine
(33a.18) with (35.6.1),(35.6.3),(9) and obtain

N(u)2 = N(u♯) = N
(
−Q(u) + H(u)

)
= −N0

(
Q(u)

)
+ T0

(
Q(u),Q

(
H(u)

))
+ N

(
H(u)

)
= −N0

(
Q(u)

)
+ T0

(
Q(u),Q(u)♯

)
+ N

(
H(u)

)
= −N0

(
Q(u)

)
+ 3N0

(
Q(u)

)
+ N

(
H(u)

)
by Euler’s differential equation (33a.11), and (18) follows. □

35.8 The build-up. The identities derived in the preceding subsection provide
the opportunity of building up new cubic norm structures out of old ones. Let
X0 be a cubic norm structure over k, with base point 1, adjoint x0 7→ x♯0, norm
N0, (bi-)linear trace T0 and quadratic trace S 0. Suppose we are given

(i) a k-module V ,
(ii) a bilinear action X0 × V → V , (x0, u) 7→ x0 . u,
(iii) quadratic maps Q : V → X0, H : V → V such that Q(u,H(u)) ∈ R1X0R

for all u ∈ VR, R ∈ k-alg.

Since 1 ∈ X0 is a unimodular vector, condition (iii) yields a unique cubic form
N̂ : V → k such that

N̂(u)1X0R = Q
(
u,H(u)

)
(u ∈ VR,R ∈ k-alg). (1)

Put X := X0 × V as a k-module, identify X0,V canonically as submodules of X
and define a cubic form N : X → k as well as a quadratic map ♯ : X → X by
requiring that

(x0, u)♯ :=
(
x♯0 − Q(u),−x0 . u + H(u)

)
, (2)

N
(
(x0, u)

)
:= N0(x0) − T0

(
x0,Q(u)

)
+ N̂(u) (3)

hold strictly for all x0 ∈ X0, u ∈ V . Inspecting (2), (3), we see that the k-module
X together with the base point 1, adjoint ♯ and norm N is a cubic array over k
whose adjoint bilinearizes to

(x0, u) × (y0, v) =
(
x0 × y0 − Q(u, v),−x0 . v − y0 . u + H(u, v)

)
(4)
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for all x0, y0 ∈ X0, u, v ∈ V . We also claim that the (bi-)linear and the quadratic
trace of X are given by

T
(
(y0, v), (z0,w)

)
= T0(y0, z0) + T0

(
Q(v,w)

)
, (5)

T
(
(y0, v)

)
= T0(y0) (6)

S
(
(x0, u)

)
= S 0(x0) − T0

(
Q(u)

)
(7)

for x0, y0.z0 ∈ X0, u, v,w ∈ V . Indeed, differentiating (3) implies

N
(
(x0, u), (y0, v)

)
= N0(x0, y0) − T0

(
x0,Q(u, v)

)
− T0

(
Q(u), y0

)
+ N̂(u, v), (8)

where putting x0 = 1, u = 0 (resp. y0 = 1, v = 0) yields (6) (resp. (7)). Now
(5) follows by linearizing (7) and applying (33.2.10).

35.9 Proposition (Petersson-Racine [225, Lemma 3.3]). For X as defined in
35.8 to be a cubic norm structure over k it is necessary and sufficient that the
identities in 35c hold in all scalar extensions.

1 . u = u, (1)

x♯0 . (x0 . u) = N0(x0)u, (2)

Q(x0 . u) = Ux0 Q(u), (3)

H(x0 . u) = x♯0 .H(u), (4)

Q
(
H(u)

)
= Q(u)♯, (5)

H
(
H(u)

)
= N̂(u)u − Q(u) .H(u), (6)

Q
(
x0 . u,H(u)

)
= N̂(u)x0, (7)

Q
(
H(u), v

)
+ Q

(
u,H(u, v)

)
= T0

(
Q
(
H(u), v

))
1, (8)

T0
(
x0,Q(u, v)

)
= T0

(
Q(x0 . u, v)

)
, (9)

H
(
x0 . u,H(u)

)
= T0

(
x0,Q(u)

)
u − Q(u) . (x0 . u). (10)

Table of Identities 35c Identities considered in 35.9.

Proof Assume first that X is a cubic norm structure. Then the set-up described
in 35.8 shows that (X0,V) is a complemented cubic norm substructure of X.
Moreover, the identities (1)–(10), being a subset of the ones assembled in 35.4
and 35.7, hold strictly for x0 ∈ X0, u, v ∈ V . Conversely, let this be so. We
must show the unit, gradient and adjoint identity. The unit identity is the least
troublesome since the unit identity for X0 combined with (35.8.2), (35.8.6)
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35 Building up cubic norm structures 353

and (1) implies 1 × (x0, u) = 1 × x0 − 1 . u = T0(x0)1 − x0 − u = T ((x0, u))1 −
(x0, u). In order to derive the gradient identity, we differentiate (35.8.1) and
combine the result with (8) to obtain N̂(u, v)1 = Q(v,H(u)) + Q(u,H(u, v)) =
T0(Q(H(u), v))1, hence

N̂(u, v) = T0

(
Q
(
H(u), v

))
. (11)

Now (35.8.8), the gradient identity for X0 and (11), (9), (35.8.5), (35.8.2) imply

N
(
(x0, u), (y0, v)

)
= T0(x♯0, y0) − T0

(
x0,Q(u, v)

)
− T0

(
Q(u), y0

)
+ T0

(
Q
(
H(u), v

))
= T0

(
x♯0 − Q(u), y0

)
− T0

(
Q(x0 . u, v)

)
+ T0

(
Q
(
H(u), v

))
= T0

(
x♯0 − Q(u), y0

)
+ T0

(
Q
(
−x0 . u + H(u), v

))
= T

((
x♯0 − Q(u),−x0 . u + H(u)

)
, (y0, v)

)
= T

(
(x0, u)♯, (y0, v

)
,

as claimed. Finally, we apply the adjoint identity for X0 and (35.8.2), (5), (3),
(7), (2), (4), (10), (6), (33a.15), (35.8.3) to derive

(x0, u)♯♯ =
(
x♯0 − Q(u),−x0 . u + H(u)

)♯
=

((
x♯0 − Q(u)

)♯
− Q

(
−x0 . u + H(u)

)
,

−
(
x♯0 − Q(u)

)
.
(
−x0 . u + H(u)

)
+ H

(
−x0 . u + H(u)

))
=

(
x♯♯0 − x♯0 × Q(u) + Q(u)♯ − Q(x0 . u)

+ Q
(
x0 . u,H(u)

)
− Q

(
H(u)

)
,

x♯0 . (x0 . u) − x♯0 .H(u) − Q(u) . (x0 . u) + Q(u) .H(u)

+ H(x0 . u) − H
(
x0 . u,H(u)

)
+ H

(
H(u)

))
=

(
N0(x0)x0 − x♯0 × Q(u) − Ux0 Q(u) + N̂(u)x0,

N0(x0)u − T0
(
x0,Q(u)

)
u + N̂(u)u

)
=

(
N0(x0)x0 − T0

(
x0,Q(u)

)
x0 + N̂(u)x0,

N0(x0)u − T0
(
x0,Q(u)

)
u + N̂(u)u

)
= N

(
(x0, u)

)
(x0, u),

hence the adjoint identity for X. □

35.10 Passing to isotopes. Let X0 be a cubic norm substructure of X and p ∈ X0

an invertible element of J(X0). Then X(p)
0 , the p-isotope of X0, is a cubic norm
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substructure of X(p), and (33.11.4) shows

X(p)⊥
0 = X⊥0 (1)

as k-submodules of X. Moreover, the natural action of X(p)
0 on X(p)⊥

0 as defined
in (35.1.2) is given by the formula

x0 ·
(p) u = p . (x0 . u) (2)

for x0 ∈ X(p)
0 and u ∈ X(p)⊥

0 . Indeed, (33.11.2) and (35.4.2) imply

x0 ·
(p) u = −x0 ×

(p) u = −N(p)Up−1 (x0 × u) = N(p)Up−1 (x0 . u)

= N(p−1)−1 p−1♯ . (x0 . u) = (p−1)−1 . (x0 . u) = p . (x0 . u),

as claimed. Similarly, one checks that u ∈ X(p) is strongly orthogonal to X(p)
0 if

and only if it is strongly orthogonal to X0, in which case

u(♯,p) = p . u♯. (3)

35.11 Complemented cubic norm substructures under isotopy. Let (X0,V)
be a complemented cubic norm substructure of X and p ∈ X0 an invertible
element of J(X0). From (35.2.1), (35.10.1) and (35.10.2) we conclude that
(X0,V)(p) := (X(p)

0 ,V) is a complemented cubic norm substructure of X(p).
Writing Q(p),H(p) for the analogues of Q,H as defined in 35.6, with (X0,V)
replaced by (X0,V)(p), we claim

Q(p)(u) = N(p)Up−1 Q(u), H(p)(u) = p .H(u) (u ∈ V). (1)

Indeed, applying (35.6.1), (33.11.2), (35.1.2) we get

−Q(p)(u) + H(p)(u) = u(♯,p) = N(p)Up−1 u♯ = −N(p)Up−1 Q(u) + N(p)Up−1 H(u)

= −N(p)Up−1 Q(u) + N(p−1)−1(p−1)♯ .H(u)

= −N(p)Up−1 Q(u) + (p−1)−1 .H(u)

= −N(p)Up−1 Q(u) + p .H(u),

and comparing the components in X0,V , respectively, the assertion follows.

Exercises
35.12. Cubic solutions of the eikonal equation (Tkachev [284]). Let k be a commutative
ring containing 1

6 . By an eikonal triple over k we mean a triple (V,Q,N) consisting of a
quadratic space (V,Q) over k and a cubic form N : V → k such that the quadratic map
H : V → V uniquely determined by the strict validity of

Q
(
H(u), v

)
=

1
3

N(u, v) (1)
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36 Cubic Jordan matrix algebras 355

in V × V strictly satisfies the eikonal equation

Q
(
H(u)

)
= Q(u)2 (2)

in V . Prove:

(i) If (V,Q,N) is an eikonal triple over k, then the k-module X := k × V together
with the base point 1 ∈ X, the adjoint X → X, x 7→ x♯ and the norm N : X → k
respectively defined by

1 := (1, 0), (3)

(r, u)♯ =
(
r2 − Q(u),−ru + H(u)

)
, (4)

N
(
(r, u)

)
:= r3 − 3rQ(u) + N(u) (5)

for R ∈ k-alg, r ∈ R, u ∈ VR, is a regular cubic norm structure over k.
(ii) Conversely, let X be a regular cubic norm structure over k. Then X0 := k =

k1 ⊆ X is a regular cubic norm substructure, and if we put V := X⊥0 to define
Q : V → k by the condition Q(u) + u♯ ∈ V for all u ∈ V , then (V,Q,N |V ) is an
eikonal triple over k.

(iii) The constructions presented in (i), (ii) are inverse to each other.
(iv) If (Rn,Q,N) is an eikonal triple over the field of real numbers, then the eikonal

equation (2) takes on the co-ordinate form
n∑

i, j=1

qi j ∂N
∂xi

(u)
∂N
∂x j

(u) = 9
( n∑

i, j=1

qi juiu j
)2 (6)

for

u =


u1
...

un

 ∈ Rn,

where Q = (qi j) ∈ Symn(R)∩GLn(R) corresponds to the quadratic form Q and
Q−1 = (qi j).

36 Cubic Jordan matrix algebras

An encounter with cubic Jordan matrix algebras has already taken place in
section 5 over the field of real numbers. Using the formalism of cubic norm
structures, we are now in a position to extend a twisted version of this concept
to arbitrary base rings. For convenience, the following notational convention
will be introduced.

36.1 The ternary cyclicity convention. Unless explicitly stated otherwise, in-
dices i, j, l (or m, n, p) are always tacitly assumed to vary over all cyclic per-
mutations (i jl) (or (mnp)) of (123). For example, given arbitrary elements
xi jl of an arbitrary k-module, this convention allows us to write

∑
xi jl for

x123 + x231 + x312.
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356 Cubic Jordan algebras

36.2 Twisted matrix involutions. Let C be a conic algebra over k whose con-
jugation is an involution, and which is faithful as a k-module, allowing us to
identify k ⊆ C canonically as a unital subalgebra. If m is a positive integer,
then Matm(k) ⊆ Matm(C) by Exc. 8.15 is a nuclear subalgebra. Twisting the
conjugate transpose involution of Matm(C) in the sense of 10.7 by means of a
diagonal matrix

Γ = diag(γ1, . . . , γm) ∈ GLm(k) (1)

in the sense of 10.8, we therefore conclude that the map

Matm(C) −→ Matm(C), x 7−→ Γ−1 x̄TΓ (2)

is an involution, called the Γ-twisted conjugate transpose involution of Matm(C).
The elements of Matm(C) remaining fixed under this involution are called Γ-
twisted hermitian matrices, and simply hermitian matrices if Γ = 1m is the
m-by-m unit matrix. The Γ-twisted hermitian matrices of Matm(C) having di-
agonal entries in k form a k-submodule of Matm(C) which we denote by

Herm(C,Γ); (3)

in particular, we put

Herm(C) := Herm(C, 1m). (4)

If 2 is invertible in k, then Herm(C,Γ) is the totality of all Γ-twisted hermitian
matrices in Matm(C), the condition on the diagonal entries being automatic
since H(C, ιC) = k1C = k by (16.6.3).

Now assume m = 3. Writing ei j, 1 ≤ i, j ≤ 3, for the ordinary matrix units
of Mat3(k) ⊆ Mat3(C), we obtain a natural set of generators for the k-module
Her3(C,Γ) by considering the quantities

u[ jl] := γlue jl + γ jūel j (u ∈ C, j, l = 1, 2, 3 distinct), (5)

called primitive Γ-twisted hermitian matrices. Indeed, a straightforward veri-
fication shows that x ∈ Mat3(C) belongs to Her3(C,Γ) if and only if it can be
written in the form (necessarily unique)

x =
∑

(ξieii + ui[ jl]) (ξi ∈ k, ui ∈ C, i = 1, 2, 3). (6)

Thus we have a natural identification

Her3(C,Γ) =
∑

(keii ⊕C[ jl]) = (k ⊕C) ⊕ (k ⊕C) ⊕ (k ⊕C) (7)

as k-modules.
With a few extra hypotheses on C, we wish to define a cubic norm structure

on the k-module Her3(C,Γ) in a natural way that commutes with base change.
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36 Cubic Jordan matrix algebras 357

Actually, we will be able to do so without any conditions on C as a k-module,
and without assuming that the diagonal matrix Γ ∈ Mat3(k) be invertible. This
will be accomplished by formalizing the preceding set-up in a slightly different
manner. We begin by introducing a convenient terminology.

36.3 Co-ordinate pairs. By a pre-co-ordinate pair over k we mean a pair (C,Γ)
consisting of a multiplicative conic alternative k-algebra C and a diagonal ma-
trix Γ ∈ Mat3(k). In this case, it will always be tacitly assumed that Γ has the
form Γ = diag(γ1, γ2, γ3), with γi ∈ k, 1 ≤ i ≤ 3. If Γ is invertible, we speak
of a co-ordinate pair over k. For Γ = 13, we identify C = (C, 13) and refer to
this as a co-ordinate algebra over k. If C is an octonion algebra, the terms oc-
tonionic (pre-)co-ordinate pair, octonionic co-ordinate algebra, respectively,
will be used, ditto for C being a quaternion or quadratic étale k-algebra.

36.4 Towards a hermitian cubic norm structure. Let (C,Γ) be a pre-co-
ordinate pair over k. By Prop. 17.2, C is norm-associative (i.e., the identities
(16.12.1)–(16.12.5) hold in C) and its conjugation is an involution. Guided by
the formulas of 36.2, but abandoning their interpretation by means of hermitian
matrices, we consider the k-module of all formal expressions∑

(ξieii + ui[ jl])

for ξi ∈ k, ui ∈ C and i = 1, 2, 3. Thanks to the formal character of these
expressions, and in analogy of (36.2.7), this k-module, denoted by X(C), may
be written as

X(C) =
∑

(keii +C[ jl]) = (k ⊕C) ⊕ (k ⊕C) ⊕ (k ⊕C), (1)

and hence its dependence on C is compatible with base change: X(C)R = X(CR)
for all R ∈ k-alg. Note, however, that the diagonal matrix Γ ∈ Mat3(k) has not
yet entered the scene, which will happen only after we have given X(C) the
structure of a cubic array over k. In order to do so, we consider elements

x =
∑

(ξieii + ui[ jl]), y =
∑

(ηieii + vi[ jl]) (2)

of X(C)R, with ξi, ηi ∈ R, ui, vi ∈ CR for i = 1, 2, 3, to define base point, adjoint
and norm on X(C) by the formulas

1 = 1X :=
∑

eii, (3)

x♯ =
∑((

ξ jξl − γ jγlnC(ui)
)
eii +

(
− ξiui + γiu jul

)
[ jl]

)
, (4)

N(x) := NX(x) = ξ1ξ2ξ3 −
∑

γ jγlξinC(ui) + γ1γ2γ3tC(u1u2u3), (5)

the very last expression on the right of (5) being unambiguous by (16.13.1).
One checks easily that these formulas make X(C) a cubic array over k, which
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358 Cubic Jordan algebras

we denote by Her3(C,Γ)and which is clearly compatible with base change:
Her3(C,Γ)R = Her3(CR,ΓR) for all R ∈ k-alg. Moreover, the adjoint bilin-
earizes to

x × y =
∑((

ξ jηl + η jξl − γ jγlnC(ui, vi)
)
eii (6)

+
(
− ξivi − ηiui + γiu jvl + v jul

)
[ jl]

)
,

and we claim that the (bi-)linear and quadratic traces of X are given by

T (x, y) =
∑(

ξiηi + γ jγlnC(ui, vi)
)
, (7)

T (x) =
∑

ξi, (8)

S (x) =
∑(

ξ jξl − γ jγlnC(ui
)
). (9)

Indeed, differentiating (5) at x in the direction y, we obtain, using (16.13.1),

N(x, y) =
∑(

ξ jξlηi − γ jγl
(
ηinC(ui) + ξinC(ui, vi)

)
+ γ1γ2γ3tC(uiu jvl)

)
, (10)

and setting x = 1 gives (8), while setting y = 1 yields (9). On the other hand,
linearizing (9) we deduce

S (x, y) =
∑(

ξ jηl + η jξl − γ jγlnC(ui, vi)
)
. (11)

Finally, combining (11) with (8) and (33.2.10), we end up with (7).

36.5 Theorem (Freudenthal [83, 84], McCrimmon [183, Thm. 3]). Let (C,Γ)
be a pre-co-ordinate pair over k. Then the cubic array Her3(C,Γ) of 36.4 is
a cubic norm structure and hence may be viewed canonically (cf. 34.6) as a
cubic Jordan k-algebra. As a module, Her3(C,Γ) is finitely generated projective
if and only if C is. As a cubic Jordan algebra, it is regular in the sense of 33.3
if and only if C is a regular composition algebra.

Proof The unit (resp. gradient) identity follows from (36.4.3), (36.4.6),
(36.4.8) (resp. (36.4.4), (36.4.7), (36.4.11)) by a straightforward verification.
It remains to prove the adjoint identity over k. To this end we put

x♯ =
∑

(ξ♯i eii + u♯i [ jl]), (1)

where ξ♯i ∈ k and u♯i ∈ C can be read off from (36.4.4). We must show ξ
♯♯
i =

N(x)ξi and u♯♯i = N(x)ui. We begin with the former by repeatedly applying
(36.4.4):

ξ
♯♯
i = ξ

♯
jξ
♯
l − γ jγlnC(u♯i )

=
(
ξlξi − γlγinC(u j)

)(
ξiξ j − γiγ jnC(ul)

)
− γ jγlnC(−ξiui + γiu jul).



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

36 Cubic Jordan matrix algebras 359

Expanding the terms on the right-hand side of the last equation and combin-
ing (16.5.7), (17.1.1), (16.5.5) with the fact that the expression tC(u1u2u3) is
invariant under cyclic permutations of its arguments, we conclude

ξ
♯♯
i = ξ1ξ2ξ3ξi − γiγ jξlξinC(ul) − γlγiξiξ jnC(u j) + γ1γ2γ3γinC(u j)nC(ul)

− γ jγlξ
2
i nC(ui) + γ1γ2γ3ξinC(ui, u jul) − γ1γ2γ3γinC(u jul)

=
(
ξ1ξ2ξ3 − γ jγlξinC(ui) − γlγiξ jnC(u j) − γiγ jξlnC(ul) + γ1γ2γ3tC(u1u2u3)

)
ξi

= N(x)ξi,

as desired. Similarly, we expand

u♯♯i = −ξi
♯u♯i + γiu

♯
ju
♯
l = −

(
ξ jξl − γ jγlnC(ui)

)(
−ξiui + γiu jul

)
+ γi

(
−ξlūl + γluiu j

)(
−ξ jū j + γ jului

)
= ξ1ξ2ξ3ui − γiξ jξlu jul − γ jγlξinC(ui)ui + γ1γ2γ3nC(ui)u jul

+ γiξ jξlūlū j − γiγ jξlūl(ului) − γlγiξ j(uiu j)ū j + γ1γ2γ3(uiu j)(ului).

Here we combine the fact that the conjugation of C is an involution with
Kirmse’s identities (17.4.1) to conclude

u♯♯i =
(
ξ1ξ2ξ3 −

∑
γnγpξmnC(um)

)
ui + γ1γ2γ3

(
nC(ui)u jul + (uiu j)(ului)

)
,

where the middle Moufang identity (13.3.3) and (17.4.2) yield

nC(ui)u jul + (uiu j)(ului) = nC(ui)u jul + ui(u jul)ui = nC(ui, u jul)ui

= tC(u1u2u3)ui.

Thus u♯♯i = N(x)ui, and the proof of the adjoint identity is complete.
As a k-module, Her3(C,Γ) is the sum of three copies of C and three copies of

k. Therefore, it is finitely generated projective if and only if C is. The formula
(36.4.7) for the bilinear form T in terms of the bilinear form DnC gives the
claim on regularity. □

36.6 The concept of a cubic Jordan matrix algebras. The cubic Jordan al-
gebra Her3(C,Γ) of Thm. 36.5 is called a cubic Jordan matrix algebra. The
justification of this terminology derives from the fact that, if 1C ∈ C is uni-
modular and Γ ∈ GL3(k), then the elements of J by 36.2 may be identified
canonically with the Γ-twisted 3-by-3 hermitian matrices having entries in C
and scalars down the diagonal, i.e., with the matrices

x =
∑

(ξieii + ui[ jl]) =


ξ1 γ2u3 γ3ū2

γ1ū3 ξ2 γ3u1

γ1u2 γ2ū1 ξ3

 (1)
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for ξi ∈ k, ui ∈ C, 1 ≤ i ≤ 3, and this identification is compatible with
base change. Note, however, that the Jordan structure of J is not as closely
linked to ordinary matrix multiplication as one would naively expect. On the
positive side, it follows from Exc. 36.11 below that the squaring of J and that of
Mat3(C) coincide on J. Hence so do the circle product of J and the symmetric
matrix product (x, y) 7→ xy + yx of Mat3(C). Thus, if 2 ∈ k×, then its linear
Jordan structure makes J a unital subalgebra of Mat3(C)(+); in particular, the
euclidean Albert algebra Her3(O) of 5.5 is a (very important) example of a
cubic Jordan matrix algebra over the reals. On the other hand, returning to the
case of an arbitrary base ring, if C is alternative but not associative, then the
k-algebra Mat3(C) is not flexible, and the U-operator Uxy of J will in general
not be the same as (xy)x or x(yx) (Exc. 36.11, eqn. (3), below). On the other
hand, the same formula immediately implies the following useful observation.

36.7 Proposition. Let (C,Γ) be a co-ordinate pair over k such that 1C ∈ C is
unimodular. If C is associative, then the Jordan algebra Her3(C,Γ) is a subal-
gebra of Mat3(C)(+). □

36.8 Examples. We illustrate the preceding formulas by exhibiting some inner
ideals in a cubic Jordan matrix algebra J := Her3(C,Γ).

(i) When x = e11, the calculations in Example 32.6 show that x × J (an
inner ideal by Example 34.9) is the Peirce space ke22 + ke33 +C[23]. In
case C is an octonion algebra, x × J is finitely generated projective of
rank 10 as a k-module.

(ii) If V is a totally isotropic subspace of C, then I := ke11 + V[12] is an
inner ideal. To see this, note that any x ∈ I satisfies x♯ = 0 because each
of the terms in (36.4.4) vanishes.

(iii) If V is a submodule of C such that uv = 0 for all u, v ∈ V , then I :=
V[12] + V[23] + V[31] is an inner ideal. For this the verification is the
same: one checks that x♯ = 0 for every x ∈ I. In case C is the split
octonions over a field, V can have dimension 2 (at most) [209, pp. 544-
545], so this example yields inner ideals of dimension 6.

36.9 Proposition. The map φ : Mat3(k)(+) → Her3(k × k) defined by

φ(x) :=
∑(

ξiieii + (ξ jl, ξl j)[ jl]
)

for x = (ξi j)1≤i, j≤3 ∈ Mat3(k) is an isomorphism of cubic Jordan algebras.

Proof φ is a linear bijection sending 13 to 1J with J := Her3(k × k). By Ex-
ample 34.16 and Exc. 34.18, therefore, it suffices to show that φ preserves
norms. Actually, since φ commutes with base change, we need only show
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NJ(φ(x)) = det(x) for all x = (ξi j) ∈ Mat3(k). To this end we put C := k× k and
note nC((α, β)) = αβ, tC((α, β)) = α + β for α, β ∈ k. Hence (36.4.5) implies

NJ
(
φ(x)

)
= NJ

(∑(
ξiieii + (ξ jl, ξl j)[ jl]

))
= ξ11ξ22ξ33 −

∑
ξiiξ jlξl j + ξ23ξ31ξ12 + ξ32ξ13ξ21

= ξ11ξ22ξ33 + ξ12ξ23ξ31 + ξ13ξ21ξ32

− ξ31ξ22ξ13 − ξ32ξ23ξ11 − ξ33ξ21ξ12

= det(x),

as claimed. □

Exercises
36.10. Let C be a conic k-algebra whose identity element is unimodular, and let Γ ∈
GL2(k) be a diagonal matrix. In slight modification of (36.2.3), write Her2(C,Γ) for
the k-module of all 2-by-2 matrices x with entries in C that are Γ-hermitian (i.e., x =
Γ−1 x̄TΓ) and have diagonal entries in k = k1C . Show that Her2(C,Γ) carries canonically
the structure of a Jordan algebra J of Clifford type whose identity element is the 2-by-2
unit matrix and whose U-operator may be described as

Uxy = (xy)x + [y, x, x] = x(yx) − [x, x, y] (x, y ∈ J) (1)

in terms of matrix multiplication. Show further that the pointed quadratic module un-
derlying J is uniquely determined by these conditions provided C is projective as a
k-module.

Remark. Putting y = 12 in (1) shows that the squaring in J agrees with the restriction
to J of the squaring of 2-by-2 matrices. Hence the para-quadratic circle product in J is
the same as the symmetric matrix product: x ◦ y = xy + yx.

36.11. The U-operator and matrix multiplication. Let (C,Γ) be a co-ordinate pair over
k and assume that 1C ∈ C is unimodular. Let

x =
∑

(ξieii + ui[ jl]), y =
∑

(ηieii + vi[ jl]) ∈ J := Her3(C,Γ)

with ξi, ηi ∈ k, ui, vi ∈ C for i = 1, 2, 3 and write 1, x, x2, x3, . . . for the powers of x in J,
while denoting matrix multiplication in Mat3(C) by juxtaposition. Then prove

x2 = xx, (1)

x3 = x(xx) + γ1γ2γ3[u1, u2, u3]13 = (xx)x − γ1γ2γ3[u1, u2, u3]13, (2)
Uxy = x(yx) − [x, x, y] + γ1γ2γ3

(
[u1, u2, v3] + [u2, u3, v1] + [u3, u1, v2]

)
13 (3)

= (xy)x + [y, x, x] − γ1γ2γ3
(
[u1, u2, v3] + [u2, u3, v1] + [u3, u1, v2]

)
13,

[x, x, x] = 2γ1γ2γ3[u1, u2, u3]13, (4)

x♯x =
(
N(x)1C + γ1γ2γ3[u1, u2, u3]

)
13, (5)

xx♯ =
(
N(x)1C − γ1γ2γ3[u1, u2, u3]

)
13. (6)
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Finally, writing x♯ as

x♯ =
∑

(ξ♯i + u♯i [ jl])

with ξ♯i ∈ k, u♯i ∈ C for i = 1, 2, 3, conclude that

[u♯1, u
♯
2, u

♯
3] = −N(x)[u1, u2, u3]. (7)

Remark. If 2 ∈ k×, then

Mat3(C) = Her3(C,Γ) ⊕ Her−3 (C,Γ), (8)

where Her−3 (C,Γ) = {x ∈ Mat3(C) | x = −Γ−1 x̄TΓ}. Since the trace of C is an associative
linear form, the expressions [u, v,w]13 for u, v,w ∈ C all belong to Her−3 (C,Γ). Hence
(3) implies that, with respect to the decomposition (8), Uxy is the Her3(C,Γ)-component
of x(yx)− [x, x, y] and also of (xy)x+ [y, x, x]. Compare this with eqn. (1) of Exc. 36.10.

37 Elementary idempotents and co-ordinatization

Elementary idempotents as defined in Exc. 16.23 have been a useful tool in
our study of composition algebras. We will see in this section that the nat-
ural extension of this concept to cubic Jordan algebras turns out to be even
more momentous. After introducing the concept itself, we describe the Peirce
decomposition relative to elementary idempotents, and to complete orthogo-
nal systems thereof, called elementary frames, purely in terms of cubic norm
structures. We then identify elementary idempotents in cubic Jordan matrix
algebras and prove the Jacobson co-ordinatization theorem 37.17, which basi-
cally says that every cubic Jordan algebra containing an elementary frame that
is connected (cf. Exc. 32.23) is isomorphic to a cubic Jordan matrix algebra.

Throughout this section, we let k be a commutative ring and, unless other
arrangements have been made, let J be a cubic Jordan algebra over k, with unit
element 1 = 1J , adjoint x 7→ x♯, norm N = NJ , (bi-)linear trace T = TJ and
quadratic trace S = S J .

37.1 The concept of an elementary idempotent. An element e ∈ J is called an
elementary idempotent if e♯ = 0 and T (e) = 1. In this case, S (e) = T (e♯) = 0,
and (33a.22) implies e2 = e, so e is indeed an idempotent and a unimodular one
at that. In particular, the adjoint identity yields N(e)e = e♯♯ = 0, hence N(e) =
0. We also have T (e, e) = T (e)2 − 2S (e) by (33a.13), hence T (e, e) = 1. Note
by the base point identities (33a.1) that 1 = 1J is an elementary idempotent
if and only if k = {0} (hence J = {0}). The property of being an elementary
idempotent is clearly preserved by homomorphisms and scalar extensions of
cubic Jordan algebras.
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37.2 Proposition (cf. Racine [242], Petersson-Racine [228]). Let e be an ele-
mentary idempotent of J.

(a) The complementary idempotent e0 = 1 − e satisfies e♯0 = e and T (e0) =
2.

(b) The Peirce components of J relative to e are orthogonal with respect to
T and can be described as

J2(e) = ke, (1)

J1(e) = {x ∈ J | T (x) = 0, e × x = 0}, (2)

J0(e) = {x ∈ J | e × x = T (x)e0 − x}. (3)

(c) x♯ = S (x)e for all x ∈ J0(e).

Proof (a) e♯0 = (1 − e)♯ = 1♯ − 1 × e + e♯ = 1 − T (e)1 + e = e and T (e0) =
T (1) − T (e) = 3 − 1 = 2.

(b) Let xi ∈ Ji := Ji(e) for i = 0, 1, 2. We must show T (xi, x j) = 0 for
i, j = 0, 1, 2 distinct. First of all, for j = 1 or 2, Thm. 32.2 and (33a.31) yield
T (x2, x j) = T (Uex2, x j) = T (x2,Uex j) = 0. Similarly, T (x0, x1) = T (Ue0 x0, x1)
= T (x0,Ue0 x1)) = 0 since Ji(e0) = J2−i by Cor. 32.3 (b). This proves the first
part of (b).

As to the explicit description of the Peirce components, we have J2(e) =
Im(Ue) by (32.2.4) and Uex = T (e, x)e−e♯× x = T (e, x)e ∈ ke for x ∈ J, hence
J2(e) ⊆ ke. Here the relation Uee = e3 = e gives equality. To prove (2), (3), we
apply (33a.23) to obtain e× x = e◦ x−T (e)x−T (x)e+ (T (e)T (x)−T (e, x))1 =
e ◦ x − x + T (x)e0 − T (e, x)1, hence

e ◦ x = x + e × x − T (x)e0 + T (e, x)1 (x ∈ J). (4)

But x ∈ J1 if and only if e ◦ x = x by (32.2.7), and from (4) we conclude

x ∈ J1 ⇐⇒ e × x = T (x)e0 − T (e, x)1. (5)

Now suppose x ∈ J1. Then T (e, x) = T (e0, x) = 0 by the first part, hence
T (x) = T (e, x) + T (e0, x) = 0, and (5) yields e × x = 0 as well. Conversely,
suppose e×x = 0 and T (x) = 0. Taking traces of the first equation, we conclude
0 = T (e×x) = T (e)T (x)−T (e, x) = −T (e, x), and (5) shows x ∈ J1. This proves
(2). Turning to (3), let x ∈ J0. Then e◦ x = 0 by (32.2.6) and T (e, x) = 0 by the
first part, forcing e × x = T (x)e0 − x by (4). Conversely, if this relation holds,
then T (x) = 2T (x)−T (x) = T (x)T (e0)−T (x) = T (e×x) = T (e)T (x)−T (e, x) =
T (x) − T (e, x), which implies T (e, x) = 0 and then T (x) = T (1, x) = T (e, x) +
T (e0, x) = T (e0, x). Thus (a) gives Ue0 x = T (e0, x)e0−e♯0× x = T (x)e0−e× x =
x, forcing x ∈ J0, and the proof of (b) is complete.
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(c) For x ∈ J0 = J2(e0) we have x = Ue0 x, and (33a.20) combined with (a)
implies x♯ = (Ue0 x)♯ = Ue0

♯ x♯ = Uex♯. Hence x♯ ∈ J2 = ke, and we find a
scalar α ∈ k with x♯ = αe. Taking traces, (c) follows. □

37.3 Corollary (Faulkner’s lemma [74, Lemma 1.5]). Let e ∈ J be an elemen-
tary idempotent and put

M0 := J0(e) (as a k-module), q0 := S |M0 , e0 := 1 − e. (1)

Then (M0, q0, e0) is a pointed quadratic module over k and J0(e) = J(M0, q0, e0)
as Jordan algebras. Moreover, T |M0 (resp. T |M0×M0 ) is the linear (resp. bi-
linear) trace of (M0, q0, e0), while its conjugation is given by x0 7→ x̄0 =

T (x0)e0 − x0 = e × x0. Finally, the elementary idempotents of J(M0, q0, e0)
in the sense of 29.13 are precisely the elementary idempotents of J belonging
to J0(e).

Proof Prop. 37.2 (a) implies q0(e0) = T (e) = 1. Hence (M0, q0, e0) is a
pointed quadratic module over k. Write t0 for its (bi-)linear trace and let x0, y0 ∈

M0. From (29b.1), (29b.4), (33a.13) and Prop. 37.2 (b) we deduce t0(x0) =
S (e0, x0) = T (e0)T (x0) − T (e0, x0) = 2T (x0) − T (1, x0) = T (x0), hence t0 =
T |M0 as linear traces, and t0(x0, y0) = t0(x0)t0(y0) − q0(x0, y0) = T (x0)T (y0) −
S (x0, y0) = T (x0, y0), hence t0 = T |M0×M0 as bilinear traces. By (29b.3) and
(37.2.3) this implies x̄0 = T (x0)e0 − x0 = e × x0. Applying Prop. 37.2 (c),
the U-operator of J(M0, q0, e0) may now be written as Ux0 y0 = q0(x0, ȳ0)x0 −

q(x0)ȳ0 = t0(x0, y0)x0 − q(x0)e × x0 = T (x0, y0)x0 − x♯0 × y0, and we conclude
J0(e) = J(M0, q0, e0) as Jordan algebras. Finally, an element c0 ∈ J0(e) is
an elementary idempotent of J(M0, q0, e0) if and only if T (c0) = t0(c0) = 1
and q0(c0) = 0, the latter condition by Prop. 37.2 (c) being equivalent to
c♯0 = S (c0)e = 0. This proves the final assertion of the corollary. □

37.4 Proposition. Elementary idempotents e1, e2 ∈ J are orthogonal if and
only if e1 × e2 = 1 − e1 − e2 =: e3. In this case, (e1, e2, e3) is a complete
orthogonal system of elementary idempotents in J, and with the corresponding
Peirce decomposition J =

∑
(Jii + J jl), the following statements hold.

(a) ei × e j = el.
(b) Jii = kei.
(c) The Peirce components of J relative to (e1, e2, e3) are orthogonal with

respect to the bilinear trace.
(d) The linear trace of J vanishes on J23 + J31 + J12.
(e) x ◦ y = x × y for all x ∈ Ji j, y ∈ J jl.
(f) x2 = −S (x)(e j + el) for all x ∈ J jl.
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Proof The very first assertion follows from (37.2.3) and the following chain
of equivalent conditions.

e1, e2 are orthogonal ⇐⇒ e2 ∈ J0(e1)

⇐⇒ e1 × e2 = T (e2)(1 − e1) − e2

⇐⇒ e1 × e2 = e3.

In this case, T (e3) = T (1)−T (e1)−T (e2) = 3−1−1 = 1, and applying (33a.10)
we obtain e♯3 = (e1 × e2)♯ = T (e♯1, e2)e2 + T (e1, e

♯
2)e1 − e♯1 × e♯2 = 0. Hence e3

is an elementary idempotent, making (e1, e2, e3) a complete orthogonal system
of the desired kind.

(a) is now clear by symmetry.
(b) This is just (32.15.2) and (37.2.1).
(c), (d) By (32.15.4) we have Ji j ⊆ J1(ei) ∩ J0(el). Therefore T (ei, Ji j) =

T (el, Ji j) = T (Ji j, J jl) = {0}, giving (c) and T (Ji j) = T (
∑

el, Ji j) = {0}, hence
(d).

(e) By (c), (d), T (x) = T (y) = T (x, y) = 0, and (33a.23) yields the assertion.
(f) We have x ∈ J0(ei) by (32.15.2), and Cor. 37.3 combined with (d) implies

x2 = T (x)x − S (x)(1 − ei) = −S (x)(e j + el). □

37.5 The concept of an elementary frame. Adapting the terminology of Loos
[171, 10.12] to the present set-up, we define an elementary frame of J to be a
complete orthogonal system of elementary idempotents in J. By Prop. 37.4, an
elementary frame of J has length 3 unless k = {0}, in which case J = {0} and
the length can be arbitrary.

If (e1, e2, e3) is an elementary frame of J, then we write

J =
∑

(Jii + J jl) (1)

for the corresponding Peirce decomposition. Combining Prop. 37.2 (b) with
(32.15.2), (32.15.3), we conclude

Jii = kei, J jl = {x ∈ J | T (x) = 0, e j × x = el × x = 0}. (2)

In Exc. 32.23, we have introduced the concept of (strong) connectedness
for orthogonal systems of idempotents. In the present set-up, this concept al-
lows a natural characterization by means of data belonging exclusively to the
underlying cubic norm structure.

37.6 Proposition. Let (e1, e2, e3) be an elementary frame of J with the Peirce
decomposition J =

∑
(kei+J jl). For elements u jl ∈ J jl, the following conditions

are equivalent.
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(i) e j and el are connected (resp. strongly connected) by u jl.
(ii) S (u jl) ∈ k× (resp. S (u jl) = −1).

Proof By Cor. 37.3, we have J2(e j + el) = J0(ei) = J(M0, S 0, f ), where
M0 = J0(ei) as k-modules, S 0 = S |M0 and f = 1−ei = e j+el. Now e j and el are
connected by u jl if and only if u jl ∈ J2(e j + el)×, which by Exc. 31.33 happens
if and only if S (u jl) = S 0(u jl) ∈ k×. On the other hand, u2

jl = −S (u jl)(e j + el)
by Prop. 37.4 (f), so e j and el are strongly connected by u jl if and only if
S (u jl) = −1. □

37.7 Elementary identities in cubic Jordan matrix algebras. Let (C,Γ) be a
pre-co-ordinate pair over k as defined in 36.3. One checks that the cubic Jordan
matrix algebra Her3(C,Γ) satisfies the identities

e♯ii = 0, T (eii) = 1, eii × e j j = ell, (1)

e j j × ui[ jl] = ell × ui[ jl] = 0, eii × ui[ jl] = −ui[ jl], (2)

ui[ jl]♯ = −γ jγlnC(ui)eii, (3)

ui[ jl] ◦ v j[li] = ui[ jl] × v j[li] = γluiv j[i j], (4)

Uui[ jl]vi[ jl] = γ jγl(uiv̄iui)[ jl], (5)

Uui[ jl]e j j = γ jγlnC(ui)ell, (6)

Uui[ jl]ell = γ jγlnC(ui)e j j, (7)

{ui[ jl]u j[li]ul[i j]} = γ1γ2γ3tC(u1u2u3)e j j (8)

for all ui, vi ∈ C, i = 1, 2, 3.
We are now in a position to investigate more closely the role played by

elementary frames in cubic Jordan matrix algebras.

37.8 Proposition. Let (C,Γ) be a pre-co-ordinate pair over k. Then
(e11, e22, e33) is an elementary frame in J := Her3(C,Γ), called its diagonal
frame, whose Peirce components are given by

Jii = keii, J jl = C[ jl]. (1)

Moreover, for ui ∈ C, the orthogonal idempotents e j j and ell are connected by
ui[ jl] ∈ J jl if and only if ui ∈ C× and γ j, γl ∈ k×.

Proof That the diagonal matrix units form an elementary frame of J follows
immediately from (37.7.1) combined with Prop. 37.4. It remains to establish
(1), the first relation being obvious by (37.5.2). As to the second, let

x =
∑

(ξmemm + um[np]) ∈ J (ξm ∈ k, um ∈ C, m = 1, 2, 3).
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Then (37.5.2), (36.4.8), (37.7.1), (37.7.2) imply

x ∈ J jl ⇐⇒ T (x) = 0, e j j × x = ell × x = 0

⇐⇒
∑

ξm = 0,

ξiell + ξleii − u j[li] = 0 = ξ jeii + ξie j j − ul[i j]

⇐⇒ ξ1 = ξ2 = ξ3 = 0, u j = ul = 0

⇐⇒ x = ui[ jl]

⇐⇒ x ∈ C[ jl].

The final statement follows immediately from Prop. 37.4 (f) combined with
Exc. 32.23 and (36.4.9), which implies S (ui[ jl]) = −γ jγlnC(ui). □

37.9 Corollary. The diagonal frame of Her3(C,Γ) is connected if and only if
Γ ∈ GL3(k), i.e., (C,Γ) is a co-ordinate pair over k. □

37.10 Co-ordinate systems. By a co-ordinate system of a cubic Jordan algebra
J over k we mean a quintupleS = (e1, e2, e3, u23, u31) ∈ J5 such that (e1, e2, e3)
is an elementary frame of J, inducing the corresponding Peirce decomposition
J =

∑
(kei + J jl), and for i = 1, 2, the orthogonal idempotents e j, el are con-

nected by u jl ∈ J jl. We refer to (e1, e2, e3) as the elementary frame associated
with S. A pair (J,S) consisting of a cubic Jordan algebra J over k and a co-
ordinate system S of J will be called a co-ordinated cubic Jordan algebra.

37.11 Example. Let (C,Γ) be a co-ordinate pair over k. Then Prop. 37.8 shows
that

D(C,Γ) := (e11, e22, e33, 1C[23], 1C[31]) (1)

is a co-ordinate system of the cubic Jordan algebra Her3(C,Γ), called its diag-
onal co-ordinate system. We write

Her3(C,Γ) :=
(
Her3(C,Γ),D(C,Γ)

)
(2)

for the corresponding co-ordinated cubic Jordan algebra.

In the remainder of this section, we will show that, conversely, every co-
ordinated cubic Jordan algebra is isomorphic to a cubic Jordan matrix algebra,
under an isomorphism matching the given co-ordinate system of the former
with the diagonal one of the latter. This will be the content of the Jacobson
co-ordinatization theorem 37.17 below.

In order to accomplish this result, we fix a cubic Jordan k-algebra J, with
identity element 1, trace T , quadratic trace S , norm N, and begin with a series
of preparations.
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37.12 Lemma. We have

S (x × y, z) = T (x)T (y)T (z) − T (x, y)T (z) − T (x × y, z)

for all x, y, z ∈ J.

Proof Applying (33a.13) twice, we obtain

S (x × y, z) = T (x × y)T (z) − T (x × y, z)

= T (x)T (y)T (z) − T (x, y)T (z) − T (x × y, z),

as claimed. □

37.13 Proposition. Let (e1, e2, e3) be an elementary frame of J and J =
∑

(kei+

J jl) the corresponding Peirce decomposition of J. Then J0 :=
∑

kei is a regular
cubic subalgebra of J canonically isomorphic to E(+), where E stands for the
split cubic étale k-algebra. Moreover,

Ji j × J jl ⊆ Jli, (1)

and given

x =
∑

(ξiei + u jl), y =
∑

(ηiei + v jl) ∈ J

with ξi, ηi ∈ k, u jl, v jl ∈ J jl, i = 1, 2, 3, the following relations hold.

N(x) = ξ1ξ2ξ3 +
∑

ξiS (u jl) + T (u23 × u31, u12), (2)

x♯ =
∑((

ξ jξl + S (u jl)
)
ei +

(
−ξiu jl + uli × ui j

))
, (3)

x × y =
∑((

ξ jηl + η jξl − T (u jl, v jl)
)
ei (4)

+
(
−ξiv jl − ηiu jl + uli × vi j + vli × ui j

))
,

T (x, y) =
∑

ξiηi +
∑

T (u jl, v jl), (5)

T (x) =
∑

ξi, (6)

S (x) =
∑(

ξ jξl + S (u jl)
)
, (7)

S (x, y) =
∑(

ξ jηl + η jξl − T (u jl, v jl)
)
. (8)

Proof Relation (1) follows from Ji j × J jl = Ji j ◦ J jl (by Prop. 37.4 (e)) and
the Peirce rules. For the remaining assertions, we proceed in three steps.

1◦. Noting that J0 =
∑

kei is a direct sum of ideals by Cor. 32.16 (b), our first
aim will be to show that J0 and E(+) are canonically isomorphic. Since e♯i = 0
by definition and N(ei) = 0 by 37.1, combining equation (5) of Exc. 12.40
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with Prop. 37.4 (a) yields N(
∑
ξiei) = ξ1ξ2ξ3T (e1 × e2, e3) = ξ1ξ2ξ3T (e3, e3),

so 37.1 again yields

N
(∑

ξiei
)
= ξ1ξ2ξ3 (9)

in all scalar extensions. Thus the map φ : E(+) → J0 defined by

φ
(
(ξ1, ξ2, ξ3)

)
:=

∑
ξiei

for ξ1, ξ2, ξ3 ∈ k is an isomorphism of cubic Jordan algebras (Exc. 34.18 (b)).
Hence (34.17.4), (34.17.5) yield(∑

ξiei
)♯
=

∑
ξ jξlei, (10)

T
(∑

ξiei,
∑

ηiei
)
=

∑
ξiηi. (11)

2◦. We now apply the formalism of 35.6, derive the relation

V := X⊥0 = J23 + J31 + J12 (12)

from Prop. 37.4 (c) and recall from Remark 35.3 that (X0,V) is a comple-
mented cubic norm substructure of J, so it makes sense to compute the quad-
ratic maps Q,H of 35.6 in the special case at hand. Following (12), let

u = u23 + u31 + u12 ∈ V, u jl ∈ J jl. (13)

Since J jl ⊆ J0(ei) by (32.15.2), Prop. 37.2 (c) implies

u♯ =
(
u23 + u31 + u12

)♯
= u♯23 + u♯31 + u♯12 + u23 × u31 + u31 × u12 + u12 × u23

= S (u23)e1 + S (u31)e2 + S (u12)e3 + u23 × u31 + u31 × u12 + u12 × u23.

Combining this with (1) and (35.6.1), we deduce

Q(u) = −
∑

S (u jl)ei, (14)

H(u) =
∑

uli × ui j. (15)

We also wish to know how N acts on V = X⊥0 . Using (35b.11) (for x0 = 1),
(15) and linearizing (14), we obtain

N(u)1 = Q
(
u,H(u)

)
= −

∑
S (u jl, uli × ui j)ei,

where Lemma 37.12 and Prop. 37.4 (d) imply

S (uli × ui j, u jl) = −T (uli × ui j, u jl) = −T (u23 × u31, u12)
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since the expression T (x × y, z) is totally symmetric in its arguments. Thus

N(u) = T (u23 × u31, u12). (16)

3◦. It is now easy to complete the proof of the proposition. Combining
(35.6.3), (35.6.2) with (9), (11), (16), we obtain

N(x) = N
(∑

ξiei + u
)
= N

(∑
ξiei

)
− T

(∑
ξiei,Q(u)

)
+ N(u)

= ξ1ξ2ξ3 +
∑

ξiS (u jl) + T (u23 × u31, u12),

giving (4), and

x♯ =
(∑

ξiei + u
)♯
=

((∑
ξiei

)♯
− Q(u)

)
+

(∑
ξiei × u + H(u)

)
.

But u jl ∈ J0(ei), while uli, ui j ∈ J1(ei). Hence ei×u = −u jl by (37.2.2), (37.2.3),
Prop. 37.4 (d), and (10), (14), (15) imply

x♯ =
∑(

ξ jξl + S (u jl)
)
ei +

∑(
− ξiu jl + uli × ui j

)
,

giving (3), which by Prop. 37.4 (d) and (33a.13) linearizes to (4). Applying
Prop. 37.4 (c), we obtain (5), which immediately implies (6) and combines
with (3) to yield (7). Linearizing (7), we obtain

S (x, y) =
∑(

ξ jηl + η jξl + S (u jl, v jl)
)
.

Since T (u jl) = 0 by (6), we deduce S (u jl, v jl) = −T (u jl, v jl) from (33a.13), and
(8) follows. □

37.14 Lemma. Under the assumptions of Prop. 37.13, the relations

S (u jl, v jl) = −T (u jl, v jl), (1)

u jl × (u jl × uli) = −S (u jl)uli, (2)

(uli × ui j) × ui j = −S (ui j)uli, (3)

u jl × (v jl × uli) + v jl × (u jl × uli) = T (u jl, v jl)uli, (4)

(uli × ui j) × vi j + (uli × vi j) × ui j = T (ui j, vi j)uli, (5)

S (u jl × uli) = −S (u jl)S (uli) (6)

hold for all u jl, v jl ∈ J jl, uli ∈ Jli.

Proof (1) is an immediate consequence of (37.13.8). In order to establish (2),
we first note Jli ⊆ J1(e j + el), J jl ⊆ J2(e j + el). Hence Prop. 37.4 combined
with (37.13.1) and Exc. 32.20 yields

u jl × (u jl × uli) = u jl ◦ (u jl ◦ uli) = u2
jl ◦ uli = −S (u jl)(e j + el) ◦ uli = −S (u jl)uli,

hence (2). An analogous computation yields (3). Linearizing (2) (resp. (3)) and
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combining with (1) gives (4) (resp. (5)). Finally, in order to establish (6), we
apply (33a.10) to conclude

S (u jl × uli) = T
(
(u jl × uli)♯

)
= T

(
T (u♯jl, uli)uli + T (u jl, u

♯
li)u jl − u♯jl × u♯li

)
,

which by Prop. 37.13 reduces to

S (u jl × uli) = −S (u jl)S (uli)T (ei × e j) = −S (u jl)S (uli)T (el) = −S (u jl)S (uli),

as claimed. □

37.15 Proposition. Let (J,S) be a co-ordinated cubic Jordan algebra over
k, with S = (e1, e2, e3, u23, u31) the corresponding co-ordinate system, and let
J =

∑
(kei + J jl) be the Peirce decomposition of J relative to the elementary

frame belonging to S. Then S (u jl) ∈ k× for i = 1, 2, and with

ω := ωJ,S := S (u23)−1S (u31)−1 ∈ k×, (1)

the k-module

C := CJ,S := J12 (2)

becomes a multiplicative conic alternative k-algebra with multiplication, norm,
unit element, trace, conjugation respectively given by

uv := ω(u × u23) × (u31 × v), (3)

nC(u) = −ωS (u), (4)

nC(u, v) = ωT (u, v), (5)

1C = u12 := u23 × u31, (6)

tC(u) = ωT (u12, u), (7)

ū = ωT (u12, u)u12 − u (8)

for all u, v ∈ C. Moreover,

(C,Γ) = (CJ,S,ΓJ,S) =: Cop(J,S) (9)

with

Γ := ΓJ,S := diag(γ1, γ2, γ3), γ1 = −S (u31), γ2 = −S (u23), γ3 = 1. (10)

is a co-ordinate pair over k, called the co-ordinate pair associated with (J,S).

Proof We have S (u jl) ∈ k× by Prop. 37.6; in particular, ω ∈ k× exists, and
(3) by (37.13.1) defines a non-associative algebra structure on C = J12. It
remains to show that C is a multiplicative conic alternative algebra with norm,
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bilinearized norm, unit element, trace, conjugation as indicated. Let u, v ∈ C.
The element u12 ∈ C by (37.14.1), (37.14.3) satisfies

u12v = ω
(
(u23 × u31) × u23

)
× (u31 × v)

= −S (u23)ωu31 × (u31 × v) = S (u23)S (u31)ωv = v

and

uu12 = ω(u × u23) ×
(
u31 × (u23 × u31)

)
= −S (u31)ω(u × u23) × u23 = S (u23)S (u31)ωu = u.

Thus C is unital with unit element 1C = u12, and (6) holds. Defining the
quadratic form nC : C → k by (4), we apply (37.14.6) to derive the relation
nC(1C) = −ωS (u23 × u31) = ωS (u23)S (u31), and (1) yields

nC(1C) = 1. (11)

Moreover, linearizing (4) and observing (33.2.10) gives (5) since the linear
trace of J by (37.13.6) vanishes on the off-diagonal Peirce components. In
order to distinguish the squaring in J from the one in C, we write u·2 for the
latter. Applying Lemma 37.14, (33a.7), (1), we then obtain

u·2 = ω(u × u23) × (u31 × u)

= ωT (u23, u31 × u)u − ω
(
u × (u31 × u)

)
× u23

= ωT (u12, u)u + ωS (u)u31 × u23 = ωT (u12, u)u − nC(u)1C ,

where (5) yields nC(1C , u) = ωT (u12, u). Thus C is a conic k-algebra with
norm, bilinearized norm, unit, trace given by (4)–(7), respectively. Relation (8)
is now clear. Next we show alternativity, again by appealing to the relations of
Lemma 37.14 and (7):

u(uv) = ω2(u × u23) ×
(
u31 ×

(
(u × u23) × (u31 × v)

))
= ω2T (u31, u × u23)(u × u23) × (u31 × v)−

ω2(u × u23) ×
(
(u × u23) ×

(
u31 × (u31 × v)

))
= tC(u)uv − ω2S (u × u23)S (u31)v = tC(u)uv + ω2S (u23)S (u31)S (u)v

= tC(u)uv − nC(u)v =
(
tC(u)u − nC(u)1C

)
v = u·2v
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and

(vu)u = ω2
((

(v × u23) × (u31 × u)
)
× u23

)
× (u31 × u)

= ω2T (u23, u31 × u)(v × u23) × (u31 × u)−

ω2
((

(v × u23) × (u31 × u)
)
× (u31 × u)

)
× u23

= tC(u)vu − ω2S (u31 × u)S (u23)v = tC(u)vu + ω2S (u31)S (u23)S (u)v

= tC(u)vu − nC(u)v = v
(
tC(u)u − nC(u)1C

)
= vu·2.

Finally, by (37.14.6), (3), (4), the norm of C permits composition:

nC(uv) = −ω3S
(
(u × u23) × (u31 × v)

)
= ω3S (u × u23)S (u31 × v) = ω2S (u)S (v) = nC(u)nC(v).

Summing up we have thus shown that C is a multiplicative conic alternative
algebra over k. □

37.16 Example. Letting (C,Γ) with Γ = diag(γ1, γ2, γ3) ∈ GL3(k) be a co-
ordinate pair over k, we consider the co-ordinated cubic Jordan algebra

(J,S) = Her3(C,Γ) =
(
Her3(C,Γ),D(C,Γ)

)
of (37.11.2). Combining Prop. 37.15 with (37.7.4) and (36.4.9), one checks
that

ωJ,S = (γ1γ2γ
2
3)−1 (1)

and

φ : C
∼
−→ CJ,S, u 7−→ γ3u[12] (2)

is an isomorphism of conic algebras.

37.17 Jacobson Co-ordinatization Theorem. Let (J,S) be a co-ordinated
cubic Jordan algebra over k. With the notation of Prop. 37.15, the map

ϕJ,S : Her3(C,Γ)→ J

defined by

ϕJ,S(x) :=
∑

(ξiei + v jl), (1)

for

x =
∑

(ξieii + vi[ jl]) ∈ Her3(C,Γ) (ξi ∈ k, vi ∈ C, i = 1, 2, 3), (2)

where

v23 := −S (u31)−1u31 × v̄1, v31 := −S (u23)−1u23 × v̄2, v12 := v3, (3)
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is an isomorphism of cubic Jordan algebras matching the diagonal co-ordinate
system of Her3(C,Γ) with the co-ordinate system S of J.

Proof Note by (37.15.2) that C = J12 as k-modules. Since the conjugation of
any conic algebra leaves its norm invariant, (37.15.4) shows

S (v̄) = S (v) (v ∈ C = J12). (4)

Putting ϕ := ϕJ,S and defining ψ : J → Her3(C,Γ) by

ψ
(∑

(ξiei + v jl)
)

:=
∑

(ξieii + vi[ jl])

for ξi ∈ k, v jl ∈ J jl, i = 1, 2, 3, where

v1 := u31 × v23, v2 := u23 × v31, v3 := v12,

(37.14.2), (37.14.3) imply ϕ ◦ ψ = 1J and ψ ◦ ϕ := 1Her3(C,Γ). Thus ϕ is a
bijective linear map. It remains to show that ϕ is a homomorphism of cubic
Jordan algebras. Since ϕ obviously preserves unit elements, the assertion will
follow from Exc. 34.18 (a) once we have shown that ϕ preserves adjoints. In
order to do so, we denote by x♯

′

the adjoint of x ∈ Her3(C,Γ) as given by (2)
and deduce from (36.4.4) that

x♯
′

=
∑

(ηieii + wi[ jl]), (5)

where

ηi = ξ jξl − γ jγlnC(vi), (6)

wi = −ξivi + γiv jvl. (7)

Hence (2), (3) imply

ϕ(x♯
′

) =
∑

(ηiei + w jl), (8)

where

w23 := −S (u31)−1u31 × w̄1, w31 := −S (u23)−1u23 × w̄2, w12 := w3. (9)

Before we can proceed, we require the identity

S (v jl) = −γ jγlnC(vi), (10)

which follows by combining (3), (4) with (37.14.6), (37.15.1), (37.15.4) and
(37.15.10), and with the computations

S (v23) = S (u31)−2S (u31 × v̄1) = −S (u31)−1S (v1)

= −S (u23)ωS (v1) = −γ2γ3nC(v1),
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S (v31) = S (u23)−2S (u23 × v̄2) = −S (u23)−1S (v2)

= −S (u31)ωS (v2) = −γ3γ1nC(v2),

and

S (v12) = S (v3) = −ω−1nC(v3) = −γ1γ2nC(v3).

Applying (10) and (6), we now conclude

ηi = ξ jξl + S (v jl). (11)

On the other hand, combining (9), (7), (3), (37.15.10) gives

w23 = −S (u31)−1u31 × w̄1 = S (u31)−1ξ1u31 × v̄1 − S (u31)−1γ1u31 × (v2v3)

= −ξ1v23 + u31 × (v2v3),

where Lemma 37.14 and Prop. 37.15 imply

u31 × (v2v3) = ωu31 ×
(
(v2 × u23) × (u31 × v3)

)
= ωT (u31, v2 × u23)u31 × v3 − ω(v2 × u23) ×

(
u31 × (u31 × v3)

)
= tC(v2)u31 × v3 + S (u23)−1(v2 × u23) × v3

= −S (u23)−1(tC(v2)(u23 × u31) × u23 − v2 × u23
)
× v3

= −S (u23)−1
((

tC(v2)1C − v2
)
× u23

)
× v3

= −S (u23)−1(u23 × v̄2) × v3 = v31 × v12.

Summing up,

w23 = −ξ1v23 + v31 × v12.

Similarly,

w31 = −S (u23)−1u23 × w̄2 = ξ2S (u23)−1u23 × v̄2 − S (u23)−1γ2u23 × (v3v1)

= −ξ2v31 + u23 × (v3v1),

where

u23 × (v3v1) = ωu23 ×
(
(v3 × u23) × (u31 × v1)

)
= ωT (u23, u31 × v1)v3 × u23 − ω(u31 × v1) ×

(
(v3 × u23) × u23

)
= tC(v1)v3 × u23 + S (u31)−1(u31 × v1) × v3

= −S (u31)−1(tC(v1)(u23 × u31) × u31 − u31 × v1
)
× v3

= −S (u31)−1
((

tC(v1)1C − v1
)
× u31

)
× v3

= −S (u31)−1(v̄1 × u31) × v3 = v23 × v12.
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Thus

w31 = −ξ2v31 + v12 × v23.

Since

w12 = w3 = −ξ3v3 + γ3v1v2 = −ξ3v12 + v̄2v̄1

= −ξ3v12 + ω(v̄2 × u23) × (u31 × v̄1) = −ξ3v12 + v23 × v31,

our computations can be unified to

w jl = −ξiv jl + vli × vi j. (12)

Inserting (11) and (12) into (8), we may apply (37.13.3) and (1) to obtain

ϕ(x♯
′

) =
∑(

ξ jξl + S (v jl)
)
ei +

∑(
−ξiv jl + vli × vi j

)
=

(∑
ξiei +

∑
v jl

)♯
= ϕ(x)♯.

Hence ϕ preserves adjoints and thus is an isomorphism of cubic Jordan alge-
bras.

It remains to show that ϕmatches the respective co-ordinate systems. To this
end, we have to prove ϕ(1C[ jl]) = u jl for i = 1, 2, which follows from (1), (3),
(37.14.2), (37.15.6) and

ϕ(1C[23]) = −S (u31)−1u31 × 1C = −S (u31)−1u31 × (u23 × u31) = u23,

ϕ(1C([31]) = −S (u23)−1u23 × 1C = −S (u23)−1u23 × (u23 × u31) = u31,

completing the proof of the entire theorem. □

37.18 Remark. Versions of the Jacobson co-ordinatization theorem which in
many ways are much more general than the one presented here may be found
in the literature, see, e.g., Jacobson [136, 137, 140] and McCrimmon [181] for
details. Given any integer m ≥ 3, the most important difference is that instead
of co-ordinate pairs one has to consider quadruples (D, τ,D0,∆) consisting of

• a unital alternative k-algebra D,
• an involution τ : D→ D,
• a unital subalgebra D0 of H(D, τ) contained in the nucleus of D and being

D-ample in the sense that uD0τ(u) ⊆ D0 for all u ∈ D,
• and an invertible diagonal matrix ∆ ∈ Matm(D0).

With considerable effort, it can then be shown that the k-module

Herm(D, τ,D0,∆)

of all ∆-twisted m-by-m hermitian matrices with entries in D and diagonal ones
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in D0, carries the structure of a Jordan algebra over k provided m = 3 or D is
associative. Conversely, given a Jordan algebra J over k whose extreme radical
is zero and a connected orthogonal system Ω = (e1, . . . , em) of idempotents
in J, the Jacobson co-ordinatization theorem says that there exist a quadru-
ple (D, τ,D0,∆) as above and an isomorphism from J onto Herm(D, τ,D0,∆)
matching the orthogonal system Ω of the former with the diagonal one of the
latter.

Here the condition on the extreme radical, being automatic for the algebras
Herm(D, τ,D0,∆), cannot be avoided. One may therefore wonder why it is ab-
sent from our version of the Jacobson co-ordinatization theorem. The answer
rests on our formal definition of cubic Jordan matrix algebras in 36.4, 36.6
which, for a co-ordinate pair (C,Γ), allows a concrete base change invariant
interpretation of Her3(C,Γ) in terms of Γ-twisted hermitian matrices only if
1C ∈ C is unimodular. Indeed, dropping this hypothesis, the extreme radical
of Her3(C,Γ) may very well be different from zero, while otherwise it is not
(Exc. 37.31).

Exercises
37.19. Idempotents in cubic Jordan algebras. Let J be a cubic Jordan algebra over k.
An idempotent e ∈ J is said to be co-elementary if the complementary idempotent 1− e
is elementary. Now let e be any idempotent in J. Prove that there exists a complete
orthogonal system (ε(i))0≤i≤3 of idempotents in k, giving rise to decompositions

k = k(0) × k(1) × k(2) × k(3), J = J(0) × J(1) × J(2) × J(3)

as direct products of ideals, where k(i) = ε(i)k, J(i) = ε(i) J = Jk(i) as cubic Jordan algebras
over k(i) for 0 ≤ i ≤ 3, such that

e = (0, e(1), e(2), 1J(3) ),

where e(1) is an elementary idempotent of J(1) and e(2) is a co-elementary idempotent of
J(2). Show further that the ε(i) are unique and given by

ε(0) = N(1 − e) = 1 − T (e) + S (e) − N(e), (1)

ε(1) = T (e) − 2S (e) + 3N(e), (2)

ε(2) = S (e) − 3N(e), (3)

ε(3) = N(e). (4)

37.20. Ferrar’s lemma ([74, Lemma 1.10]). Let u1, u2, u3 be elements of a cubic Jordan
algebra J over k such u♯i = 0 for i = 1, 2, 3. Prove that q :=

∑
ui is invertible in J if and

only if T (u1 ×u2, u3) is invertible in k, and that, in this case, (u1, u2, u3) is an elementary
frame in the isotope J(p), p := q−1. Conclude that three elementary idempotents in J
adding up to 1 form an elementary frame of J.

37.21. Cubic nil ideals and the lifting of elementary idempotents. Let J be a cubic
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Jordan algebra over k. A cubic ideal (a, I) in J in the sense of Exc. 34.21 is said to be
nil if the ideals a ⊆ k and I ⊆ J are both nil.

(a) Show that (Nil(k),Nil(J)) is a cubic nil ideal in J.
(b) Assume that (a, I) is a separated cubic nil ideal in J, write σ : K → k0 := k/a,

π : J → J0 := J/I for the canonical projections , view J0 as a cubic Jordan
algebra over k0 via Exc. 34.21 and let e0 ∈ J0 be an elementary idempo-
tent. Prove that every idempotent in π−1(e0) (whose existence is guaranteed
by Exc. 28.22 (c) and Prop. 29.16) is elementary.

37.22. Let (C,Γ) and (C,Γ′) with

Γ = diag(γ1, γ2, γ3), Γ′ = diag(γ′1, γ
′
2, γ

′
3) ∈ Diag3(k)×

be two co-ordinate pairs over k.

(a) View Diag3(k) via 34.17 as the split cubic étale k-algebra and consider the follow-
ing conditions, for any ∆ = diag(δ1, δ2, δ3) ∈ Diag3(k)×.

(i) γ′jγ
′
l = δ

2
i γ jγl for i = 1, 2, 3 and γ′1γ

′
2γ
′
3 = δ1δ2δ3γ1γ2γ3, i.e., Γ′♯ = ∆2Γ♯ and

N(Γ′) = N(∆)N(Γ).
(ii) γ′i = δ jδlδ

−1
i γi for i = 1, 2, 3, i.e., Γ′ = ∆♯∆−1Γ.

(iii) The map

φC,∆ : Her3(C,Γ)
∼
−→ Her3(C,Γ′)

defined by

φC,∆
(∑

(ξieii + ui[ jl])
)
=

∑(
ξieii + (δ−1

i ui)[ jl]
)

(1)

for ξi ∈ k, ui ∈ C, i = 1, 2, 3 is an isomorphism of cubic Jordan algebras.
Show that the implications

(i) ⇐⇒ (ii) =⇒ (iii)

hold, and that all three conditions are equivalent if 1C ∈ C is unimodular.

(b) Call two cubic matrix Jordan algebras diagonally isomorphic if there exists an
isomorphism from one to the other that is diagonal in the sense that it matches the
respective diagonal frames. Then conclude from (a) that the diagonal isomorphism class
of Her3(C,Γ) does not change if
(i) Γ is multiplied by an invertible scalar,
(ii) each diagonal entry of Γ is multiplied by an invertible square,
(iii) Γ is replaced by an appropriate diagonal matrix in Mat3(k) of determinant 1.

37.23. Diagonal isotopes of cubic Jordan matrix algebras. Let (C,Γ) be a co-ordinate
pair over k. Prove that

p :=
∑

γieii ∈ Her3(C,Γ)

is invertible and that the map

φ : Her3(C,Γ)(p) ∼
−→ Her3(C)

defined by

φ
(∑

(ξieii + ui[ jl])
)

:=
∑(

(γiξi)eii + (γ jγlui)[ jl]
)

(1)
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for ξi ∈ k, ui ∈ C, i = 1, 2, 3 is an isomorphism of cubic Jordan algebras.

37.24. Isotopes of pre-co-ordinate pairs (McCrimmon [185, Thm. 3]). Let (C,Γ) be a
pre-co-ordinate pair over k and p, q ∈ C×. Put

Γ(p,q) := diag(γ(p,q)
1 , γ

(p,q)
2 , γ

(p,q)
3 ) := diag

(
nC(q)γ1, nC(p)γ2, nC(pq)−1γ3

)
,

so that
(C,Γ)(p,q) := (C(p,q),Γ(p,q))

is a pre-co-ordinate pair over k, and show that the map

φ : Her3(C(p,q),Γ(p,q))
∼
−→ Her3(C,Γ)

defined by

φ
(∑

(ξieii + ui[ jl])
)

:=
∑

(ξieii + u′i [ jl]) (1)

for ξi ∈ k, ui ∈ C, i = 1, 2, 3, where

u′1 := u1 p, u′2 := qu2, u′3 := (pq)u3(pq), (2)

is a diagonal isomorphism of cubic Jordan algebras. Conclude that the cubic Jordan
matrix algebras

Her3(C,Γ) and Her3(C(p,q),Γ′), Γ′ = diag
(
nC(p)γ1, nC(q)γ2, γ3

)
(3)

are isomorphic.

37.25. Let (C,Γ) be a co-ordinate pair over k, Show that the cubic Jordan matrix algebra
J = Her3(C,Γ) over k is outer central in the sense of Exc. 28.24.

37.26. Ideals of cubic Jordan matrix algebras. Let (C,Γ) be a co-ordinate pair over k
and suppose 1C ∈ C is unimodular, so that we obtain a natural identification k ⊆ C as a
unital subalgebra which is stable under base change. Prove:

(a) The outer ideals of the Jordan algebra J := Her3(C,Γ) are precisely of the form

H3(I0, I,Γ) :=
∑

(I0eii + I[ jl]) = {
∑

(ξieii + ui[ jl]) | ξi ∈ I0, ui ∈ I, 1 ≤ i ≤ 3}, (1)

where I is an ideal in (C, ιC) (viewed as an algebra with involution) and I0 is an ideal
in k, contained in I ∩ k and weakly I-ample in the sense that it contains the trace of
arbitrary elements in I:

tC(I) ⊆ I0 ⊆ I ∩ k. (2)

(b) The ideals of J are precisely of the form (1), where I as in (a) is an ideal in (C, ιC)
and I0 is an ideal in k, contained in I ∩ k and I-ample in the sense that it contains norm
and trace of arbitrary elements in I:

knC(I) + tC(I) ⊆ I0 ⊆ I ∩ k. (3)

(c) For I0, I as in (a), we have 2(I ∩ k) ⊆ I0, hence I0 = I ∩ k if 2 ∈ k×.

(d) If C is a regular composition algebra, then the outer ideals of J are ideals and have
the form aJ with a varying over the ideals of k. Conclude that a homomorphism ϕ : J →
A of para-quadratic algebras is injective provided the base point of A is unimodular.
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(e) If k = F is a field and C is a pre-composition algebra over F, then the outer ideals
of J = Her3(C,Γ) are precisely of the form {0}, Rad(T ) (the radical of the bilinear
trace), and J. In particular, J is a simple Jordan algebra. Moreover, J is outer simple if
and only if C is a regular composition algebra over F.

37.27. Absolute zero divisors in cubic Jordan algebras. Let J be a cubic Jordan algebra
over k.

(a) Show that if x ∈ J is an absolute zero divisor, then so is x♯.
(b) Assume that k is reduced and consider the following conditions on x ∈ J.

(i) x is an absolute zero divisor.
(ii) x♯ = 0 and T (x, y) = 0 for all y ∈ J.
(iii) N(x) = 0 and T (x, y) = 0 for all y ∈ J.
Then prove that the implications

(i) ⇐⇒ (ii) =⇒ (iii)

hold.
(c) Prove that every absolute zero divisor of J is contained in the nil radical of J.
(d) (Weiss) Show that, contrary to what has been claimed in Petersson-Racine

[226, p. 214], conditions (i), (ii), (iii) of part (b) are not equivalent, even if
k = F is a field and J is a simple Jordan algebra.

(e) Show that the nil radical of J is zero if and only if k is reduced and J has no
absolute zero divisors.

37.28 Remark. Part (c) of this exercise holds, more generally, for arbitrary Jordan al-
gebras [140, Prop. 4.6.2].

37.29. The nil radical of Peirce components. Let J be a cubic Jordan algebra over k.
Prove

Nil
(
Ji(e)

)
= Ji(e) ∩ Nil(J) (i = 0, 2)

for all idempotents e ∈ J. (Hint: Exc. 37.19.)

37.30. Reducing cubic Jordan matrix algebras modulo their nil radical. Let (C,Γ) be a
co-ordinate pair over k and suppose 1C ∈ C is unimodular. Prove

knC
(
Nil(C)

)
+ tC

(
Nil(C)

)
⊆ Nil(k) = Nil(C) ∩ k, (1)

Nil
(
Her(C,Γ)

)
= H3

(
Nil(k),Nil(C),Γ

)
, (2)

using the notation and conventions of Exc. 37.26. Writing σ : k → k0 := k/Nil(k),
π : C → C0 := C/Nil(C) for the canonical projections and Γ0 ∈ GL3(k0) for the image
of Γ under σ, show further that (C0,Γ0) is a co-ordinate pair over k0, and there is a
canonical identification

Her3(C,Γ)/Nil
(
Her3(C,Γ)

)
= Her3(C0,Γ0)

as cubic Jordan algebras over k0 in the sense of Exercises 16.24 and 34.21 such that∑
(αieii + ui[ jl]) mod Nil

(
Her3(C,Γ)

)
=

∑(
σ(αi)eii + π(ui)[ jl]

)
for all αi ∈ k, ui ∈ C, i = 1, 2, 3.
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37.31. The extreme radical of co-ordinated cubic Jordan algebras. Assume we are
given a co-ordinate system S = (e1, e2, e3, u23, u31) of a cubic Jordan algebra J over
k and write J =

∑
(kei+ J jl) for the Peirce decomposition of J relative to the elementary

frame (e1, e2, e3). Prove without recourse to the Jacobson co-ordinatization theorem that
the extreme radical of J may be described as

Rex(J) =
{∑

ξiei | ξi ∈ k, ξi Ji j = {0} for i = 1, 2, 3
}

(1)

⊆
{∑

ξiei | ξ
2
i = 2ξi = 0 for i = 1, 2, 3

}
.

Conclude for a co-ordinate pair (C,Γ) over k that the extreme radical of Her3(C,Γ) is
zero if 1C ∈ C is unimodular but not in general.

37.32. A categorical set-up for the Jacobson co-ordinatization theorem. (a) Let (C,Γ)
and (C′,Γ′) be co-ordinate pairs over k. We define a homomorphism from (C,Γ) to
(C′,Γ′) as a pair (η,∆) consisting of

(i) a homomorphism η : C → C′ of conic k-algebras,
(ii) a matrix ∆ ∈ Diag3(k)× such that Γ′ = ∆♯∆−1Γ.

In this way we obtain the category of co-ordinate pairs over k, denoted by k-copa.

(b) Let (J,S) and (J′,S′) be co-ordinated cubic Jordan algebras over k and write

S = (e1, e2, e3, u23, u31) ∈ J5, S
′ = (e′1, e

′
2, e
′
3, u

′
23, u

′
31) ∈ J′5.

We define a homomorphism from (J,S) to (J′,S′) as a triple (φ; δ1, δ2) consisting of
(iii) a homomorphism φ : J → J′ of cubic Jordan algebras satisfying φ(ei) = e′i for

i = 1, 2, 3,
(iv) scalars δ1, δ2 ∈ k× such that φ(u jl) = δ−1

i u′jl for i = 1, 2.

In this way we obtain the category of co-ordinated cubic Jordan algebras over k, denoted
by k-cocujo.

(c) Let (η,∆) : (C,Γ) → (C′,Γ′) with ∆ = diag(δ1, δ2, δ3) ∈ Diag3(k)× be a homomor-
phism of co-ordinate pairs over k. Define

Her3(η,∆) : Her3(C,Γ) −→ Her3(C′,Γ′)

by

Her3(η,∆)
(∑

(ξieii + ui[ jl])
)

:=
∑(

ξieii +
(
δ−1

i η(ui)
)
[ jl]

)
(1)

for ξi ∈ k, ui ∈ C, i = 1, 2, 3 and show in the notation of 37.11 that

Her3(η,∆) := (Her3(η,∆); δ1, δ2) : Her3(C,Γ) −→ Her3(C′,Γ′)

is a homomorphism of co-ordinated cubic Jordan algebras over k, giving rise to a func-
tor

Her3 : k-copa −→ k-cocujo.

(d) Let (φ; δ1, δ2) : (J,S)→ (J′,S′) be a homomorphism of co-ordinated cubic Jordan
algebras over k. Write J =

∑
(kei + J jl) for the Peirce decomposition of J relative to

the elementary frame belonging to S, ditto for J′, and φ12 for the linear map J12 → J′12
induced by φ via restriction. Then prove that

Cop(φ; δ1, δ2) : Cop(J,S) −→ Cop(J′,S′),
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where

Cop(φ; δ1, δ2) := (δ1δ2φ12,∆), ∆ = diag(δ1, δ2, δ3), δ3 := δ1δ2, (2)

is a homomorphism of co-ordinate pairs over k, giving rise to a functor

Cop: k-cocujo −→ k-copa.

(e) Let (C,Γ) be a co-ordinate pair over k and put

(C′,Γ′) := Cop
(
Her3(C,Γ)

)
. (3)

Show C′ = C[12] as k-modules and that

ΨC,Γ := (ψC,Γ,ΛC,Γ) : (C,Γ)
∼
−→ (C′,Γ′),

where

ψC,Γ : C −→ C′, u 7−→ γ3u[12], (4)
ΛC,Γ := diag(λ1, λ2, λ3), λ1 = λ2 = 1, λ3 = γ3, (5)

is an isomorphism of co-ordinate pairs over k.

(f) Let (J,S) be a co-ordinated cubic Jordan algebra over k and put

(J′,S′) := Her3
(
Cop(J,S)

)
. (6)

Show with the terminology of Thm. 37.17 that

ΦJ,S := (ϕJ,S; 1, 1) : (J′,S′)
∼
−→ (J,S) (7)

is an isomorphism of co-ordinated cubic Jordan algebras.

(g) Conclude that the functors

k-copa
Her3 // k-cocujo
Cop

oo

give an equivalence of categories.

38 Jordan algebras of degree three

We have seen in 34.15 that the forgetful functor from cubic Jordan algebras to
arbitrary ones (34.1), though faithful, is not a full embedding. In the present
section, this difficulty will be overcome by passing to a full subcategory of
cubic Jordan algebras whose objects are called Jordan algebras of degree 3.
Indeed, one of our main results (Thm. 38.13) says that, under suitable restric-
tions, the cubic norm structure underlying a Jordan algebra of degree three is
unique. In order to prove this, we rely on the method of faithfully flat descent
combined with an explicit description (Thm. 38.11) of cubic Jordan algebras
with elementary idempotents in terms of pointed quadratic modules and what
we call their admissible Peirce-one extensions.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

38 Jordan algebras of degree three 383

The results of this section could have been obtained in more elegant a man-
ner, and in greater generality to boot, by appealing to the theory of generi-
cally algebraic Jordan algebras over commutative rings [174], see 38.15 below
for more on this connection. Instead, we have preferred the ad hoc approach
adopted here because, within the framework of the present volume, it is essen-
tially self-contained.

Before introducing the main concept of the present section, we remind the
reader that a cubic Jordan algebra is a Jordan algebra J together with a (quite
often notationally suppressed) cubic form NJ : J → k satisfying the conditions
of 34.1. If we ignore this cubic form, equivalently, if we pass from J ∈ k-cujo
to its image in k-jord under the forgetful functor k-cujo→ k-jord, we say that
J is viewed as an abstract Jordan algebra.

38.1 The concept of a Jordan algebra of degree three.

(a) Let J be a unital para-quadratic algebra over k in the sense of 28.2. We
define a family of set maps

ΞJ
R : JR −→

∧3
(JR) =

(∧3
(J)

)
R,

one for each R ∈ k-alg, by setting

ΞJ
R(x) := 1JR ∧ x ∧ x2 (1)

for all x ∈ JR. Using (21.4.2), (21.4.3), one checks that this family is a homo-
geneous cubic polynomial law ΞJ : J →

∧3(J) over k that is compatible with
base change in the sense that

ΞJR = ΞJ ⊗ R (2)

for all R ∈ k-alg.

(b) By a Jordan algebra of degree 3 over k we mean a Jordan algebra J over k
with the following properties.

(i) There exists a cubic form N : J → k making J a cubic Jordan algebra.
(ii) The set maps ΞJ

K : JK →
∧3(JK) as defined in (1) are different from

zero for all algebraically closed fields K ∈ k-alg.

In this case, we also say that the Jordan algebra J has degree 3. Intuitively
speaking, condition (i) says that the degree of J is at most 3, while condition
(ii) says it cannot be smaller. One might refer to (ii) as the “anti-Dickson con-
dition”, because it is in some sense opposite to the Dickson condition defined
in Exc. 16.22. Also, condition (ii) is equivalent to

(ii′) The set maps ΞJ
K : JK →

∧3(JK) as defined in (1) are different from
zero for all infinite fields K ∈ k-alg.
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Our principal aim in this section will be to show that, under suitable restric-
tions for a Jordan algebra J of degree 3, the cubic form N in (i) is uniquely
determined by the algebra structure of J alone.

38.2 Proposition. (a) Let J be a Jordan algebra of degree 3 over k. Then JR

is a Jordan algebra of degree 3 over R, for any R ∈ k-alg.

(b) Let J be a cubic Jordan algebra over k and suppose R is a faithfully flat
k-algebra. If the abstract Jordan algebra JR has degree 3 over R, then the
abstract Jordan algebra J has degree 3 over k.

Proof (a) This follows immediately from (38.1.2).
(b) Let N : J → k be a cubic form over k making J a cubic Jordan k-algebra.

Then N ⊗ R : JR → R is a cubic form over R making JR a cubic Jordan R-
algebra. Let K ∈ k-alg be an algebraically closed field and apply Exc. 9.26 to
find an algebraically closed field L ∈ R-alg that is also an extension field of
K. Since L ∈ R-alg and JR has degree 3 over R, the set map ΞJR

L is different
from zero. But we also have L ∈ K-alg, its induced k-algebra structure by the
diagram in Exc. 9.26 being the same as the one induced from L ∈ R-alg. Hence
Ξ

JK
L = Ξ

J
L = Ξ

JR
L , 0. Assuming now ΞJK

K = 0, Exc. 12.35 (a) implies ΞJK = 0
as a polynomial law over K, a contradiction. Thus ΞJ

K = Ξ
JK
K , 0, whence J

has degree 3 over k. □

38.3 Remark. Prop. 38.2 (b) does not claim that Jordan algebras of degree 3 are
stable under faithfully flat descent because it rests on the overall assumption
that J is a cubic Jordan algebra to begin with, and cubic Jordan algebras are
not stable under faithfully flat descent (Exc. 34.27). Under comparatively mild
restrictions, however, this difficulty will be resolved in Cor. 38.14 below.

38.4 Lemma (Racine [242]). Let F be a field and J a cubic Jordan F-algebra
whose nil radical is zero. For 0 , u ∈ J, the following conditions are equiva-
lent.

(a) u2 = 0.
(b) u is nilpotent and there exists an elementary idempotent e ∈ J such that

u ∈ J0(e).

Proof (a) ⇒ (b). With the usual abbreviations, we have T (u) = S (u) =
N(u) = 0 by Exc. 34.23, and (33a.22) implies u♯ = 0. Since Nil(J) = {0}, the
same exercise shows T (u, v) = 1 for some v ∈ J. Put w := u× v. Then (33a.13)
implies T (w) = T (u)T (v) − T (u, v) = −1, hence in particular w , 0. On the
other hand, from (33a.10) we deduce w♯ = T (u♯, v)v + T (u, v♯)u − u♯ × v♯ =
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T (u, v♯)u, hence S (w) = N(w) = 0. Now put e := w♯ − w. Then T (e) = 1, and
(33a.14) combined with the adjoint identity yields

e♯ = (w♯ − w)♯ = w♯♯ − w♯ × w + w♯

= N(w)w −
(
T (w)S (w) − N(w)

)
1 + S (w)w + T (w)w♯ + w♯ = 0.

Thus e is an elementary idempotent in J. Applying (33a.28), we obtain e× u =
w♯ × u − w × u = 2T (u, v♯)u♯ − u × (u × v) = T (u × v)u = T (u)u − u, hence
u ∈ J0(e) by (37.2.3).

(b)⇒ (a). Cor. 37.3 shows that u is a nilpotent element in a Jordan F-algebra
of Clifford type. Hence u2 = 0 by Exc. 29.21. □

38.5 Proposition (cf. Racine [242, Lemma 1]). For a cubic Jordan algebra J
over a field F and I := Nil(J), the following conditions are equivalent.

(i) J/I is not a Jordan division algebra.
(ii) There exists an element u ∈ J \ I such that u♯ ∈ I.
(iii) J contains an elementary idempotent.

Proof By Exercises 34.21 (c) and 37.21 (a), J̄ := J/I carries the unique struc-
ture of a cubic Jordan algebra over F such that the canonical projection x 7→ x̄
from J to J̄ is a homomorphism of cubic Jordan algebras.

(i) ⇒ (ii). Since J̄ is non-zero, there exists an element x ∈ J \ I such that
x̄ ∈ J̄ is not invertible. But then neither is x ∈ J, by Prop. 31.5. Hence N(x) = 0,
and the adjoint identity implies x♯♯ = 0. Thus u = x or u = x♯ satisfies (ii).

(ii) ⇒ (iii). Since elementary idempotents in J̄ can be lifted to elementary
idempotents in J, by Exc. 37.21 (b), we may assume I = {0}, i.e., J = J̄. By
(ii), therefore, some non-zero u ∈ J has u♯ = 0. If T (u) , 0, then T (u)−1u is an
elementary idempotent in J, so we may assume T (u) = 0, which implies u2 = 0
by (33a.22). Hence the implication (ii)⇒(iii) follows from Lemma 38.4.

(iii)⇒ (i). Assume J̄ is a Jordan division algebra. Then the elementary idem-
potent ē ∈ J̄ is invertible, forcing NJ̄(ē) ∈ F×, a contradiction to 37.1. □

38.6 Theorem. Let J be a cubic Jordan algebra over k that is finitely generated
projective as a k-module and satisfies the condition

dimK
(
JK/Nil(JK)

)
≥ 2 (1)

for all algebraically closed fields K ∈ k-alg. Then the subfunctor Elid(J) ⊆ Ja

defined by

Elid(J)(R) := Elid(JR) := {e ∈ JR | e is an elementary idempotent} (2)

for all R ∈ k-alg is an fppf smooth closed subscheme, and there exists an étale
cover R of k such that JR contains an elementary idempotent.
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The functor Ja was defined in Example 24.21.

Proof The second statement follows immediately from the first combined
with 25.25 (ii). Since elementary idempotents are invariant under base change,
(2) does indeed define a subfunctor of Ja. Let u∗1, . . . , u

∗
m be a finite set of gen-

erators of J∗, the dual of the k-module J. Then

Elid(J)(R) = {e ∈ JR | TJ(e) = 1, ⟨u∗iR, e
♯⟩ = 0 (1 ≤ i ≤ m)}

for all R ∈ k-alg, and we conclude from 24.15, 25.11, Exercises 25.32 and
25.31 (b) that X := Elid(J) is a finitely presented closed subscheme of Ja; in
particular, it is affine. It remains to show that X is fppf and smooth. Beginning
with smoothness, let R ∈ k-alg and a ⊆ R be an ideal such that a2 = {0}.
By 25.20, we must prove that every elementary idempotent of JR/a = JR/aJR

can be lifted to an elementary idempotent of JR. But this follows from Exer-
cises 37.21 (b) and 34.21 (e). In order to prove that X is fppf, it suffices to show
by Prop. 25.24 that X has non-empty geometric fibers, so let K ∈ k-alg be an
algebraically closed field and put I := Nil(JK). By (1) and Exc. 31.39 (b), JK/I
is not a Jordan division algebra, and Prop. 38.5 shows X(K) , ∅. Thus X is
fppf. □

38.7 Cubic norm structures and Peirce decompositions (cf. Racine [242,
p. 97]). We fix a cubic Jordan algebra J over k, with identity element 1, ad-
joint x 7→ x♯, norm N, (bi-)linear trace T , quadratic trace S , and let e ∈ J be
an elementary idempotent. Writing X for the cubic norm structure underlying
J, we wish to understand more fully the interplay between X and the Peirce
components of J relative to e. Appealing to the notion of a complemented cu-
bic norm substructure as defined in 35.2, this will be accomplished in several
steps.

(a) Following Cor. 37.3, M0 := (M0, q0, e0) as defined in (37.3.1) is a pointed
quadratic module over k having J0(e) = J(M0) as Jordan algebras. Writing t0
for the (bi-)linear trace of M0 and x0 7→ x̄0 for its conjugation, we claim

N |Ji(e) = 0 (as a polynomial law) (i = 0, 1, 2), (1)

J1(e)♯ ⊆ J0(e), (2)

J0(e) × J1(e) ⊆ J1(e). (3)

Indeed, (1) for i = 2 follows from 37.1 and (37.2.1). Next, we let x0 ∈ J0(e)
and first expand N(e0) = N(1− e) = 1− T (e)+ S (e)−N(e) = 1− 1 = 0, which
by (33a.21) implies N(x0) = N(Ue0 x0) = N(e0)2N(x0) = 0. Thus (1) holds for
i = 0. Now let x1 ∈ J1(e). Then e × x1 = 0, T (x1) = 0 by (37.2.2), and the unit
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identity yields e0 × x1 = (1 − e) × x1 = T (x1)1 − x1, hence

e0 × x1 = −x1. (4)

Combining (4) with (33a.29), Prop. 37.2 (a), (b) and (1) for i = 0, we conclude

N(x1) = −N(e0 × x1) = −T (e♯0, x1)T (e0, x
♯
1) + N(e0)N(x1)

= −T (e, x1)T (e0, x
♯
1) = 0.

Since our set-up is stable under base change, this completes the proof of (1).
Applying (4) again, this time in conjunction with (33a.10) and (33a.15) yields
x♯1 = (e0 × x1)♯ = T (e♯0, x1)x1 + T (e0, x

♯
1)e0 − e♯0 × x♯1 = Ue0 x♯1, hence x♯1 ∈ J0(e).

Thus (2) holds. Finally, let xi ∈ Ji(e) for i = 0, 1. From (33a.23), Prop. 37.2
and Cor. 37.3 we deduce x0 × x1 = x0 ◦ x1 −T (x0)x1 −T (x1)x0 + (T (x0)T (x1)−
T (x0, x1))1 = x0 ◦ x1 − t0(x0)x1 ∈ J1(e) by the Peirce rules, which now imply
x0 × x1 = −(t0(x0)e0 − x0) ◦ x1, hence

x0 × x1 = −x̄0 ◦ x1 ∈ J1(e) (xi ∈ Ji(e), i = 0, 1). (5)

In particular, (3) holds.

(b) By the Peirce rules,

Ĵ0 := ke ⊕ J0(e) = ke ⊕ M0 (6)

is a direct sum of ideals; it is also a cubic Jordan subalgebra of J. We denote
by X0 the cubic norm structure underlying Ĵ0. Actually, after the obvious iden-
tifications, one checks that X0 is just the cubic norm structure belonging to the
cubic Jordan algebra built up from J(M0) by means of Exc. 34.24, i.e., by (1),
(4), Prop. 37.2 (c) and Cor. 37.3, the identities

(ξe + x0)♯ = q0(x0)e + ξ x̄0, (7)

N(ξe + x0) = ξq0(x0) (8)

hold strictly for ξ ∈ k, x0 ∈ M0.

(c) Now we put M1 := J1(e) as a k-module and have M1 ⊆ X⊥0 as well as
X = X0 ⊕ M1. Applying (37.2.2) and (5), we obtain

(ξe + x0) . x1 = x̄0 ◦ x1 ∈ M1 (9)

in the sense of (35.1.2) for ξ ∈ k, xi ∈ Mi, i = 0, 1. Thus (X0,M1) is a com-
plemented cubic norm substructure of X in the sense of 35.2. By (35.6.1),
therefore, (X0,M1) comes equipped with two quadratic maps Q : M1 → X0,
H : M1 → M1, determined by the condition x♯1 = −Q(x1) + H(x1), Q(x1) ∈ X0,
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H(x1) ∈ M1 for x1 ∈ M1. From (2) we therefore deduce H = 0 and that
Q : M1 → M0 is a quadratic map satisfying

x♯1 = −Q(x1) (x1 ∈ M1). (10)

Specializing (35.6.2)–(35.6.6) accordingly and combining (1), (7), (8), (9) with
the formulas of Exc. 34.24, we conclude that the identities

(ξe + x1 + x0)♯ = q0(x0)e − x̄0 ◦ x1 +
(
ξ x̄0 − Q(x1)

)
, (11)

N(ξe + x1 + x0) = ξq0(x0) − t0
(
x0,Q(x1)

)
, (12)

T (ξe + x1 + x0, ηe + y1 + y0) = ξη + t0
(
Q(x1, y1)

)
+ t0(x0, y0), (13)

T (ξe + x1 + x0) = ξ + t0(x0), (14)

S (ξe + x1 + x0) = ξt0(x0) − t0
(
Q(x1)

)
+ q0(x0) (15)

hold strictly for ξ, η ∈ k, xi, yi ∈ Mi, i = 0, 1.

38.8 Peirce-one extensions. Let M0 = (M0, q0, e0) be a pointed quadratic mod-
ule over k. By a Peirce-one extension of M0 we mean a triple M1 = (M1, . ,Q)
with the following properties.

(i) M1 is a k-module,
(ii) . : M0 × M1 → M1, (x0, x1) 7→ x0 . x1, is a bilinear map,
(iii) Q : M1 → M0 is a quadratic map.

Peirce-one extensions of pointed quadratic modules are clearly stable under
base change: if M0 is a pointed quadratic module over k and M1 = (M1, . ,Q)
is a Peirce-one extension of M0, then M1R := (M1R, . R,QR) is a Peirce-one
extension of the pointed quadratic module M0R over R.

38.9 Building up cubic Jordan algebras with elementary idempotents. Let
M0 = (M0, q0, e0) be a pointed quadratic k-module with (bi-)linear trace t0 and
conjugation x0 7→ x̄0, and let M1 = (M1, . ,Q) be a Peirce-one extension of M0.
With a free k-module ke of rank 1, we construct a cubic array X = X(M0,M1)
over k by setting

X := ke ⊕ M1 ⊕ M0 (1)

as a k-module and defining base point, adjoint and norm by the strict validity
of the formulas

1 := e + e0 := (e, 0, e0), (2)

x♯ :=
(
q0(x0)e,−x0 . x1, ξ x̄0 − Q(x1)

)
, (3)

N(x) := ξq0(x0) − t0
(
x0,Q(x1)

)
(4)
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for x = (ξe, x1, x0), ξ ∈ k, xi ∈ Mi, i = 0, 1. Note in particular that the projection
onto the first summand in (1) determines a linear form λ : X → k satisfying
λ(1) = 1. Hence 1 ∈ X is unimodular. With another element y = (ηe, y1, y0) ∈
X, η ∈ k, yi ∈ Mi, i = 0, 1, we conclude

x × y =
(
q0(x0, y0)e,−x0 . y1 − y0 . x1, ξȳ0 + ηx̄0 − Q(x1, y1)

)
, (5)

N(x, y) = ξq0(x0, y0) + ηq0(x0) − t0
(
x0,Q(x1, y1)

)
− t0

(
y0,Q(x1)

)
, (6)

T (x) = ξ + t0(x0), (7)

S (x) = ξt0(x0) + q0(x0) − t0
(
Q(x1)

)
, (8)

S (x, y) = ξt0(y0) + ηt0(x0) + q0(x0, y0) − t0
(
Q(x1, y1)

)
, (9)

T (x, y) = ξη + t0
(
Q(x1, y1)

)
+ t0(x0, y0). (10)

From now on, we identify ke,M1,M0 ⊆ X canonically. Also, we will use oc-
casionally the U-operator of the Jordan algebra J(M0).

38.10 Proposition. Let M0 = (M0, q0, e0) be a pointed quadratic k-module
with (bi-)linear trace t0 and conjugation x0 7→ x̄0, and let M1 = (M1, . ,Q) be
a Peirce-one extension of M0. Then the cubic array X = X(M0,M1) of 38.9 is
a cubic norm structure over k if and only if the Peirce-one extension M1 of M0

is admissible in the sense that the identities

e0 . x1 = x1, (1)

x̄0 . (x0 . x1) = q0(x0)x1, (2)

Q(x0 . x1) = Ux0 Q(x1), (3)

q0
(
Q(x1)

)
= 0, (4)

t0
(
x0,Q(x1, y1)

)
= t0

(
Q(x0 . x1, y1)

)
, (5)

Q(x1) . (x0 . x1) = t0
(
x0,Q(x1)

)
x1 (6)

hold strictly for all x0 ∈ M0, x1, y1 ∈ M1. In this case, e is an elementary
idempotent in

J := J(M0,M1) := J
(
X(M0,M1)

)
, (7)

called its distinguished elementary idempotent, whose Peirce components have
the form

J2(e) = ke, J1(e) = M1, J0(e) = M0. (8)

More precisely, J0(e) = J(M0) as Jordan algebras.

Proof Putting x1 = 0 in (38.9.3), (38.9.4) we see that X0 := ke ⊕ M0 is not
only a cubic subarray of X but, as such, the cubic norm structure derived from
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J(M0) via Exc. 34.24. By letting e act trivially on M1, the bilinear action of M0

on M1 belonging to the Peirce-one extension M1 of M0 extends to a bilinear
action

X0 × M1 −→ M1,
(
(ξe, x0), x1

)
7−→ (ξe, x0) . x1 := x0 . x1. (9)

We have thus arrived at the set-up of 35.8, with V replaced by M1, H = 0 and Q
viewed as a quadratic map M1 → X0. By (35.8.1), this implies N̂ = 0 as a cubic
form on M1, and (35.8.2), (35.8.3) are converted to (38.9.3), (38.9.4) after the
appropriate substitutions. From Prop. 35.9 we therefore deduce that X is a
cubic norm structure over k if and only if the identities (35c.1)–(35c.10) hold
strictly, where we have to replace u by x1 and x0 by (ξe, x0), ξ ∈ k, x0 ∈ M0.
Since e acts trivially on M1, one checks that (35c.1)–(35c.3) are equivalent
to (1)–(3), while H = 0 implies that (35c.5), (35c.9), (35c.10) in this order
correspond to (4), (5), (6). For the same reason, (35c.4), (35c.6)–(35c.8) are
trivially fulfilled. This proves the first part of the proposition. The second part
follows immediately from (38.9.7), (38.9.3), (38.9.5) and Prop. 37.2. □

Collecting what we have achieved so far, we arrive at the following result.

38.11 Theorem. If M0 is a pointed quadratic module over k and M1 is an
admissible Peirce-one extension of M0, then J(M0,M1) is a cubic Jordan al-
gebra over k containing the element e of (38.9.1) as its distinguished elemen-
tary idempotent and satisfying (38.9.2)–(38.9.10). Conversely, let J be a cubic
Jordan algebra over k and e ∈ J an elementary idempotent. Then there exist a
pointed quadratic module M0, an admissible Peirce-one extension M1 of M0

and an identification J = J(M0,M1) matching e ∈ J with the distinguished
elementary idempotent of J(M0,M1). □

38.12 Proposition. Let J be a Jordan algebra of degree 3 over k. An idempo-
tent c ∈ J is elementary if and only if J2(c) = kc is a free k-module of rank
1.

Proof If c is an elementary idempotent, then (37.2.1) implies that the k-
module J2(c) = kc is free of rank 1. Conversely, let this be so. Localizing if
necessary, we may assume that the ring k , {0} is connected. Then Exc. 37.19
leaves the following options for c. (i) c = 0, (ii) c = 1, (iii) c is elemen-
tary, (iv) c is co-elementary. Options (i), (ii) can be ruled out, either for trivial
reasons or since J has degree 3. It remains to show that also (iv) leads to a
contradiction, so let us assume that c is co-elementary. By Exc. 38.19 (d) be-
low, there exists a weird quadratic module (M, q) over k and an identification
J = Jcub(M, q) = ke ⊕ M ⊕ ke0 matching c with the co-elementary idempotent
e0 of Exc. 38.19 (c). After an appropriate base change, we may assume that
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K = k is an algebraically closed field. Then Exc. 38.19 (b) implies q = 0.
Given ξ, ξ0 ∈ K, u ∈ M and setting x := (ξe, u, ξ0e0) ∈ J, we combine (33a.22)
with Exc. 38.19, (8), (12), (13) to obtain

x2 = x♯ + T (x)x − S (x)1

= (ξ2
0e,−ξ0u, ξξ0e0) + (ξ + 2ξ0)(ξe, u, ξ0e0) − (ξ2

0 + 2ξξ0)(e, 0, e0)

=
(
ξ2e, (ξ + ξ0)u, ξ2

0e0
)

= (ξ + ξ0)x − (ξξ0)1.

Hence the set map ΞJ
K is identically zero, in contradiction to J having degree

3. □

The preceding result derives its importance from the fact that the property of
an idempotent to be elementary is characterized purely in terms of the under-
lying abstract Jordan algebra. This point is crucial in the following important
application.

38.13 Theorem. Let J be a cubic Jordan algebra with norm N over k such
that J is a Jordan algebra of degree 3. If J is finitely generated projective as a
k-module and satisfies

dimK
(
JK/Nil(JK)

)
≥ 2 (1)

for all algebraically closed fields K ∈ k-alg, then N is the unique cubic form
making J a cubic Jordan algebra.

When there is a unique cubic form making J a cubic Jordan algebra (as
in the conclusion of the theorem), that form is called the norm of J and it is
denoted by NJ .

Proof Let N,N′ : J → k be two cubic forms that both make J a cubic Jordan
algebra. By 34.1, 34.3 (a), they extend to cubic norm structures X, X′ over k
satisfying J(X) = J = J(X′) as abstract Jordan algebras. We will show X = X′.
Note first that J(X) and J(X′) both have degree 3. Next, passing to an appro-
priate faithfully flat base change by combining Exc. 25.35 with Thm. 38.6, we
may assume that there is an elementary idempotent in the cubic Jordan algebra
J(X). Following Prop. 38.12, therefore, e is also an elementary idempotent in
J(X′). Hence Thm. 38.11 yields pointed quadratic modules M0 = (M0, q0, e0),
M′

0 = (M′0, q
′
0, e
′
0) over k, an admissible Peirce-one extension M1 = (M1, . ,Q)

of M0, an admissible Peirce-one extension M′
1 = (M′1, .

′,Q′) of M′
0 and

identifications J(X) = J(M0,M1), J(X′) = J(M′
0,M

′
1) as cubic Jordan alge-

bras matching e with the distinguished elementary idempotent of J(M0,M1),
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J(M′
0,M

′
1), respectively. From (38.10.8) we deduce M0 = J0(e) = M′0 as pro-

jective k-modules, which by Exc. 29.26 implies not only e0 = e′0 but also
q0 = q′0. Hence the linear traces of M0 and M′

0 are the same as well: t0 = t′0.
Now (38.9.7) implies TX = TX′ for the linear traces of X and X′. Moreover,
M1 = J1(e) = M′1 by (38.10.8), and for x1 ∈ M1 we apply (33a.22), (38.9.3),
(38.9.7) and (38.9.8) to compute −Q(x1) = x♯X

1 = x2
1 − TX(x1)x1 + S X(x1)1 =

x2
1 − t0(Q(x1))1. Since this expression belongs to J0(e), we conclude Uex2

1 =

t0(Q(x1))e, hence t0(Q(x1)) = TX(Uex2
1) = TX′ (Uex2

1) = t0(Q′(x1)). Thus
(38.9.8) yields S X = S X′ , which implies ♯X = ♯X′ by (33a.22) and NX = NX′ by
(33.9.2). □

38.14 Corollary. Let J be a Jordan algebra over k that is finitely generated
projective as a k-module and satisfies

dimK
(
JK/Nil(JK)

)
≥ 2

for all algebraically closed fields K ∈ k-alg. If R is a faithfully flat k-algebra
and JR has degree 3 over R, then J has degree 3 over k.

Proof Combining Theorem 38.13 with Exc. 25.35 and Prop. 38.2 (b), this
follows by faithfully flat descent. □

38.15 The connection with generically algebraic Jordan algebras. The ad
hoc method we used to establish Thm. 38.13 is probably not strong enough to
dispense with the hypothesis of the nil radical of JK , K ∈ k-alg an algebraically
closed field, to have co-dimension at least 2. This can be accomplished either
by throwing in some additional hypothesis on the base ring, see Exc. 38.20
below, or by appealing to Loos’s theory [174] of generically algebraic Jordan
algebras as follows. We claim:

Let J be a Jordan algebra of degree 3 over k in the sense of 38.1 (b)
and assume J is finitely generated projective as a k-module. Then J is
generically algebraic of (constant) degree 3 in the sense of [174, 2.1,
2.2], and any cubic form making J a cubic Jordan algebra in the sense
of 34.1 agrees with its generic norm in the sense of [174, 2.7 (a)].

Indeed, once this claim has been established, Thm. 38.13 without the hypoth-
esis (38.13.1) drops out immediately.

Proof Let N : J → k be a cubic form making J a cubic Jordan algebra
(38.1 (b) (i)) and write T (resp. S ) for the corresponding linear (resp. quad-
ratic) trace. By 34.1 (iii), the polynomial

mJ(t) = t3 − T · t2 + S · t − N · 1 ∈ k[Ja][t] (1)
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satisfies condition (i) of [174, 2.2]. Now let K ∈ k-alg be any field and write
L for an algebraic closure of K. Then JL is finite-dimensional over L, hence
generically algebraic (Jacobson-Katz [143, Thm. 2]). Since mJ,x(x) = (tmJ,x)(x)
is zero for all x ∈ JL, the degree of JL is at most 3. It cannot be 1 or 2 since this
would contradict 38.1 (b) (ii). Thus degL(JL) = 3, forcing degK(JK) = 3 by
[174, 2.7 (b)] and its proof. Hence mJ(t)K is the generic minimum polynomial
of JK , and we have verified condition (ii’) of [174, 2.2]. Summing up, there-
fore, J is generically algebraic of degree 3 over k, with its generic minimum
polynomial given by (1). In particular, N is the generic norm of J. □

Our next aim will be to derive a criterion that, under suitable regularity con-
ditions, is necessary and sufficient for a cubic Jordan algebra to have degree 3.
These regularity conditions are based on the following concept.

38.16 Separable Jordan algebras. A Jordan algebra J over k is said to be sep-
arable if it is projective (but possibly not finitely generated) as a k-module and
Nil(JK) = {0} for all fields K ∈ k-alg. The notion of separability is clearly sta-
ble under base change. Moreover, regular cubic Jordan algebras by Exc. 34.23
are separable while the converse is not true: let J := Her3(F) be the cubic
Jordan algebra of 3-by-3 symmetric matrices with entries in a field F of char-
acteristic 2. Then every base field extension of J is simple, by Exc. 37.26 (e),
so J is, in fact, separable. On the other hand, (36.4.7) shows that the radical
of the bilinear trace consists of those elements in J that have zeros down the
diagonal; in particular, J is singular.

38.17 Theorem. A separable cubic Jordan algebra over k having rank r ∈
N ∪ {∞} as a projective module is a Jordan algebra of degree 3 if and only if
r > 2.

Proof If r ≤ 2 then dimK(JK) ≤ 2 for every field K ∈ k-alg, forcing ΞJ
K = 0

as a set map JK →
∧3(JK). In particular, J cannot have degree 3. Conversely,

assume the degree of J is not 3. By 38.1 (b), there exists an algebraically closed
field K ∈ k-alg such that (ΞJ ⊗ K)K = Ξ

J
K = 0 as a set map JK →

∧3(JK). By
Exc. 12.35 (a), therefore, ΞJ ⊗ K = 0 as a polynomial law over K. Hence the
Jordan algebra JK over K satisfies the Dickson condition of Exc. 30.13. More-
over, no base field extension of JK has absolute zero divisors (Exc. 37.27 (c))
and we conclude from Thm. 30.11 that JK is strictly locally linear, again in
the sense of Exc. 37.27, which therefore yields a pointed quadratic module
(M, q, e) over K satisfying JK = J(M, q, e) as abstract Jordan algebras. Now
it follows from Exc. 34.27 that there exists a linear form λ : JK → K satis-
fying λ(1JK ) = 1K and q(x) = λ(x)λ(x̄) for all x ∈ JK , where ι : M → M,
x 7→ x̄, stands for the conjugation of (M, q, e), and t(x) = λ(x) + λ(x̄) for all
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x ∈ JK , where t stands for the linear trace of (M, q, e). Invoking separability
and Exc. 29.21, one checks {0} = Nil(JK) = Ker(λ)∩Ker(λ ◦ ι), which implies
r = dimK(JK) ≤ 2. □

38.18 Corollary. Let J be a separable cubic Jordan algebra over k whose rank
function takes values in N \ {2}, and let J′ be any cubic Jordan algebra over k.
Then every isomorphism φ : J → J′ of para-quadratic algebras is in fact one
of cubic Jordan algebras.

The hypothesis that the rank does not take the value 2 is necessary by 34.15.

Proof By standard arguments based on the rank decomposition (Exc. 9.31),
we may assume that J has finite constant rank r > 0. The case r = 1 being
obvious, we are left with the case r > 2. By Thm. 38.17, J has degree 3 and
hence, as an abstract Jordan algebra, determines its underlying cubic norm
structure uniquely (Thm. 38.13). Since N := NJ′ ◦ φ : J → k is a cubic form
permitting Jordan composition and satisfying mx(x) = (tmx)(x) = 0 strictly for
all x ∈ J, where mx(t) := N(t1 − x), we conclude N = NJ , as claimed. □

Exercises
38.19. Weird quadratic modules. A quadratic module (M, q) over k is said to be weird
if the identities

q(u)2 = 0, q(u)u = 0 (1)

hold strictly for all u ∈ M. Let (M, q) be any quadratic module over k.

(a) Show that (M, q) is weird if and only if (1) and

2q(u)q(u, v) = 0, (2)
2
(
q(u, v)q(u,w) + q(u)q(v,w)

)
= 0, (3)

q(u, v)2 + 2q(u)q(v) = 0, (4)
q(u, v)u + q(u)v = 0 (5)

hold for all u, v ∈ M. Conclude that weird quadratic modules (M, q) with q , 0
exist.

(b) But prove that, if (M, q) is weird and M is projective, then q = 0.
(c) Let ke, ke0 be free k-modules of rank 1 and prove that the k-module

X := ke ⊕ M ⊕ ke0 (6)

together with the base point, adjoint, norm given by the strict validity of the
formulas

1 := e + e0 := (e, 0, e0), (7)

x♯ :=
(
ξ2

0e,−ξ0u,
(
ξξ0 − q(u)

)
e0

)
, (8)

N(x) := ξξ2
0 − 2ξ0q(u) (9)
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for x = ξe ⊕ u ⊕ ξ0e0, ξ, ξ0 ∈ k, u ∈ M is a cubic array over k such that

x × y =
(
2ξ0η0e,−ξ0v − η0u,

(
ξη0 + ηξ0 − q(u, v)

)
e0

)
, (10)

N(x, y) = 2ξξ0η0 + ξ
2
0η − 2ξ0q(u, v) − 2q(u)η0, (11)

T (x) = ξ + 2ξ0, (12)

S (x) = ξ2
0 + 2

(
ξξ0 − q(u)

)
, (13)

T (x, y) = ξη + 2ξ0η0 + 2q(u, v), (14)

where y = (ηe, v, η0e0), η, η0 ∈ k, v ∈ M. Moreover, X is a cubic norm structure
if and only if (M, q) is weird. Writing in this case

J := Jcub(M, q) := J(X) (15)

for the associated cubic Jordan algebra, both J2(e) = ke, J2(e0) = ke0 are free
k-modules of rank 1 and e is an elementary idempotent in J while e0 is a co-
elementary one in the sense of Exc. 37.19.

(d) Let J be a cubic Jordan algebra over k and suppose c ∈ J is a co-elementary
idempotent such that J2(c) = kc is a free k-module of rank 1. Show that there
exist a weird quadratic module (M, q) over k and an isomorphism J � J′ :=
Jcub(M, q) matching c with the co-elementary idempotent e0 of J′ exhibited in
(c).

38.20. Let J be a Jordan algebra of degree 3 over k and assume k is reduced, i.e.,
Nil(k) = {0}. Show that the cubic norm structure underlying J is uniquely determined
by J as an abstract Jordan algebra.

38.21. Let M0 = (M0, q0, e0) be a pointed quadratic module over k, with linear trace t0
and conjugation x0 7→ x̄0, and let M1 = (M1, . ,Q) be an admissible Peirce-one exten-
sion of M0, so that J := J(M0,M1) is a cubic Jordan algebra over k with distinguished
elementary idempotent e.

(a) Show that

x = (ξe, x1, x0) ∈ J (ξ ∈ k, xi ∈ Mi, i = 0, 1) (1)

belongs to the nil radical of J if and only if the quantities

ξ, q0(x0), q0(x0, y0), t0
(
Q(x1, y1)

)
, q0

(
Q(x1), y0

)
(2)

belong to the nil radical of k for all yi ∈ Mi, i = 0, 1.
(b) Conclude from (a) that the following conditions are equivalent.

(i) Nil(J) ⊆ J1(e).
(ii) k is reduced, and q0 is non-degenerate in the sense of 11.11.
(iii) Nil(J) = {x1 ∈ M1 | ∀ y1 ∈ M1 : Q(x1) = 0, t0

(
Q(x1, y1)

)
= 0}.

38.22 (cf. Racine [242, pp. 97–98]). Let M0 = (M0, q0, e0) be a pointed quadratic mod-
ule over k whose linear trace is identically zero: t0 = 0 as a linear form on M0. Let
M1 = (M1, . ,Q) be an admissible Peirce-one extension of M0 and J = J(M0,M1)
the corresponding cubic Jordan algebra with distinguished elementary idempotent e.
Assume Nil(J) = {0} and let x1 ∈ M1 be non-zero. Show Q(x1) , 0 and conclude that

e′ :=
(
e, x1,−Q(x1)

)
∈ J
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is an elementary idempotent. Moreover, the pointed quadratic module M′
0 := (M′

0, q
′
0, e
′
0)

corresponding to e′ and J via Cor. 37.3 has a non-zero linear trace: t′0 , 0.

38.23. Let J be a separable cubic Jordan algebra of rank r ∈ N ∪ {∞} as a projective
module over k. Prove that precisely one of the following holds.

(i) J has degree 3.
(ii) J and (k × k)(+)

cub are isomorphic as cubic Jordan algebras.
(iii) J is isomorphic to k(+) as a cubic Jordan algebra.

39 Freudenthal and Albert algebras

After a long journey, we have almost reached the point where the concept of
an Albert algebra can finally be defined in its most general form. The only
step still missing is to prove a theorem of Racine [242] that provides a detailed
description of semi-simple cubic Jordan algebras over an arbitrary field. Once
this result has been established, we are led quite naturally to the category of
Freudenthal algebras (for their definition in the case of a field of characteristic
, 2, see [160, §37.C]), of which Albert algebras form the most important
subcategory. As the main result of this section, we then prove, in fairly close
analogy to the case of composition algebras (Cor. 26.9), that all Freudenthal
algebras are split by an appropriate fppf extension of the base ring; aside from
minor exceptions, this extension can even be chosen to be étale.

39.1 Semi-simplicity. A Jordan algebra J over a field F is said to be semi-
simple if its nil radical is zero: Nil(J) = {0}. If J is cubic, this is equivalent to J
having no absolute zero divisors (Exc. 37.27 (e)). Since the identity element of
a non-zero Jordan algebra J over F is not nilpotent, the nil radical of J cannot
be all of J, ergo every simple Jordan F-algebra is semi-simple.

Note also that separable (hence, in particular, regular) cubic Jordan algebras
over F are semi-simple but not conversely. For example, if char(F) = 2 and
K ⊃ F is a purely inseparable field extension of exponent 1, then J := Her3(K)
is semi-simple, even simple (Exc. 37.26 (e)), but not separable since K, after
changing scalars to the algebraic closure F̄ of F, picks up non-zero nilpotent
elements, forcing JF̄ by Exc. 37.30 to pick up a non-zero nil radical in the
process.

39.2 Proposition. Let J be a semi-simple cubic Jordan algebra over a field F
and Ω = (e1, e2, e3) an elementary frame of J. Then the following conditions
are equivalent.

(i) Ω can be extended to a co-ordinate system of J.
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(ii) There exist a pre-composition algebra C over F, a diagonal matrix
Γ ∈ GL3(F) and an isomorphism from J onto Her3(C,Γ) matching Ω
with the diagonal frame of Her3(C,Γ).

(iii) J � Her3(C,Γ), for some pre-composition algebra C over F and some
diagonal matrix Γ ∈ GL3(F).

(iv) J is simple.
(v) J1(ei) , {0} for i = 1, 2, 3.

Proof (i) ⇒ (ii). By the Jacobson co-ordinatization theorem (37.17), there
exist a multiplicative conic alternative F-algebra C, a diagonal matrix Γ ∈
GL3(F) and an isomorphism J

∼
→ J′ := Her3(C,Γ) sending Ω to the diagonal

frame of J′. In particular, J′ is semi-simple and so is C (Exc. 37.30), i.e., C is
a pre-composition algebra (Exc. 17.9).

(ii)⇒ (iii). Obvious.
(iii)⇒ (iv). Exc. 37.26 (e).
(iv)⇒ (v). If J1(ei) = {0} for some i = 0, 1, 2, then the Peirce decomposition

of J relative to ei collapses to J � F(+) × J0(ei) as a direct product of ideals,
contradicting the simplicity of J.

(v) ⇒ (i). From (v) and (32.15.4) we conclude that at least two of the off-
diagonal Peirce components, J jl, relative to Ω are different from zero. Renum-
bering if necessary, we may assume J23 , {0} , J31. For i = 1, 2, we apply
Cor. 37.3 to find a pointed quadratic module Mi0 = (Mi0, qi0, ei0), ei0 = e j + el,
over F such that

Fe j ⊕ J jl ⊕ Fel = J2(e j + el) = J0(ei) = J(Mi0).

Here J0(ei) along with J is semi-simple (Exc. 37.29), forcing Mi0 to be non-
degenerate (Exc. 29.21). Now e j, el are complementary elementary idempo-
tents in J(Mi0) generating (by Prop. 32.8) a hyperbolic plane Hi0 in the quad-
ratic module (Mi0, qi0) such that H⊥i0 = J jl. Hence the restriction of qi0 to
J jl , {0} is non-degenerate. In particular, there exists an element u jl ∈ J jl

such that qi0(u jl) , 0. By Exc. 31.33, therefore, u jl is invertible in J2(e j + el)
and thus connects e j and el in the sense of Exc. 32.23. Summing up, we have
extended Ω to a co-ordinate system (e1, e2, e3, u23, u31) of J. □

39.3 Corollary. Let J be a simple cubic Jordan algebra over an algebraically
closed field F. Then the automorphism group of J acts transitively on the ele-
mentary frames of J.

Proof Let Ω1,Ω2 be elementary frames of J. Since F is algebraically closed,
Propositions 19.9 and 39.2 lead to composition algebras Ci (i = 1, 2) over F,
diagonal matrices Γi ∈ GL3(F) and isomorphisms Φi : J

∼
→ Ji := Her3(Ci,Γi)
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sendingΩi to the diagonal frame of Ji. By Exc. 37.22 (b), we may assume Γi =

13. Moreover, C1 and C2, having the same dimension over F, are isomorphic,
again since F is algebraically closed. Let φ : C1

∼
→ C2 be any isomorphism.

Then Φ−1
2 ◦ Her3(φ) ◦ Φ1 ∈ Aut(J) sends Ω1 to Ω2. □

39.4 Remark. For a version of this result over arbitrary fields, see Exc. 41.31.

39.5 Proposition (Jacobson-McCrimmon [144, Thm. 11]). Let (M, q, e) be a
non-degenerate pointed quadratic module over the field F and write t for its
linear trace. The Jordan algebra J := J(M, q, e) over F contains an elementary
idempotent if and only if the quadratic form q is isotropic and the linear form
t is different from zero.

Proof If J contains an elementary idempotent, then the definition in 29.13
implies t , 0 and that q is isotropic. Conversely, let this be so. If q(z) = 0 and
t(z) , 0, for some z ∈ M, then t(z)−1z is an elementary idempotent in J. Hence
we may assume that q(z) = 0 implies t(z) = 0, for all z ∈ M, and must show that
this leads to a contradiction. We begin with a hyperbolic vector v ∈ M relative
to q. Since q is non-degenerate, v may be completed to a hyperbolic pair (v,w)
of M relative to q, so we have q(v) = q(w) = 0, q(v,w) = 1. By assumption,
t kills the hyperbolic plane H := Fv + Fw, and we have the decomposition
M = H ⊕ H⊥. By hypothesis, some x ∈ M has t(x) , 0. This implies t(y) , 0,
where y denotes the H⊥-component of x. It follows that z := v− q(y)w+ y ∈ M
satisfies t(z) , 0 = q(z), a contradiction. □

39.6 Theorem (Racine [242, Thm. 1]). A cubic Jordan algebra J over a field F
is semi-simple if and only if it satisfies one of the following mutually exclusive
conditions.

(i) J is a cubic Jordan division algebra.
(ii) There exists a non-degenerate pointed quadratic module (M, q, e) over

F such that

J � F(+) × J(M, q, e),

where the right-hand side is a direct product of ideals, to be viewed as
a cubic Jordan algebra over F via Exc. 34.24.

(iii) There exist a pre-composition algebra C over F and a diagonal matrix
Γ ∈ GL3(F) such that

J � Her3(C,Γ)

as cubic Jordan algebras.
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Proof One checks easily that cubic Jordan algebras of type (i), (ii), (iii) are
semi-simple, by consulting Exc. 29.21 in case (ii) and 37.26 in case (iii).
Conversely, let J be a semi-simple cubic Jordan algebra over F and suppose
J is not a Jordan division algebra. Then Prop. 38.5 implies that J contains
an elementary idempotent. Let e be any elementary idempotent in J. Then
Thm. 38.11 yields an identification J = J(M0,M1), for some pointed quad-
ratic module M0 = (M0, q0, e0) over F and some admissible Peirce-one ex-
tension M1 = (M1, ·,Q1) for M0, such that e becomes the distinguished ele-
mentary idempotent of J(M0,M1). Hence Prop. 38.10 implies J(M0) = J0(e),
and we conclude from Exc. 38.21 that M0 is non-degenerate. Assume first that
J1(e) = {0}. Then M1 = {0} by (38.10.8), and from (38.9.3), (38.9.4) combined
with Exc. 34.24 we deduce J = Fe ⊕ J(M0) � F(+) × J(M0) as in (ii). For the
remainder of the proof, we may therefore assume J1(e) , {0} for all elemen-
tary idempotents e ∈ J. By semi-simplicity combined with Exc. 38.21 (b) (iii),
the quadratic map Q1 : M1 → M0 cannot be zero. Hence (38.10.4) implies
that the non-degenerate pointed quadratic module M0 is isotropic. Thanks
to Exc. 38.22, we may also assume that the linear trace of M0 is different
from zero. By Prop. 39.5, therefore, J(M0) contains an elementary idempo-
tent, which is also elementary in J (Cor. 37.3) and orthogonal to e. Consulting
Prop. 37.4, we have thus found an elementary frame Ω = (e1, e2, e3) in J.
Since our assumptions imply J1(ei) , {0} for all i = 1, 2, 3, we deduce from
Prop. 39.2 that J is as in (iii) of the theorem. □

39.7 Corollary. A cubic Jordan algebra over an algebraically closed field F
is simple if and only if it is isomorphic to precisely one of the following.

(a) F(+),
(b) Her3(F) = Sym3(F),
(c) Her3(F × F) � Mat3(F)(+),
(d) Her3

(
Mat2(F)

)
= Symp3(F),

(e) Her3
(
Zor(F)

)
.

Proof Note that the isomorphism in (c) (resp. the identification in (d)) has
been established in Prop. 36.9 (resp. in (10.10.16)). The cubic Jordan algebras
(a)–(e) are simple by Exc. 37.26. Conversely, let J be a simple cubic Jordan al-
gebra over F. Then J satisfies one of the conditions (i), (ii), (iii) of Thm. 39.6. If
condition (i) holds, i.e., if J is a cubic Jordan division algebra, then Exc. 31.39
implies that J satisfies (a). Condition (ii) cannot hold since J is simple. Hence
we are left with condition (iii), so J � Her3(C,Γ) for some pre-composition
algebra C over F and some diagonal matrix Γ ∈ GL3(F). But since F is al-
gebraically closed, there are no purely inseparable extension fields of F other
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than F itself. Hence C, by Prop. 19.9, is in fact a composition algebra over F,
which must be split by 23.12. Moreover, since the entries of Γ by Exc. 37.22
are unique only up to invertible square factors in F, we may assume Γ = 13.
Hence J satisfies one of the conditions (b)–(e). □

39.8 The concept of a Freudenthal algebra. By a Freudenthal algebra over
k, we mean a cubic Jordan k-algebra J satisfying the following conditions.

(i) J is projective as a k-module.
(ii) The rank function p 7→ rkp(J) from Spec(k) to N ∪ {∞} is locally con-

stant with respect to the Zariski topology.
(iii) For all fields K ∈ k-alg, the cubic Jordan algebra JK over K is simple

or is cubic étale in the sense of Example 34.17.

39.9 Examples of Freudenthal algebras.

(a) If k is the zero ring, then J = {0} is a Freudenthal algebra, but a rather
uninteresting one.

(b) k(+), viewed as a cubic Jordan algebra via 34.14, is a Freudenthal algebra
of rank 1.

(c) If E is a cubic étale k-algebra, then E(+) is a Freudenthal algebra of rank 3.

(d) If (C,Γ) is a co-ordinate pair over k, with C a composition algebra, then
Her3(C,Γ) is a Freudenthal algebra. Indeed, while conditions (i), (ii) of 39.8
trivially hold, (iii) follows from Exc. 37.26 (e) combined with the fact that,
over fields, composition algebras are the same as pre-composition algebras
stable under base change (Prop. 19.9).

39.10 Elementary properties of Freudenthal algebras.

(a) Freudenthal algebras are stable under base change.

(b) Freudenthal algebras are separable.

(c) If J is a Freudenthal k-algebra, then so is the isotope J(p), for any p ∈
J×. Indeed, J(p) is a cubic Jordan algebra (Example 34.8) and J(p) = J as k-
modules, so conditions (i), (ii) of 39.8 hold. As to (iii), we may assume that k
is a field. Then J is simple, and hence so is J(p) (31.12).

39.11 Corollary. If J is a Freudenthal algebra over k, then J is finitely gener-
ated as a k-module and the rank of J at each prime ideal is one of the numbers

1, 3, 6, 9, 15, 27.
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Proof For any p ∈ Spec(k), let K ∈ k-alg be an algebraically closed field con-
taining k(p). Then JK is either simple or split cubic étale, and Cor. 39.7 shows
that the dimension of JK , i.e., the rank of J at p, is one of the listed numbers.
Finally, since each Jp is finitely generated as a kp-module and the rank function
is locally constant in the Zariski topology, by 39.8 (ii), J is finitely generated
as a k-module by Lemma 9.9. □

39.12 Rank decomposition. In the typical case where k , {0}, we will con-
sider the rank decomposition of a Freudenthal algebra J in the sense of Exc. 9.31.
Thanks to the corollary, if we set

NFr := {1, 3, 6, 9, 15, 27}, (1)

then the rank decomposition takes the form

k =
∏

n∈NFr

kn, kn = kεn (n ∈ NFr), (2)

J =
∏

n∈NFr

Jn, Jn = J ⊗ kn (n ∈ NFr), (3)

induced by a complete orthogonal system (εn)n∈NFr of idempotents in k, uniquely
determined by the condition that Jn is a Freudenthal algebra of rank n over kn

for all n ∈ NFr.
A Freudenthal k-algebra is defined as a cubic Jordan k-algebra (i.e., an ob-

ject in k-cujo) with special properties. The following says that for detecting
isomorphism we may ignore the cubic structure.

39.13 Corollary. Freudenthal k-algebras are isomorphic as cubic Jordan al-
gebras if and only if they are isomorphic as para-quadratic algebras over k.

Proof Using the rank decomposition, we may assume that the given Freud-
enthal algebras have constant rank. Since that rank is not 2, the conclusion
follows by Cor. 38.18. □

39.14 Corollary. A Freudenthal algebra over k having finite constant rank as
a projective module either has degree 3 or is isomorphic to k(+).

Proof Combine Thm. 38.17 with Cor. 39.11. □

39.15 Corollary. A Freudenthal algebra of constant rank n over k is either
regular or satisfies one of the following conditions.

(i) n = 1 and 3 is not invertible in k.
(ii) n = 6 and 2 is not invertible in k.
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Proof By Exc. 39.37 below, if J is singular, then so is JK , for some alge-
braically closed field K ∈ k-alg. Moreover, since JK cannot be cubic étale, it
belongs to the list of Cor. 39.7. Using (36.4.7), one checks that the singular
members of that list are precisely the ones singled out in (i), (ii) above. □

39.16 Corollary. A Freudenthal k-algebra J is cubic étale if and only if it has
rank 3 as a k-module. If k is connected, then J is either cubic étale or JK is
simple for all fields K ∈ k-alg.

Proof If J has rank 3, then it is regular (Cor. 39.15) and Exc. 39.42 below
gives that J is cubic étale. The converse is trivial, so we have proved the first
claim. The second claim follows from the first. □

Here is a criterion for a Freudenthal algebra to be a Jordan division algebra.
Note that a Jordan division algebra over k automatically is one over F, for
some field F ∈ k-alg (Cor. 28.19).

39.17 Proposition. Let J be a Freudenthal algebra of constant rank ≥ 6 over
a ring k. Among the statements

(i) J � Her3(C,Γ) for some co-ordinate pair (C,Γ) such that C is a com-
position algebra.

(ii) J contains an elementary frame.
(iii) Some isotope of J contains an elementary idempotent.
(iv) There exists a nonzero x ∈ J such that NJ(x) = 0.
(v) J is not a division algebra, i.e., there exists a 0 , x ∈ J such that

NJ(x) < k×.

we have the implications

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v).

If k is a field, then all five statements are equivalent and additionally are equiv-
alent to

(vi) There exists a nonzero x ∈ J such that x♯ = 0.

The two statements in (v) are equivalent by Cor. 33.10. The Albert algebra
Λ0 over Z constructed in §56 below satisfies (iii) but not (ii) by Lemma 56.5.

Proof The first two implications are trivial. If (iii) holds, then J(p) contains an
elementary idempotent e, for some p ∈ J×, hence 0 = NJ(p) (e) = NJ(p)NJ(e),
so NJ(e) = 0, and (iv) holds. Since k , {0}, (iv) trivially implies (v).

Suppose k is a field and (v) holds. Then J satisfies condition (iii) of Theo-
rem 39.6: there is a pre-composition algebra C over F and a diagonal matrix
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Γ ∈ GL3(F) having J � Her3(C,Γ). But J is also separable (39.10 (b)), and
Exercise 37.30, eqn. (2), combined with Exc. 17.9 shows that C is in fact a
composition algebra, proving (i).

Assuming (vi), we have 0 = N(x)2 by (33a.18), whence (iv). Assuming (iv),
since 0 = N(x)x = x♯♯, either x♯ = 0 or y := x♯ , 0 and y♯ = 0. □

39.18 Feierlich, Misterioso: enter Albert algebras. By an Albert algebra
over k we mean a Freudenthal k-algebra having rank 27 as a projective k-
module.

Freudenthal algebra
of rank , 1 (39.8)

39.14

��

Albert algebra (39.18)definitionks

Jordan algebra
of degree 3 (38.1 (b))

definition

��
cubic Jordan algebra (34.1) oo 34.6 //

definition

��

_k(+) (34.14)

KS

cubic norm structure (33.4)

Jordan algebra (29.1)

definition

��

_34.27

KS

linear Jordan algebra (27.1)//if 2 ∈ k× (29.4)oo

para-quadratic algebra (28.1)

_29.6

KS

Figure 39a Diagram showing relationships between different kinds of algebras
related to Albert algebras. The symbol↔ denotes an equivalence of categories.

39.19 Examples and elementary properties of Albert algebras.

(a) Let (C,Γ) be a co-ordinate pair over k. Then Her3(C,Γ) is an Albert algebra
if and only if C is an octonion algebra. A particularly important example is the
euclidean Albert algebra Her3(O) over the reals from 5.5.

(b) By Corollaries 39.14 and 39.15, Albert algebras are regular Jordan alge-
bras of degree 3.

(c) Albert algebras are stable under base change.

(d) If J is an Albert k-algebra, then so is the isotope J(p), for any p ∈ J×.
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We are now ready for a definition that mimics the one for split composition
algebras in 21.19.

39.20 Split Freudenthal algebras. In the uninteresting case where k is the
zero ring, J = {0} is a Freudenthal algebra which we say is split. Let us now
define the notion of being split for a Freudenthal algebra J over a ring k , {0}.
Define

J0n(k) :=



k(+) for n = 1,

(k × k × k)(+) for n = 3,

Her3(k) = Sym3(k) for n = 6,

Her3(k × k) for n = 9,

Her3(Mat2(k)) = Symp3(k) for n = 15,

Her3(Zor(k)) for n = 27;

(1)

which we call the standard split Freudenthal algebra of rank n over k. Note
that

J0n(k)R = J0n(R) (n ∈ NFr, R ∈ k-alg). (2)

We say that a Freudenthal algebra J is split of rank n if it is isomorphic to
J0n(k). More generally, we say that J is merely split if, in the rank decomposi-
tion (39.12.3), each Jn is split of rank n. Note that the property of a Freudenthal
algebra to be split (resp. split of rank n ∈ NFr) is stable under base change.

Our principal aim in the present section will be to show that Freudenthal
algebras are split by some fppf extension, which in addition we may choose to
be étale most of the time, e.g., for Albert algebras. Our method of proof mim-
ics the one we have employed to derive the analogous result for composition
algebras in Cor. 26.9.

39.21 Strong co-ordinate systems. By a strong co-ordinate system of a cubic
Jordan algebra J over k we mean a quintuple S = (e1, e2, e3, u23, u31) such
that (e1, e2, e3) is an elementary frame in J, inducing the corresponding Peirce
decomposition J =

∑
(kei + J jl), and u23 ∈ J23, u31 ∈ J31 satisfy

S (u23) = S (u31) = −1. (1)

Thanks to Prop. 37.6, this is equivalent to saying that e j and el, for i = 1, 2,
are strongly connected by u jl. In particular, strong co-ordinate systems are or-
dinary ones.

Now let (J,S) be a strongly co-ordinated cubic Jordan algebra over k, i.e.,
a cubic Jordan k-algebra J together with a strong co-ordinate system

S = (e1, e2, e3, u23, u31)
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of J, the corresponding Peirce decomposition being indicated by J =
∑

(kei +

J jl). Then Prop. 37.15 and (1) imply that CJ,S = J12 becomes a multiplicative
conic alternative k-algebra whose multiplication, norm, bilinearized norm, unit
element, linear trace and conjugation are respectively given by

uv = (u ◦ u23) ◦ (u31 ◦ v) = (u × u23) × (u31 × v), (2)

nC(u) = −S (u), (3)

nC(u, v) = T (u, v), (4)

1C = u12 := u23 ◦ u31 = u23 × u31, (5)

tC(u) = T (u12, u), (6)

ū = T (u12, u)u12 − u (7)

for all u, v ∈ C. Moreover, the Jacobson co-ordinatization theorem 37.17 yields
an isomorphism

ϕJ,S : Her3(C)
∼
−→ J

matching the diagonal co-ordinate system of Her3(C) with S and satisfying

ϕJ,S
(∑

(ξieii + vi[ jl])
)
=

∑
(ξiei + v jl) (8)

for all ξi ∈ k, vi ∈ C, 1 ≤ i ≤ 3, where

v23 = u31 × v̄1, v31 = u23 × v̄2, v12 = v3. (9)

39.22 Splitting data for Freudenthal algebras. Let J be a Freudenthal alge-
bra over k having rank n ∈ NFr as a projective module. We define the notion of
a splitting datum for J by considering the following cases.

(a) n = 1. Then J � k(+), and a splitting datum for J by definition has the form
Σ = (1J).

(b) n = 3. Then J � E(+) is cubic étale, and a splitting datum for J by defini-
tion has the form Σ = (e1, e2, e3) and is an elementary frame of J.

(c) n > 3. Then a splitting datum for J by definition has the form Σ = (S,∆)
such that the following conditions hold.

(i) S = (e1, e2, e3, u23, u31) is a strong co-ordinate system of J, with the
Peirce decomposition J =

∑
(kei + J jl) relative to the elementary frame

(e1, e2, e3) of J.

Since J is a Freudenthal algebra, hence separable, it follows from Exc. 39.38
below that the multiplicative conic alternative algebra C = CJ,S of 39.21 is, in
fact, a composition algebra, of rank r = n−3

3 .

(ii) ∆ is a splitting datum for C in the sense of 26.2.
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In summary, splitting data for J belong to Jmn , where mn ∈ N is defined by
the following table.

n 1 3 6 9 15 27
mn 1 3 6 6 8 9

Moreover, as in 26.2, splitting data are preserved by isomorphisms and are
stable under base change. Finally, the set of all splitting data for J will be
denoted by

Splid(J) := {Σ | Σ is a splitting datum for J} ⊆ Jmn . (1)

39.23 Setting the stage. Until further notice, we fix a Freudenthal algebra J
over k having rank n ∈ NFr as a projective module. As usual, we abbreviate
1 = 1J , ♯ = ♯J , × = ×J , N = NJ , T = TJ , S = S J . The notational conventions
of 39.22 remain in force.

39.24 The affine scheme of splitting data for J. Prop. 37.4 implies that
(e1, e2, e3) ∈ J3 is an elementary frame of J if and only if

e♯i = 0, T (ei) = 1, e1 × e2 = e3 = 1 − e1 − e2 (i = 1, 2). (1)

Similarly, (37.5.2) and 39.21 imply that S = (e1, e2, e3, u23, u31) ∈ J5 is a
strong co-ordinate system of J if and only if (1) and

T (u jl) = 0, e j × u jl = el × u jl = 0, S (u jl) = −1 (i = 1, 2) (2)

hold. These observations will simplify the task of characterizing the splitting
data for J (and all its scalar extensions) by finitely many equations. Letting
R ∈ k-alg be arbitrary, we treat the different ranks separately.

(a) n = 1. Then Σ = (s · 1JR ) for s ∈ R is a splitting datum for JR if and only if

s = 1R (3)

holds.

(b) n = 3. Then Σ = (e1, e2, e3) ∈ J3
R is a splitting datum for JR if and only if

(1) holds.

(c) n = 6. Then r = 1, and

Σ = (e1, e2, e3, u23, u31, u12) ∈ J6
R (4)

is a splitting datum for JR if and only if (1), (2) and

u12 = u23 × u31 (5)

hold.
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(d) n = 9. Then r = 2, and

Σ = (e1, e2, e3, u23, u31, e12) ∈ J6
R (6)

is a splitting datum for JR if and only if (1), (2) and

T (e12) = S (e12) = 0, T (u23 × u31, e12) = 1, e1 × e12 = e2 × e12 = 0 (7)

hold.

(e) n = 15. Then r = 4, and

Σ = (e1, e2, e3, u23, u31, e12, v12,w12) ∈ J8
R (8)

is a splitting datum for JR if and only if (1), (2), (7) and

T (v12) = T (w12) = 0, e1 × v12 =e2 × v12 = e1 × w12 = e2 × w12 = 0, (9)

(e12 × u23) × (u31 × v12) = 0, (v12 × u23) × (u31 × e12) = v12, (10)

(e12 × u23) × (u31 × w12) = w12, (w12 × u23) × (u31 × e12) = 0, (11)

T
(
u23 × u31, (v12×u23) × (u31 × w12)

)
= 1R (12)

hold.

(f) n = 27. Then r = 8, and

Σ = (e1, e2, e3, u23, u31, e12, v12,w12, z12) ∈ J9
R (13)

is a splitting datum for JR if and only if (1), (2), (7), (9), (10) and

(e12 × u23) × (u31 × w12) = (e12 × u23) × (u31 × z12) = 0, (14)

(w12 × u23) × (u31 × e12) = w12, (z12 × u23) × (u31 × e12) = z12, (15)

T
(
u23 × u31,

([
(v12 × u23) × (u31 × w12)

]
× u23

)
×

(
u31 × z12

))
= −1R (16)

hold.

Summing up, we therefore conclude that the natural selections (depending
on n ∈ NFr) from the equations (1)–(3), (5), (7), (9)–(12), (14)–(16) define a
closed, hence affine, subscheme of Jmn

a = (Jmn )a = (Ja)mn in the sense of 24.15,
denoted by Splid(J) and called the affine scheme of splitting data for J. By
definition we have

Splid(J)(R) = Splid(JR) := {Σ | Σ is a splitting datum for JR} (17)

for all R ∈ k-alg and

Splid(J)(φ) : Splid(J)(R) −→ Splid(J)(S ), (18)

Splid(JR) ∋Σ 7−→ ΣS = (1Jmn ⊗ φ)(Σ) ∈ Splid(JS )
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for all morphisms φ : R→ S in k-alg.

39.25 Standard splitting data. Here we present explicit examples of splitting
data for the standard split Freudenthal algebras J0 := J0n(k) of 39.20. Up to a
point, we will have to treat the different values of n separately.

(a) n = 1. Then J0 = k(+), and

Σ0 := Σ01(k) = (1) (1)

is the only splitting datum for J0.

(b) n = 3. Then J0 = (k × k × k)(+), and

Σ0 := Σ03(k) =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
(2)

is a splitting datum for J0.

(c) n > 3. Then J0 := J0n(k) = Her3(C0), C0 := C0r(k), r = n−3
3 . With the

diagonal co-ordinate system

S0 := S0n(k) = D(C0, 13) = (e11, e22, e33, 1C0 [23], 1C0 [31]) (3)

of J0 = Her3(C0) in the sense of 37.11, we use Example 37.16 to identify
C0 = CJ0,S0 via u = u[12] for all u ∈ C0. Then

Σ0 := Σ0n(k) = (S0,∆0) (4)

is a splitting datum for J0, where ∆0 = ∆0r(k) is the standard splitting datum for
C0 in the sense of 26.4. The splitting datum Σ0n(k), n ∈ NFr, exhibited above
will henceforth be referred to as the standard splitting datum for J0n(k). We
clearly have Σ0n(k)R = Σ0n(R) for all R ∈ k-alg.

39.26 Proposition. The affine k-scheme of splitting data for J is finitely pre-
sented and has non-empty geometric fibers. Moreover, it is smooth unless n = 6
and 2 is not invertible in k.

Proof Equations (39.24.1)–(39.24.16) show that X := Splid(J) is defined by
finitely many equations as a closed subscheme of Jmn

a . By Exercises 25.31 and
25.33, therefore, X is finitely presented. If K ∈ k-alg is an algebraically closed
field, then splitting data for JK exist (39.25) since JK is split by Cor. 39.7. Thus
X has non-empty geometric fibers. Under the assumption n , 6 or 2 ∈ k×, it
remains to show that X is smooth. For R ∈ k-alg and an ideal I ⊆ R satisfying
I2 = {0}, we have to prove that the set map X(R) → X(R/I) is surjective. We
may clearly assume R = k, write α 7→ ᾱ, x 7→ x̄ for the natural projections k →
k̄ := k/I, J → J̄ := J/IJ = Jk̄, respectively, and let Σ′ be a splitting datum for
J̄. We wish to find a splitting datum Σ for J having Σ̄ = Σ′. The case n = 1 being
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obvious, by 39.22, we may assume n > 1. Then the cases we have excluded
and Cor. 39.15 guarantee that J is regular. If n = 3, then J = E(+) is cubic étale
and Σ′ is an elementary frame of J̄, which by Exercises 32.25 and 37.21 (b) can
be lifted to an elementary frame, i.e., a splitting datum for J. We are left with
the case n > 3. Then Σ′ = (S′,∆′), where S′ = (e′1, e

′
2, e
′
3, u
′
23, u

′
31) is a strong

co-ordinate system for J̄ and ∆′ is a splitting datum for the composition algebra
C′ = C J̄,S′ over k̄. Note by Prop. 37.15 that C′ = J′12 as k̄-modules, where J̄ =∑

(k̄e′i + J′jl) is the Peirce decomposition of J̄ relative to the elementary frame
(e′1, e

′
2, e
′
3). As before, we can lift (e′1, e

′
2, e
′
3) to an elementary frame (e1, e2, e3)

of J, with Peirce decomposition J =
∑

(kei + J jl), and then have J̄ jl := (J jl)k̄ =

J′jl for 1 ≤ i ≤ 3. In addition, for i = 1, 2, the quantities u′jl ∈ J′jl can be lifted
to elements v jl ∈ J jl such that there exist α jl ∈ I satisfying

S (v jl) = −1 + α jl. (1)

Thus T := (e1, e2, e3, v23, v31) is a co-ordinate system of J satisfying T̄ = S′,
but possibly not a strong one. This deficiency will be removed by a slight
modification of T that may be described as follows. If 2 ∈ k×, we put u jl :=
(1 + α jl

2 )v jl and obtain S (u jl) = −1 by (1). Hence S := (e1, e2, e3, u23, u31) is a
lift of S′ to a strong co-ordinate system of J. To accomplish the same for an
arbitrary base ring, our assumptions allow us to assume n ≥ 9, whence C′ is
a composition algebra of rank r ≥ 2 over k̄. By the same token, D := CJ,T is
a composition algebra of rank r over k, and in the notation of Prop. 37.15, we
have ωJ,T = S (v23)−1S (v31)−1 = (1 + α23)(1 + α31), hence

ωJ,T = 1 + α, α = α23 + α31 ∈ I. (2)

This and (37.15.3) imply D̄ := D/ID = Dk̄ = C′. But C′, admitting ∆′ as a
splitting datum, is split and thus contains an elementary idempotent c′, which
in turn can be lifted to an elementary idempotent c ∈ D. Setting c1 := 1D − c =
u12 − c and

v12 := c + (1 + α31 + α)c1 ∈ J12, u23 := v31 × v12 ∈ J23, (3)

we apply (37.14.6), (37.15.4), (1), (2) to obtain

S (u23) = −S (v31)S (v12) = (−1 + α31)(1 − α)nD
(
c + (1 + α31 + α)c1

)
= (−1 + α31)(1 − α)(1 + α31 + α) = (−1 + α31 + α)(1 + α31 + α)

= −1,

while v̄12 = 1C′ = u′12 = u′23 × u′31, and (3), (37.14.2) yield

ū23 = u′31 × (u′31 × u′23) = −S (u′31)u′23 = u′23.
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Similar computations, using

w12 := c + (1 + α23 + α)c1 ∈ J12, u31 := w12 × v23 ∈ J31 (4)

instead of the quantities in (3) imply S (u31) = −1 and ū31 = u′31. Summing up,
therefore, S := (e1, e2, e3, u23, u31) is a strong co-ordinate system of J lifting
S′. As before C := CJ,S is a composition algebra of rank r over k having
C̄ = C/IC = Ck̄ = C′. Since the affine k-scheme of splitting data for C by
Prop. 26.5 is smooth, the splitting datum ∆′ for C′ can be lifted to a splitting
datum ∆ of C. Hence Σ := (S,∆) is a splitting datum for J lifting Σ′. □

39.27 Splittings of Freudenthal algebras. By a splitting of a Freudenthal
algebra J we understand an isomorphism

J0n(k)
∼
−→ J

of cubic Jordan algebras, which by Cor. 39.13 is the same as an isomorphism
of abstract Jordan algebras. Extending canonically terminology and notation
of 26.6 from linear non-associative algebras to para-quadratic ones, the set of
splittings of J is Isom(J0n(k), J).

Some Freudenthal algebras of rank 6 have been excluded from Prop. 39.26.
The following result is the crucial step towards a substitute for this deficiency.

39.28 Proposition. Let J be a Freudenthal k-algebra of rank 6 and E ⊆ J
a cubic étale subalgebra. Then there exist an fppf algebra R ∈ k-alg and a
splitting J0n(R)

∼
→ JR matching ER with the diagonal of J0n(R).

Proof Note by 25.19 (v) (resp. 25.3 (i) and 25.15 (b)) that the top of a tower
of étale covers (resp. fppf algebras) is an étale cover of (resp. fppf over) the
base ring. Up to an fppf base change we may therefore assume that E (hence
J) contains an elementary frame Ω = (e1, e2, e3) (Thm. 38.6), so E =

∑
kei

and J =
∑

(kei + J jl) in terms of the corresponding Peirce decompositions. We
let p ⊆ k be any prime ideal. By 39.8 (iii), the cubic Jordan algebra J(p) over
the field k(p) is simple, and Prop. 39.2 implies that Ω(p) can be extended to a
co-ordinate system of J(p), so there are elements u jl ∈ J jlp for i = 1, 2 having
S (u jl(p)) ∈ k(p)×, hence S (u jl) ∈ k×p . By (37.13.1) and (37.14.2), the assign-
ment x 7→ u23 × x gives a linear bijection J31p → J12p. Thus the off-diagonal
Peirce components relative to Ωp are all different from zero, and counting
ranks we conclude that the J jl are all line bundles over k. Combining 25.5 (ii)
with 25.19 (iii)–(v), we find an étale cover of k making J jl free of rank 1 for
i = 1, 2, 3. In particular, up to an fppf base change, we may assume that the J jl

themselves are free of rank 1. Let e jl ∈ J jl for i = 1, 2 be a basis vector. Then
u jl = αie jlp for some αi ∈ kp, and S (u jl) ∈ k×p implies S (e jl)p = S (e jlp) ∈ k×p .
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Since p ∈ Spec(k) is arbitrary, we conclude S (e jl) ∈ k× , so (Ω, e23, e31) is a
co-ordinate system of J. Now the Jacobson co-ordinatization theorem 37.17
shows J � Her3(C,Γ) for some diagonal matrix Γ ∈ GL3(k) with diagonal
entries γi, 1 ≤ i ≤ 3. Then

R = k[t1, t2, t3]/(t2
1 − γ1, t2

2 − γ2, t2
3 − γ3) �

3⊗
i=1

k[ti]/(t2
i − γi) ∈ k-alg

is free of rank 6 as a k-module and hence fppf. We have JR � Her3(R,ΓR),
and the diagonal entries γiR of ΓR by construction are all squares in R×. Now
Exc. 37.22 (b) (ii) implies that JR � Her3(R) is split over R. □

39.29 Corollary. Every Freudenthal k-algebra J of rank 6 is split by some fppf
algebra R ∈ k-alg.

Proof After an appropriate étale cover of k, Exc. 39.42 (a) allows us to as-
sume that J contains an elementary frame, say (e1, e2, e3). Now Prop. 39.28
applies to J and E :=

∑
kei. □

39.30 Proposition. Let J be a Freudenthal algebra of constant rank n over
k and denote by Σ0n(k) the standard splitting datum for J0n(k) as defined in
39.25. Then the assignment

ψ 7−→ ψ
(
Σ0n(k)

)
defines a bijection Θ = Θ(k) from the set of splittings of J onto the set of
splitting data for J:

Θ := Θ(k) : Isom
(
J0n(k), J

) ∼
−→ Splid(J).

Proof The assertion is trivial for n = 1 and straightforward to verify for
n = 3. We may therefore assume n ≥ 6. Then J0 := J0n(k) = Her3(C0),
C0 := C0r(k), r = n−3

3 , and Σ0 := Σ0n(k) = (S0,∆0), where S0 is the diagonal
co-ordinate system (e11, e22, e33, 1C0 [23], 1C0 [31]) of J0 and ∆0 is the standard
splitting datum for C0, the latter being identified with CJ0,S0 ⊆ J0 via Exam-
ple 37.16. Injectivity of Θ will now follow once we have shown that J′0, the
cubic subalgebra of J generated by S0 ∪ ∆0, is all of J0. The diagonal

∑
keii

of J0 clearly belongs to J′0. Moreover, since the algebra structure of C0 by
(39.21.2) is built up from the bilinearized adjoint and ∆0 ⊆ C0 by Prop. 26.7
generates C0 as a unital k-algebra, C0 = C0[12] is contained in J′0. Hence so
are C0[23] = 1C0 [31] × C0[12], C0[31] = 1C0 [23] × C0[12], and we conclude
J′0 = J0. It remains to show that Θ is surjective, so let Σ = (S,∆) be any split-
ting datum for J. Setting C := CJ,S, the Jacobson co-ordinatization theorem,
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specialized to the case at hand in 39.21, yields an isomorphism

ϕ = ϕJ,S : Her3(C)
∼
−→ J

as described in (39.21.8), (39.21.9), matching the diagonal co-ordinate system
of Her3(C) withS. On the other hand, the splitting datum ∆ of C by Prop. 26.7
yields an isomorphism η : C0 → C sending ∆0 to ∆. Hence

ϕ ◦ Her3(η) : J0
∼
−→ J

is an isomorphism of the desired kind. □

39.31 Theorem. Let J be a Freudenthal algebra of constant rank n over k.
Then the k-functor

Isom
(
J0n(k), J

)
is a torsor in the flat topology with structure group G := Aut(J). Moreover,

Isom
(
J0n(k), J

)
is a smooth torsor in the étale topology with structure group G if n , 6 or
2 ∈ k×.

Proof Putting X := Isom(J0n(k), J), the set maps

Θ(R) : X(R)
∼
−→ Splid(J)(R),

given by Prop. 39.30 for any R ∈ k-alg are bijective and easily checked to vary
functorially with R, hence they give rise to an isomorphism

Θ : X
∼
−→ Splid(J)

of k-functors whose target, by Prop. 39.26, is a finitely presented affine k-
scheme acted upon by G from the right in a simply transitive manner (26.6 (b)).
Therefore the same is true for the k-functor X, and the first part of the theorem
for n = 6 follows from Cor. 39.29. For the rest of the proof, we may therefore
assume n , 6 or 2 ∈ k×. By Prop. 39.26, X along with Splid(J) is smooth
with non-empty geometric fibers, hence fppf by Prop. 25.24, so this part of the
theorem follows from 25.25 (ii). □

39.32 Corollary. Let J be a para-quadratic k-algebra in the sense of 28.1.
Then the following conditions are equivalent.

(i) J is a Freudenthal algebra over k.
(ii) There exists a faithfully flat R ∈ k-alg such that JR is a Freudenthal

algebra over R.
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(iii) There exists a faithfully flat R ∈ k-alg such that JR is a split Freudenthal
algebra over R.

(iv) There exists an fppf R ∈ k-alg such that JR is a split Freudenthal alge-
bra over k.

If J is finitely generated projective as a k-module such that either its rank func-
tion avoids the number 6 or 2 ∈ k×, then these conditions are also equivalent
to

(v) There exists an étale cover R ∈ k-alg such that JR is a split Freudenthal
algebra over R.

39.33 Corollary. Let J be a Freudenthal algebra over k and assume that,
either, (i) 2 ∈ k× or (ii) its rank function (as a projective module) avoids the
number 6. Then Aut(J) is a smooth k-group scheme.

Proof of 39.32 and 39.33 Since finitely generated projective modules are sta-
ble under faithfully flat descent (see 25.5), we may assume that J is finitely
generated projective as a k-module. Then the implications (v) ⇒ (iv) ⇒ (iii)
⇒ (ii) of 39.32 are obvious. It therefore remains to show (ii) ⇒ (i) ⇒ (iv)
(resp. (ii)⇒ (i)⇒ (v) if the additional hypotheses immediately preceding (v)
are fulfilled).

(ii)⇒ (i). Since the property of R ∈ k-alg to be faithfully flat is stable under
base change (25.2) we may assume that J has (finite) rank n as a projective k-
module. The case n = 1 is obvious, so let us assume n ≥ 3. For any S ∈ R-alg,
Cor. 39.14 implies that the base change JS = (JR)S has degree 3 over S and so
allows a unique cubic form making JS a cubic Jordan algebra (Thm. 38.13).
By faithfully flat descent (Exc. 25.35), therefore, J is a cubic Jordan algebra
over k. Let K ∈ k-alg be any field. By Exc. 9.26, there exists a field L ∈ R-alg
that is also an extension field of K. By definition, (JR)L = JL = (JK)L is simple
or cubic étale, whence so is JK , and we have shown that J is a Freudenthal
algebra over k.

(i) ⇒ (iv) (resp. (i) ⇒ (v) if the additional hypotheses immediately pre-
ceding (v) are fulfilled). The proofs of these implications, as well as those of
Cor. 39.33, follow almost verbatim the corresponding ones of the analogous
implications of Cor. 26.9, as well as Cor. 26.10. Details are left to the reader as
an easy exercise. □

Here is a particularly important special case of Cor. 39.32. If J is a para-
quadratic algebra over k and there is a faithfully flat R ∈ k-alg such that JR is
an Albert algebra over R, then J is an Albert algebra over k. We restate this as:

39.34 Corollary. Albert algebras are stable under faithfully flat descent. □
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39.35 Example. We give an example of a rank 6 Freudenthal algebra that is
not split by any étale cover of the base ring.

Let k be a field of characteristic 2 and suppose γ ∈ k× is not a square.
For α ∈ {1, γ} put Jα := Her3(k, diag(1, 1, α)) and note that J1 = J06(k) is
split. Writing Tα (resp. S α) for the bilinear (resp. quadratic) trace of Jα, we
denote by Rad(S α,Tα) the radical of the quadratic form S α|Rad(Tα), which is an
invariant of Jα since isomorphisms of Freudenthal algebras preserve bilinear
and quadratic traces. We also put δα = dimk(Rad(S α,Tα)). From (36.4.7) we
deduce Rad(Tα) =

∑
k[ jl], while (36.4.11) implies that S α|Rad(Tα) bilinearizes

to zero. Hence

Rad(S α,Tα) = {x ∈ Rad(Tα) | S α(x) = 0}.

On the other hand, by (36.4.9),

S (
∑

αi[ jl]) = α(α2
1 + α

2
2) + α2

3 = α(α1 + α2)2 + α2
3 (αi ∈ k, 1 ≤ i ≤ 3),

and since γ is not a square in k, we conclude

δ(Jα) =

1 forα = γ,

2 forα = 1.
(1)

Now let K be any finite-dimensional separable extension of k. We still have
γ ∈ K× \K×2 since adjoining a square root of γ to k yields a purely inseparable
quadratic extension. From (1) we therefore deduce δ(JγK) , δ(J1K), so JγK and
J1K cannot be K-isomorphic. In other words, we have Isom(J06(k), Jγ)(K) = ∅
and Prop. 25.28 implies that Isom(J06(k), Jγ)(R) is empty for all étale covers
R of k. In particular, Isom(J06(k), Jγ) is a torsor in the flat topology but not in
the étale topology.

39.36 An alternative definition of Freudenthal algebra. It is possible to give
an equivalent definition of Freudenthal algebra in the elementary language of
para-quadratic algebras from 28.1 as follows. The split Freudenthal algebras
listed in 39.20 have explicit U-operators in the case k = Z[ 1

2 ] defined as in
27.10. The formulas for these U-operators do not involve any denominators,
not even a 2 (by direct inspection as in 37.7 or Exc. 36.11, or a fortiori from the
construction via cubic norm structures) and so make sense also for k = Z, and
in this way we define a split Freudenthal Z-algebra. For a ring k, we define a
split Freudenthal k-algebra as follows. Write k =

∏
ki where each ki is a ring.

A para-quadratic k-algebra J =
∏

Ji, where each Ji is a para-quadratic ki-
algebra, is a split Freudenthal algebra if Ji is obtained from a split Freudenthal
Z-algebra by base change. As in [95, 7.1] we could say that a para-quadratic
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k-algebra J is a Freudenthal algebra if JR is a split Freudenthal R-algebra for
some faithfully flat R ∈ k-alg.

Note by Cor. 39.32 that a para-quadratic algebra is a Freudenthal algebra in
the sense of 39.8 if and only if it is a Freudenthal algebra in this sense.

The definition presented in this remark has the advantage of requiring very
little machinery. However, it has the disadvantage that it is tiresome to compute
with, because one does not have the convenience of the cubic norm structure
machinery. For our purposes, this disadvantage is decisive.

Exercises
39.37. Let M, N be finitely generated projective modules over k. Show that a linear
map φ : M → N is bijective if and only if the base change φK : MK → NK is bijective
for all fields K ∈ k-alg. Conclude that a cubic Jordan algebra J over k that is finitely
generated projective as a k-module is regular if and only if the bilinear trace TK of JK ,
for any field K ∈ k-alg, is a non-degenerate symmetric bilinear form.

39.38. Let (C,Γ) be a co-ordinate pair over k in the sense of 36.3. Prove that the cubic
Jordan algebra J := Her3(C,Γ) is separable if and only if C is a composition algebra.

39.39. Let C be a conic alternative algebra without zero divisors over k that is finitely
generated projective as a k-module. Fixing a diagonal matrix Γ = diag(γ1, γ2, γ3) ∈
Mat3(k) and

x =
∑(

αieii + vi[ jl]
)
∈ J (αi ∈ F, vi ∈ C, 1 ≤ i ≤ 3),

consider the following conditions on x.

(i) x♯ = 0.
(ii) α jαl = γ jγlnC(vi) for i = 1, 2, 3 and γ1γ2γ3v1(v2v3) = α1α2α31C .
(iii) α jαl = γ jγlnC(vi) and

γ1γ2γ3(viv j)vl = α1α2α31C = γ1γ2γ3vi(v jvl)

for i = 1, 2, 3.

Prove that the implications

(i) =⇒ (ii) =⇒ (iii)

hold. Moreover, if k is an integral domain and γi , 0 for 1 ≤ i ≤ 3, show that all three
conditions are equivalent.

39.40. Let f : M → M′ be a k-linear map of k-modules and N, P ⊆ M, N′ ⊆ M′ be
arbitrary k-submodules. Let R ∈ k-alg be a flat k-algebra, recall the conventions of 25.3
and prove:

(a) f (N)R = fR(NR), f −1(N′)R = f −1
R (N′R).

(b) (N ∩ P)R = NR ∩ PR.
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(c) For every family (Nα)α∈I of k-submodules in M we have(∑
α∈I

Nα

)
R =

∑
α∈I

(Nα)R.

(d) If N is generated as a k-module by a family (xα)α∈I of elements in M, then NR is
generated as an R-module by the family (xαR)α∈I of elements in MR.

39.41. Ideals in Freudenthal algebras ([95, Thm. 8.2]). Let J be a Freudenthal algebra
of rank n ∈ NFr over k.

(a) Show that the submodule of J spanned over k by the squares in J is all of J. (Hint:
Denote this submodule by Sq(J), prove Sq(JR) = Sq(J)R for all flat k-algebras R ∈ k-alg
and apply Cor. 39.32.)

(b) If J is regular of rank n ≥ 6, identify k = k1J ⊆ J canonically and deduce from (a)
that the assignments

a 7−→ aJ, I 7−→ I ∩ k

define inclusion preserving inverse bijections between the ideals of k and the outer
ideals of J. (Hint: Apply (a), Exc. 37.26 and again Cor. 39.32.) In particular, outer
ideals in J are ideals.

39.42. (a) Let J be a cubic Jordan k-algebra that is finitely generated projective as a
k-module and satisfies the condition

dimK
(
J/Nil(JK)

)
≥ 3

for all algebraically closed fields K ∈ k-alg. Show that the subfunctor Elfr(J) ⊆ J3
a

defined by

Elfr(J)(R) := {Ω | Ω is an elementary frame in JR}

for all R ∈ k-alg is a closed subscheme that is smooth and fppf. Conclude that there
exists an étale cover R of k such that JR contains an elementary frame. (Hint: Argue as
in the proof of Thm. 38.6 and, at a critical stage, apply Hilbert’s Nullstellensatz.)

(b) Let J be a regular cubic Jordan k-algebra having rank 3 as a projective k-module.
Prove that J is cubic étale in the sense of Example 34.17. More precisely: there exists
a unique cubic commutative associative k-algebra E such that E(+) = J as cubic Jordan
algebras, and this algebra is cubic étale.

39.43. Let J be a Freudenthal algebra of rank r ≥ 6 over k.

(a) Let e ∈ J be an elementary idempotent and

x = ξe + x1 + x0, ξ ∈ k, xi ∈ Ji(e), i = 0, 1.

be the Peirce decomposition of x ∈ J relative to e. Show that

Uxe = ξ2e + ξx1 + Ux1 x0, Ux1 x0 ∈ J0(e). (1)

(b) ([95, Example 7.4]) Show for x ∈ J that Ux = 1J implies x = ξ1J for some ξ ∈ k×
with ξ2 = 1.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

40 Isotopy, norm similarity, and isomorphism 417

40 Isotopy, norm similarity, and isomorphism

We introduce in this section a notion for cubic Jordan algebras called norm
similarity, which we discover is mostly the same as isotopy (Cor. 40.5). We
furthermore study isotopy and isomorphism classes of Freudenthal algebras in
the special case of an LG ring (Thm. 40.10).

40.1 Round forms. Round quadratic forms were introduced by Witt (unpub-
lished, [296, pp. 35–39]) and turned out to be a useful tool in the study of
Pfister quadratic forms [72, §9]. The concept allows a straightforward exten-
sion to scalar polynomial laws, as we now illustrate.

Let f : M → k and g : N → k (with k-modules M,N) be scalar polynomial
laws over our base ring k. A morphism from f to g is a linear map φ : M →
N such that f = g ◦ φ as polynomial laws over k. In this way, we obtain
the category of scalar polynomial laws over k. Thus f and g are isomorphic,
written as f � g, if and only if a bijective linear map φ : M → N exists having
f = g ◦ φ.

Given a scalar polynomial law f as above, we may define two subsets of k×:

G f := {µ ∈ k× | µ f � f }.

and

D f := {µ ∈ k× | ∃m ∈ M such that f (m) = µ}.

There are some easy relationships between the two. For example, if 1 ∈ D f ,
then G f ⊆ D f .

We say that f is round if G f = D f . For example, this holds when M is a
multiplicative conic alternative algebra (e.g., a composition algebra) and f is
its norm. In that case, for every invertible element y ∈ M, we have f (y) ∈
k× (Prop. 17.5), f (xy) = f (x) f (y) for every x ∈ MR, R ∈ k-alg, and right
multiplication by y is bijective (Prop. 13.6), so f (y) belongs to G f , showing
that f is round.

40.2 Lemma. The norm of a cubic Jordan algebra is round.

Proof Put J for the cubic Jordan algebra and N for its norm. Let µ ∈ k× be
such that there is an x ∈ J with N(x) = µ. Then x is invertible (Cor. 33.10) and
we define ϕ := µUx−1 . By (33.8.21), N◦ϕ = µ3N(x−1)2N = µN, so µ ∈ GN . □

40.3 Example. Let J = Her3(C,Γ) be a cubic Jordan matrix algebra in the
sense of 36.6. For each µ ∈ k×, the element x := µe11 + e22 + e33 ∈ J satisfies
NJ(x) = µ. Therefore, NJ � µNJ by the lemma.

40.4 Lemma. Let J, J′ be cubic Jordan algebras over k such that J is regular,
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its rank function does not take the value 2 and J′ is finitely generated projec-
tive as a k-module. A function η : J → J′ is an isotopy if and only if η is an
isomorphism of k-modules and there exists µ(η) ∈ k× such that N′J ◦η = µ(η)NJ

as polynomial laws over k.
When these properties hold, µ(η) is unique, η♯ and η−1 are isotopies J′ → J,

and we have for all x, y ∈ J:

(i) µ(η−1) = µ(η)−1 .
(ii) µ(η♯) = µ(η).
(iii) (η(x))♯

′

= µ(η) η♯−1(x♯).
(iv) TJ′ (η(x), η♯−1(y)) = TJ(x, y).

Proof The “only if” direction follows from Corollary 38.18 and (33.11.3),
so we prove the “if” direction. Suppose NJ′ ◦ η = µ(η)NJ as polynomial laws
over k, for some µ(η) ∈ k×. Setting u := η(1J), we have NJ′ (u) = µ(η), so u is
invertible and µ(η) is unique. Write J′′ for the isotope J′(u

−1) of J′, which has
the same underlying k-module as J′, so we may view η also as a linear map
J → J′′. For x ∈ J we have

NJ′′ (η(x)) = NJ′ (η(x))NJ′ (u−1) = NJ(x)

by (33.10.1). Also, u is the identity element in J′′ by (33.11.1), so η is an
isomorphism J → J′′ of cubic Jordan algebras by Exc. 34.18 (b). Since J′′

was constructed to be isotopic to J′, the claim follows.
So suppose η is an isotopy. The fact that η−1 is an isotopy follows from

Prop. 31.18 (d). Moreover, for x′ ∈ J′,

µ(η)−1NJ′ (x′) = NJ(η−1(x′)),

verifying (i).
We observed in Cor. 31.21 that η♯ is an isotopy. We have

µ(η♯) = NJ(η♯(1J′ )),

so (31.19.2) implies

µ(η♯) = NJ(η−1Uη(1J )1J′ ) = µ(η)−1NJ′ (η(1J))2 = µ(η).

For (iii), we note that η : J → J′′ = J′(u
−1), being an isomorphism of cubic

Jordan algebras, preserves adjoints, and (33.11.2) implies

η(x♯) = η(x)(♯′,u−1) = N−1
J′(u)Uuη(x)♯

′

,

hence η(x)♯
′

= µ(η)U−1
η(1J )η(x♯) = µ(η)η♯−1(x♯) by Prop. 31.19; we have verified

(iii).
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For (iv), the isomorphism η : J → J′′ preserves bilinear traces, and (33.11.4)
combined with (31.19.2) yields

TJ(x, y) = TJ′′
(
η(x), η(y)

)
= TJ′

(
η(x),Uη(1J )−1η(y)

)
= TJ′

(
η(x), η♯−1(y)

)
,

proving (iv). □

For a regular cubic Jordan algebra J, a norm similarity is an element ϕ ∈
GL(J) such that NJ◦ϕ = µNJ for some µ ∈ k×. In this language, the lemma says
that the structure group Str(J) defined in 31.20 is the group of norm similarities
of J.

One says that ϕ ∈ GL(J) is a norm isometry if NJ ◦ ϕ = NJ . The collec-
tion of norm isometries is a normal subgroup of Str(J), which we denote by
Inv(J). The automorphism group Aut(J) of J is itself a normal subgroup of
Inv(J), namely the subgroup of elements that stabilize 1J by Thm. 31.22 and
Exc. 34.18 (b).

40.5 Corollary. Let J, J′ be cubic Jordan algebras over k such that J is reg-
ular, its rank function does not take the value 2, and J′ is finitely generated
projective as a k-module. The following are equivalent:

(i) J and J′ are isotopic.
(ii) There is a µ ∈ k× such that NJ � µNJ′ .
(iii) NJ � NJ′ .

Proof Lemma 40.4 proves that (i) is equivalent to (ii), which is trivially im-
plied by (iii). Suppose (ii) and let ϕ : J′ → J be a k-module isomorphism so
that NJ ◦ ϕ = µNJ′ . Then NJ(ϕ(1J′ )) = µNJ′ (1J′ ) = µ, so by Lemma 40.2 we
have µNJ � NJ � µNJ′ and we conclude (iii). □

For every co-ordinate pair (C,Γ) over k, Her3(C,Γ) is isotopic to Her3(C) by
Exc. 37.23, so the corollary says that the isomorphism class of the cubic form
NHer3(C,Γ) depends only on C and not on Γ, provided C is a regular composition
algebra.

The following gives a case where the conclusion is about isomorphism.

40.6 Proposition. Let C be a split composition k-algebra of constant rank
r > 1. Then Her3(C,Γ) and Her3(C) are diagonally isomorphic in the sense of
Exc. 37.22 (b), for every diagonal matrix Γ ∈ GL3(k).

Proof Write Γ = diag(γ1, γ2, γ3). We may assume γ3 = 1. For any p, q ∈ C×,
we may apply (37.24.3) to conclude Her3(C,Γ) � Her3(C(p,q),Γ′), where Γ′ =
diag(nC(p)γ1, nC(q)γ2, 1). If r ≤ 4, then C is associative, so C(p,q) � C by 15.1,
15.2, and since the norm of C, being hyperbolic, is surjective, there are p, q ∈
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C× such that Γ′ = 13, hence Her3(C,Γ) � Her3(C) diagonally. On the other
hand, if r = 8, then C, being split, contains a split quaternion subalgebra B,
whose norm, therefore, is hyperbolic. Thus we find p, q ∈ B× having Γ′ = 13.
Moreover, by Exc. 19.31, C(p,q) � C, and the assertion follows. □

40.7 Remark. For a (split) composition algebra C of rank 1, in which case
Her3(C,Γ) has rank 6, the conclusion of the proposition may fail because
Her3(R, diag(1,−1,−1)) is isotopic to the split Freudenthal algebra Her3(R)
but is not isomorphic to it, thanks to the following result.

40.8 Corollary. If J is a Freudenthal algebra over R then, up to isomorphism,
it is one of the following algebras.

(a) R(+),
(b) E(+) for E = R × R × R or R × C,
(c) Her3(R), Her3(R, diag(1,−1, 1)),
(d) For each of the dimensions d = 2, 4, 8 of a composition algebra C:Her3(C) for C split or division of dimension d;

Her3(C, diag(1,−1,−1)) for C a division algebra of dimension d.

That is, there are 14 isomorphism classes of Freudenthal algebras over R, of
which 3 are Albert algebras, namely

Her3(Zor(R)), Her3(O), and Her3(O, diag(1,−1,−1)).

Proof Let J be a Freudenthal algebra over R. If J is of dimension 1 then
J � R(+) and we have (a). Otherwise, J is of dimension ≥ 3 (Cor. 39.11) and
of degree 3 (Cor. 39.14). If J is a division algebra then for any x ∈ J, R[x] is a
finite field extension of R (Example 31.39 (a)). Since there are x’s of degree 3
this leads to a contradiction. If J is of dimension 3 it is of the formRe×J0(e) for
e an elementary idempotent. If J0(e) contains an elementary idempotent then
J � R × R × R is split. Otherwise J0(e) is a division algebra and J0(e) � C(+).
So we have (b).

For higher dimensions J � Her3(C,Γ) for some composition algebra C by
Prop. 39.17. By Exercise 37.22 (b), the isomorphism class of Her3(C,Γ) does
not change if (i) Γ is multiplied by an invertible scalar or (ii) each diagonal
entry of Γ is multiplied by an invertible square. By (ii) we may assume γi = ±1.
By (i), multiplying by −1 and permuting the elements of the frame if necessary,
we may assume that Γ = diag(1, s, s) for s = ±1.

If J has rank 6, it is isomorphic to (at least) one of the algebras in (c) because
R is the only possibility for C. If J has rank 9, 15, or 27 and C is split, then J
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is Her3(C) by Prop. 40.6, and it follows that J is one of the algebras listed in
(d).

It remains to show that the algebras listed in (c) and (d) are pairwise non-
isomorphic. Consider the bilinear trace TJ , whose formula appeared in (36.4.7).
Since we are only considering here the case k = R, it suffices to compute the
signature. The ξiηi terms contribute a total of 3 to the signature of the form and
the γ jγlnC terms contribute (1 + 2s) times the signature of nC .

Write 2r for the dimension of C. If C is split, then nC has signature 0 and T
has signature 3. If C is division and s = 1, then T has signature 3(1+2r). If C is
division and s = −1, then T has signature 3 − 2r. For r = 1, we find signatures
9 and 1, so the two algebras in (c) are not isomorphic. For r = 2, 4, 8, the three
values given for the signature of T are distinct, and we conclude that the three
exhibited algebras for that r are pairwise non-isomorphic. □

To review what has come before: The isotopy class of Her3(C,Γ) depends
only on C and not on Γ. Our next aim is to study those algebras that are isotopic
to one of the form Her3(C,Γ), see Theorem 40.10 below. The crux of the proof
is a detailed study of the isometries of the norm of Her3(C), for which we need
the following examples.

40.9 Examples. (1) Let J = Her3(C), {i, j, l} = {1, 2, 3} and (i j) be the trans-
position of {1, 2, 3} interchanging i and j. The transposition matrix M(i j) :=
ell + ei j + e ji = ell + 1C[i j] belongs to J. For any transposition π of {1, 2, 3},
NJ(Mπ) = −1 and UMπ

is a norm preserving map. Using the identities 36.4 and
37.7, one checks that UMπ

(αieii) = αieπ(i)π(i) and UMπ
(ai[ jl]) = ai[π( j)π(l)].

Since UMπ
fixes 1J , it is an automorphism of J. In the proof of Lemma 40.11

below, we will abuse notation and denote the transformation UM(i j) simply by
(i j).

(2) Let J = Her3(C,Γ), C any composition algebra, and let x =
∑

i ξieii +∑
i, j γ jui jei j ∈ J, ξi ∈ k, u ji = ui j ∈ C.
We will need some norm preserving maps of J described over fields of char-

acteristic not 2 in [134, §5] (which credits them to Freudenthal) and over Z in
[165, §2]. For c ∈ C, d ∈ k[c] ⊆ C and {q, r, s} = {1, 2, 3}, we claim that the
value of the matrix product

(13 + γsders)(13 + γscers)x(13 + γrc̄esr)(13 + γrd̄esr) (1)

is independent of the order in which we perform the multiplications. Indeed,
by linearity in x, we may assume x ∈ keii or x ∈ C[ jl] for some i = 1, 2, 3. In
either case, all factors in the above product belong to Mat3(B), where B ⊆ C
is a unital subalgebra generated by two elements and hence, thanks to Artin’s
theorem (Cor. 14.5 or Exc. 17.10), is associative.
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Now consider

(13 + γscers)x(13 + γrc̄esr)

= (x + γsξscers + γsγrcusrerr + γsγqcusqerq)(13 + γrc̄esr)

= x + γsξscers + γsγrcusrerr + γsγqcusqerq

+ γrξsc̄esr + γrγsursc̄err + γrγsuqsc̄eqr + γrγsξsnC(c)err

= x + γrγs(nC(urs, c) + ξsnC(c))err + ξs(γscers + γrc̄esr)

+ γs(γqcusqerq + γruqsc̄eqr).

So (13+γscers)x(13+γrc̄esr) ∈ Her3(C,Γ). We denote this element by ν(r,s,c)(x)
and so obtain a k-linear map ν(r,s,c) : J → J. Note that the ss, qq, sq and qs
entries of x are left fixed. Using (13 + γscers)(13 − γscers) = 13, we deduce
from (1) that ν(r,s,c)ν(r,s,−c) = 1J = ν(r,s,−c)ν(r,s,c). Letting

y = γrγs(nC(urs, c) + ξsnC(c))err + ξs(γscers + γrc̄esr)

+ γs(γqcusqerq + γruqsc̄eqr),

we have by (36.4.5), N(y) = 0 and by (36.4.4),

y♯ = −ξ2
sγrγsn(c)eqq − γ

2
sγrγqn(c)n(usq)ess + ξsγrγsn(c)(γqusqesq + γsuqseqs).

By (33.2.4), (33.4.2), N(ν(r,s,c)(x)) = N(x) + T (x♯, y) + T (x, y♯) where

T (x♯, y) = (ξsξq − γsγqnC(usq))γrγs(nC(urs, c) + ξsnC(c))

+ γrγsnC(−ξqurs + γqusquqr, ξsc)

+ γqγrnC(−ξsuqr + γsursusq, γscusq)

= ξ2
sξqγrγsnC(c) − ξsγrγ

2
sγqnC(c)nC(usq),

using (17.1.2), (17.1.3), Prop. 16.12 (4), (5). By (36.4.7),

T (x, y♯) = −ξ2
sξqγrγsnC(c)− ξsγrγ

2
sγqnC(c)nC(usq)+ ξsγrγ

2
sγqnC(c)nC(usq, usq).

Since nC(usq, usq) = 2nC(usq), N(ν(r, s, c)(x)) = N(x) and NJν(r,s,c) = NJ . So
ν(r,s,c) is a norm-preserving map. Note that we are not assuming that (r, s, q) is
a cyclic permutation of (1, 2, 3).

40.10 Theorem. Suppose J is a Jordan k-algebra that is isotopic to Her3(C,Γ)
for some regular composition algebra C and some Γ ∈ GL3(k). If k is an LG
ring, then J is isomorphic to Her3(C,Γ′) for some Γ′ ∈ GL3(k).

Proof As in previous proofs, we reduce to the case where C has finite con-
stant rank. In view of Exc. 37.23, J is isotopic to Her3(C), i.e., J � Her3(C)(u−1)

for some invertible u ∈ Her3(C). The same exercise shows we are done if u is
diagonal.
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We will apply successive elements η ∈ Inv(Her3(C)). Note that each such η
defines an isomorphism of k-modules

η : Her3(C)(u−1) → Her3(C)(η(u)−1), (1)

which is an isotopy by Lemma 40.4 and Prop. 31.18 (b) sending the unit ele-
ment of its domain to the unit element of its range, hence is an isomorphism
(Prop. 31.18 (a)). Thus, the following lemma suffices to complete the proof
of the theorem. We state it separately because it may be of independent inter-
est. □

40.11 Lemma. If C is a regular composition algebra over an LG ring k, then
for J := Her3(C), every Inv(J)-orbit of J× contains a diagonal element.

Proof As in other proofs, we reduce to the case where C has constant rank.
Let x =

∑
i αieii + ci[ jl] ∈ J× for αi ∈ k and ci ∈ C. Our aim is to find elements

of Inv(J) that transform x to eliminate the ci terms.

1◦. Suppose first that α1 ∈ k×. We claim that after modifying x by an element
of Inv(J), we may assume that c2 = c3 = 0.

For b ∈ C, the element ν(2,1,b)(x) has top row entries α1, c3 + α1b̄, c̄2. Taking
b = −c̄3α

−1
1 , we may assume that x has α1 ∈ k× and c3 = 0.

The same calculation, now with ν(3,1,b)(x), allows us to zero out the c2 entry.

2◦. If α1, α2 ∈ k× and c2 = c3 = 0, then the same argument as in the previous
step, now with ν(3,2,b)(x), allows us to zero out also the c1 entry, The resulting
element is then diagonal, which would complete the proof.

3◦. Now suppose that k is a field.
If some αi , 0, then we may employ a permutation transformation as in

Example 40.9(1) to arrange α1 , 0. Otherwise, αi = 0 for all i, then 0 ,
N(x) = tC(c1c2c3), so c3 , 0. Since nC is regular, some b ∈ C has nC(b, c3) , 0.
Replacing x with ν(1,2,b)(x), we may assume that α1 , 0.

Applying step 1, we may assume that c2 = c3 = 0. If α2 , 0, then we are
done by step 2. If α3 , 0, then we may apply a permutation transformation to
arrange that α2 , 0, and we are again done.

Finally, if α2 = α3 = 0, we have 0 , N(x) = −α1nC(c3), so c3 , 0. The
element ν(2,3,b)(x), for b chosen by the same method as at the start of step 1, is
diagonal, completing the proof in the case where k is a field.

4◦. Finally, suppose that k is an LG ring. For b1, b2, b3 ∈ C, define elements
of Inv(J):

ν3(b1, b2, b3) := ν(3,1,b1)ν(2,1,b2)ν(1,2,b3) and ν2(b1, b2) := ν(3,2,b1)ν(2,3,b2).
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Note that ν3(0, 0, 0) = ν2(0, 0) = 1J . We combine the transformations ν3, ν2,
and permutations together into a function C21 → Inv(J), namely

(ν2 (2 3) ν2ν3 (1 3)) (ν2 (2 3) ν2ν3 (1 3)) (ν2 (2 3) ν2ν3) (1)

where the arguments to the various ν2, ν3 are assigned independently. Combin-
ing this with the polynomial function that sends g ∈ Inv(J) to the (1, 1)-entry
of gx, we obtain a polynomial law C21 → k. But more is true. Because k is
LG and C is projective of constant rank, C is a free module, see Prop. 11.24.
Choosing a basis for C expresses this polynomial law as a polynomial with
coefficients in k.

We claim that this polynomial represents a unit over every F ∈ k-alg. For
a given F, here is how to pick the element of C21 that produces a unit by
picking the arguments of the transformation (1). If all αi are zero, we apply
the rightmost ν(1,2,∗) transformation in the rightmost instance of ν3 to arrange
α1 , 0. Otherwise, we plug 0 into this ν(1,2,∗) to obtain the identity in that term.
(Here is a first branch point.) If, after this step, α1 , 0, we apply the other two
terms in the rightmost ν3 to arrange that c2 = c3 = 0 as in step 1. If α2 = α3 = 0,
we apply the rightmost ν(2,3,∗) transformation in the rightmost instance of ν2 to
arrange α2 , 0. (Here is a second branch point.) If, after this step, α2 , 0, then
we apply the ν(3,2,∗) term of the rightmost ν2 to arrange that x is diagonal as in
step 2. In this case we plug zeros in for the remaining ν2 and ν3 terms in (1).
The remaining terms of (1), the permutation transformations, only rearrange
the diagonal entries of x and therefore do not change the property that the
(1, 1)-entry is a unit.

However, at the second branch point, it may occur that α2 = 0 but α3 , 0.
In that case, we plug zeros into the rightmost ν2 in (1). After the permutation
(2 3), we have α2 , 0 and may follow the original plan at the second branch
point.

However, at the first branch point, it may occur that α1 = 0 but α2 , 0 or
α3 , 0. If α2 , 0, then after applying the rightmost terms (1 3)ν2(2 3)ν2ν3

to x, we have arrived at the situation where α1 , 0 and we may follow the
first branch point. If α3 , 0, we may apply all but the leftmost ν2(2 3)ν2ν3 to
arrange that α1 , 0, and again we may follow the first branch point.

We have verified the claim, and therefore using the LG property of k we
conclude that there is an element of z ∈ C21 such that after plugging z into (1)
and applying it to x, we may assume that α1 ∈ k×. Following step 1, we may
further assume that c2 = c3 = 0.

Applying now an argument as in the preceding five paragraphs, with the
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function

ν2 (2 3) ν2 : C4 → Inv(J),

we conclude that we may transform x to further assume that α2 is invertible,
and therefore apply a transformation ν(3,2,b) to transform it into a diagonal ele-
ment, as required. □

Now that the proof of Theorem 40.10 is complete, we provide a conse-
quence.

40.12 Corollary. Suppose J is a Jordan algebra over an LG ring k. If J is
isotopic to a split Freudenthal algebra whose rank does not take the value 6,
then J is itself a split Freudenthal algebra.

Proof Because J is isotopic to a Freudenthal algebra, it is itself a Freudenthal
algebra. As in previous proofs, one is reduced to the case where J has constant
rank, which is not 6. If J has rank 1 or 3, then isotopy is the same as isomor-
phism, so there is nothing to prove. In the remaining cases, the theorem and
Prop. 40.6 give the claim. □

40.13 Remarks. (1) Corollary 40.12 does not hold for Albert algebras over
every ring. Indeed, Alsaody proves in [14, Thm. 2.7] that there is a smooth
k ∈ C-alg and an Albert k-algebra J that is isotopic to the split Albert algebra
but is not itself split. He also proves in ibid., Cor. 4.4, that there is a smooth
k ∈ R-alg and octonion k-algebras C, C′ such that Her3(C) � Her3(C′) yet
nC ; nC′ .

(2) The material in this section is largely adapted from [95], where some of it
appeared for the first time in the generality presented here. Lemma 40.11 for
LG rings is of the same type as a theorem of Krutelevich for the split Albert
algebra over Z, see [165].

Exercises
40.14. Spanning reduced cubic Jordan algebras by invertible elements. Let F be a field
and write J0 for the space of trace-zero elements in a cubic Jordan algebra J over F.

(a) Let (C,Γ) be a co-ordinate pair over F and suppose C as a vector space over F is
spanned by its invertible elements. Put J := Her3(C,Γ) and prove that J0 is spanned by
J0 ∩ J× as a vector space over F.

(b) Deduce from (a) that J0, for any simple cubic Jordan algebra J over F, is spanned
as a vector space over F by the invertible trace-zero elements of J. Conclude that J
itself is spanned as a vector space over F by its invertible elements.

40.15. Elements of rank one and two. Let J be a cubic Jordan algebra over a field F.



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

426 Cubic Jordan algebras

An element u ∈ J is said to have rank 1 (resp. rank 2) if u♯ = 0 , u (resp. u♯ has rank
1). Prove:

(a) The property of an element in J to have rank 1 (resp. 2) is stable under isotopy.

(b) If J is simple, an element in J has rank 1 (resp. 2) if and only if it is an elementary
(resp. a co-elementary) idempotent in some isotope of J.

(c) If J is simple, then an elementary idempotent e ∈ J can be extended to an elemen-
tary frame in J if and only if the linear trace of J does not vanish on J0(e).

(d) Let K ⊇ F be a purely inseparable field extension of characteristic 2 and exponent
at most 1. Put J := Her3(K) over F and prove that

e :=

1 1 1
1 1 1
1 1 1

 ∈ J

is an elementary idempotent that cannot be extended to an elementary frame in J. Show
further that

u :=

0 1 0
1 0 0
0 0 0

 ∈ J

is an element of rank 2 that cannot be written as the sum of two elements of rank 1 in
J.

(e) Let F := F2 be the field with two elements. What are the elements of rank 1 and
the elementary idempotents in J := Her3(F)?

(f) If J is simple and not a division algebra, then the following conditions are equiva-
lent.

(i) Every elementary idempotent of any isotope J′ of J can be extended to an
elementary frame of J′.

(ii) Every co-elementary idempotent of any isotope J′ of J can be decomposed into
the sum of two orthogonal elementary idempotents in J′.

(iii) Every element of rank 2 in J can be decomposed into the sum of two elements
of rank 1.

(iv) J is regular.

Remarks. (1) The (easy) proof of (a) does not use that F is a field and so holds for cubic
Jordan algebras over rings. However, in Lemma 56.5 we will exhibit an Albert algebra
over Z that has no elementary idempotents yet is isotopic to an Albert algebra with an
elementary frame.

(2) Combining part (f) with 39.3 allows us to conclude: If J is a simple and regular
cubic Jordan algebra over an algebraically closed field F, then Aut(J) acts transitively
on the set of elementary idempotents in J.

40.16. Let C be a regular composition algebra over an LG ring k. Prove: If every ele-
ment of k is a square in k, then for J := Her3(C), the group Inv(J) acts transitively on
the set {x ∈ J | NJ(x) = 1}.

40.17. Composition algebras and Freudenthal algebras over finite rings. Prove:
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(a) Freudenthal algebras of rank n > 6 over a finite field F are split or isomorphic to
Her3(K), where K is the unique quadratic field extension of F. (Hint: Compare
23.14.)

(b) Composition algebras of rank r > 2 and Freudenthal algebras of rank n > 9
over a finite commutative ring are split. (Hint: Reduce to the case of a finite
field by Prop. 39.26.)

Remark. The hypothesis n > 6 in part (a) can be strengthened to n ≥ 6, see Exc. 41.30
below.

40.18. Let J be a cubic Jordan algebra over k that is regular and the rank of J does not
take the value 2. The map η 7→ η♯−1 is an automorphism of Str(J) of order 2, compare
31.20. Prove:

(a) If there is a c ∈ k× such that c6 , 1, then the automorphism is not inner, i.e.,
there is no ϕ ∈ Str(J) such that ϕηϕ−1 = η♯−1 for all η ∈ Str(J).

(b) If J is a Freudenthal algebra of rank ≥ 6, then (1) the subgroup of Str(J) of
elements fixed by the automorphism is µ2(k) Aut(J), for µ2 the group scheme
of 2nd roots of unity as defined in Exc. 25.41 and (2) the subgroup of Inv(J) of
elements fixed by the automorphism is Aut(J).

41 Reduced Freudenthal algebras over fields

The present section is devoted to the classification of regular simple reduced
Freudenthal algebras over arbitrary fields. This will be accomplished in Thm.
41.21 below by identifying certain quadratic forms associated with the quad-
ratic trace in one way or another as classifying invariants. The idea of working
with the quadratic trace instead of the bilinear one, which was used by Springer
[264] but fails in characteristic 2, is due to Racine [242]. In applications, we
study nilpotent elements of regular simple reduced Freudenthal algebras and
the action of the group of norm similarities on the elements of rank 1.

Throughout this section, we let F be an arbitrary field.

41.1 The concept of a reduced Freudenthal algebra. A Freudenthal algebra
over F is said to be reduced if it contains an elementary frame. By Cor. 39.11,
a reduced Freudenthal algebra J over F either has dimension 3, in which case
J � (F × F × F)(+) is split cubic étale (Cor. 39.16), or is simple (equivalently,
has dimension at least 6), in which case it is isomorphic to Her3(C,Γ), for some
composition F-algebra C and some diagonal matrix Γ ∈ GL3(F) (Prop. 39.17).
Our first aim is to show that C is an isotopy invariant of J. To this end, we
follow [72, Chap. II, §9] for a short digression into Pfister forms.

41.2 The concept of a Pfister form. Recall from 11.7 that ⟨α1, . . . , αn⟩ for
n ∈ Z, n > 0, and α1, . . . , αn ∈ F is the symmetric bilinear form on Fn given
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by the symmetric matrix diag(α1, . . . , αn). Furthermore, we recall from 11.13
that for an F-vector space V and a quadratic form q : V → F, the natural
identification V ⊗ Fn = Vn of vector spaces yields an identification

q ⊗ ⟨α1, . . . , αn⟩ = α1q ⊥ · · · ⊥ αnq (1)

of quadratic forms, where the left-hand side of (1) is to be understood in the
sense of Prop. 11.4.

Assuming αi ∈ F× for 1 ≤ i ≤ n, we put

⟨⟨α1, . . . , αn⟩⟩ := ⟨1,−α1⟩ ⊗ · · · ⊗ ⟨1,−αn⟩

as a regular symmetric bilinear form over F of dimension 2n, which makes
sense also for n = 0 by setting ⟨⟨⟩⟩ := ⟨1⟩. Bilinear forms of this type are called
Pfister bilinear forms. By a Pfister quadratic form, or a Pfister form for short,
we mean a quadratic form over F that is isometric to

nK ⊗ ⟨⟨α1, . . . , αn−1⟩⟩, (2)

for some quadratic étale F-algebra K, n ∈ Z, n > 0, and α1, . . . , αn−1 ∈ F×.
More specifically, we call a quadratic form of the type displayed in (2) an
n-fold Pfister form or just an n-Pfister form. Such forms have dimension 2n.
This is also true for n = 0 if we agree to call a quadratic form isometric to
⟨1⟩quad a 0-fold Pfister form. If char(F) , 2, quadratic and symmetric bilinear
forms over F are basically the same, and ⟨⟨α1, . . . , αn⟩⟩ � nK ⊗ ⟨⟨α1, . . . , αn−1⟩⟩

with K := F[t]/(t2 − αn) is an n-Pfister form over F. It follows that in all
characteristics, n-Pfister forms are regular if and only if (i) n > 0 or (ii) n = 0
and char(F) , 2.

41.3 Examples of Pfister forms.

(a) The norm of F viewed as a composition F-algebra is ⟨1⟩quad, hence a 0-
fold Pfister form.

(b) Setting n = 1 in (41.2.2) we see that the norm of a quadratic étale F-
algebra is a 2-fold Pfister form and conversely.

(c) If q is a regular m-Pfister form and α1, . . . , αn ∈ F× for m, n ∈ N, then
q ⊗ ⟨⟨α1, . . . , αn⟩⟩ is an (m + n)-Pfister form.

(d) Let B be a conic F-algebra, µ ∈ F× and C := Cay(B, µ) the corresponding
Cayley-Dickson construction. We claim: if nB is an n-Pfister form for some
integer n > 0, then nC is an (n + 1)-Pfister form. Indeed, Remark 18.5 implies
nC � nB ⊗ ⟨⟨µ⟩⟩, and the assertion follows from (c).

(e) Since any composition F-algebra of dimension > 1 by Cor. 19.17 arises
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from a quadratic étale subalgebra by means of the Cayley-Dickson process in
the sense of 18.6, we deduce from (a)–(c) that the norm of any composition
F-algebra is a Pfister form.

41.4 Properties of Pfister forms. n-fold Pfister forms for n ∈ N are

(a) stable under base field extensions;

(b) regular unless n = 0 and char(F) = 2;

(c) round [72, Cor. 9.9]; and

(d) either anisotropic or hyperbolic [72, Cor. 9.10].

(e) Moreover, two regular n-fold Pfister forms are isometric if and only if they
have the same splitting fields [72, Cor. 23.6], where a splitting field of a regular
quadratic form over F is a field extension of F making the extended quadratic
form hyperbolic.

The classification of reduced Freudenthal algebras over a field is in terms of
the quadratic trace S J . However, for technical reasons occurring in character-
istic 2, we will need to also consider its restriction to the subspace J0 of trace
zero elements; we denote this restriction by S 0

J .
For a cubic Jordan algebra J, since TJ(y, 1) = TJ(y), F1J and J0 are orthog-

onal relative to the bilinear trace. It follows then by (33a.13) that F1J and J0

are also orthogonal relative to the bilinearization DS J of S J .

41.5 Examples. (a) If char(F) , 3, then every cubic Jordan algebra J has
S J(1J) = 3 , 0, and therefore 1J < J0, J = F1J ⊥ J0, and the relationship
between S J and S 0

J takes the especially simple form S J � ⟨3⟩quad ⊥ S 0
J .

(b) For E := (F × F × F)(+), the form S 0
E was calculated in Exercises 34.25

and 34.26. It is regular if and only if char(F) , 3.

(c) For a co–ordinate pair (C,Γ), the algebra J := Her3(C,Γ) contains a copy
of E from part (b). Formula (36.4.9) shows that S 0

J decomposes as an orthog-
onal sum of S 0

E and the restriction of S 0
J to the off-diagonal entries, C[12] +

C[23]+C[31], which is isomorphic to ⟨−γ2γ3,−γ3γ1,−γ1γ2⟩ ⊗ nC . Assume C
is regular, in which case so is this latter form.

Below, we will write QJ for the quadratic form

QJ := ⟨γ2γ3, γ3γ1, γ1γ2⟩ ⊗ nC . (1)

A useful property of QJ is that, since

⟨1, γ2γ3, γ3γ1, γ1γ2⟩ � ⟨1, γ2γ3, γ3γ1, (γ2γ3)(γ3γ1)⟩ � ⟨⟨−γ2γ3,−γ3γ1⟩⟩,
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we have

nC ⊥ QJ � ⟨⟨−γ2γ3,−γ3γ1⟩⟩ ⊗ nC .

Since nC is a Pfister form, so is nC ⊥ QJ . We summarize the relationship
between QJ , S J , and S 0

J with

S J � S E ⊥ ⟨−1⟩ ⊗ QJ and S 0
J � S 0

E ⊥ ⟨−1⟩ ⊗ QJ . (2)

41.6 Proposition. Let J be a regular cubic Jordan algebra over F.

(a) If char(F) , 2, the quadratic trace S J of J is a regular quadratic form.

(b) If char(F) = 2, then Rad(DS J) = F1J and S J is a non-singular quadratic
form in the sense of 11.11.

(c) If char(F) , 3, then the restriction S 0
J of S J to the space J0 of trace zero

elements of J is a regular quadratic form.

Proof Note that by regularity J is finite-dimensional.
Assume first char(F) , 2 and suppose x ∈ J satisfies S J(x, J) = {0}. By

(33a.2), therefore, 2TJ(x) = S J(x, 1J) = 0, hence TJ(x) = 0, and (33a.13)
implies TJ(x, J) = {0}. We conclude x = 0 since J is regular. Hence (a) holds.

Next assume char(F) , 3. The bilinear form DS 0
J is the restriction of −TJ to

J0 × J0 by (33a.13), hence a regular symmetric bilinear form, i.e., we have (c).
Since S J(1J) = 3, we conclude that S J is non-degenerate. And since J stays
regular under all base field extensions, S J is in fact non-singular. □

41.7 Lemma. Let (C,Γ) be a co-ordinate pair over F, with C a regular com-
position F-algebra, and put J := Her3(C,Γ).

(a) The isomorphism class of the quadratic form QJ defined in (41.5.1) de-
pends only on the isomorphism class of J (or merely the isomorphism class of
S 0

J) and not on C nor Γ.

(b) If C has dimension at least 2, then C is split if and only if QJ is hyperbolic.

Proof (a) Suppose that J is isomorphic to J′ � Her3(C′,Γ′) for a coordinate
pair (C′,Γ′) with C′ regular. If char(F) , 3, then S 0

J is regular (Prop. 41.6) and
by (41.5.2) we have

S 0
E ⊥ ⟨−1⟩ ⊗ QJ � S 0

J � S 0
J′ � S 0

E ⊥ ⟨−1⟩ ⊗ QJ′ . (1)

The three forms S 0
E , QJ , QJ′ are all regular, so by Witt cancellation we con-

clude QJ � QJ′ .
In case char(F) = 3, S 0

E � ⟨0,−1⟩quad by Exc. 34.26(b) and we can quotient
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out both sides of (1) by the radical to find

⟨−1⟩quad ⊥ ⟨−1⟩ ⊗ QJ � ⟨−1⟩quad ⊥ ⟨−1⟩ ⊗ QJ′

and again conclude that QJ � QJ′ .
(b) If C is split, then nC is hyperbolic and hence so is QJ , by (41.5.1). Con-

versely, if QJ is hyperbolic, then the Pfister form nC ⊥ QJ (cf. 41.5 (c)) is
isotropic, hence hyperbolic (41.4 (d)). Witt cancellation and hyperbolicity of
QJ now imply that nC is hyperbolic, so C is split. □

41.8 Theorem (Jacobson [136, Thm. IX.2.2], Faulkner [74, Thm. 1.8]). Let
(C,Γ) and (C′,Γ′) be co-ordinate pairs over F and suppose C, C′ are compo-
sition algebras. Then the following conditions are equivalent.

(i) C and C′ are isomorphic.
(ii) J := Her3(C,Γ) and J′ := Her3(C′,Γ′) are isotopic.

In case C, C′ are regular, Cor. 40.5 shows that the equivalent conditions in
the theorem are also equivalent to the statements “NJ and NJ′ are similar” and
“NJ and NJ′ are isometric”.

Proof (i)⇒ (ii). By Exc. 37.23, J is isotopic to Her3(C) and J′ is isotopic to
Her3(C′). But (i) implies that Her3(C) and Her3(C′) are isomorphic. Hence (ii)
holds.

(ii)⇒ (i). Suppose C, C′ have rank at least 2, for otherwise there is nothing
to prove. In particular, they are both regular. Since J is isotopic to Her3(C′,Γ′),
we deduce from Thm. 40.10 that J is isomorphic to J′1 := Her3(C′,Γ′1), for
some diagonal matrix Γ′1 ∈ GL3(F). By Lemma 41.7 (a), the quadratic forms
QJ and QJ′1 are isometric, hence have the same splitting fields. But now Lemma
41.7 (b) shows that nC and nC′ have the same splitting fields. Both being Pfis-
ter forms, they must be isometric (41.4 (e)). Thus, by the norm equivalence
theorem 23.5, C � C′. □

41.9 Corollary. There are exactly 10 isotopy classes of Freudenthal algebras
over R, namely R(+), (R × R × R)(+), (R × C)(+), Her3(R), and Her3(C) for C a
split or division composition algebra of dimension 2, 4, or 8.

Proof For ranks 1 and 3, isotopy is the same as isomorphism, so this amounts
to Cor. 40.8. For the other ranks, each isomorphism class listed in Cor. 40.8
is isotopic to one of the form Her3(C) for some composition algebra, so the
claimed list touches every isotopy class. Finally, Thm. 41.8 shows that the
algebras in the claimed list are pairwise non-isotopic. □

41.10 Corollary. Let (C,Γ) be a co-ordinate pair over F with C a regular
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composition algebra, and put J := Her3(C,Γ). The isometry classes of the
Pfister forms nC and nC ⊥ QJ depend only on the isomorphism class of J and
not on the choice of (C,Γ).

Proof The theorem says that the isomorphism class of C depends only on the
isomorphism class of J, so the same is true of nC . Since QJ is determined by J
(Lemma 41.7 (a)), the same is true of nC ⊥ QJ . □

41.11 The Pfister forms of a Freudenthal algebra. Given a regular simple
reduced Freudenthal algebra J over a field F, we define Pfister forms PfJ and
Pf+2

J by writing J := Her3(C,Γ) as in Cor. 41.10 and setting

PfJ := nC and Pf+2
J := nC ⊥ QJ = PfJ ⊥ QJ .

41.12 Co-ordinatizations. Let J be a regular simple reduced Freudenthal al-
gebra over F. By Prop. 39.17 and Thm. 41.8, there exists a regular compo-
sition F-algebra C, uniquely determined up to isomorphism, such that J �
Her3(C,Γ), for some diagonal matrix Γ ∈ GL3(F). By abuse of language,
we call C the co-ordinate (or coefficient) algebra of J. Any isomorphism
η : J

∼
→ Her3(C,Γ) is called a co-ordinatization of J. Passing from one co-

ordinatization of J to another will be expressed by saying that J is being re-co-
ordinatized. If Ω is the elementary frame that is mapped by a co-ordinatization
onto the diagonal frame of the target Jordan matrix algebra, we speak, more
specifically, of an Ω-co-ordinatization. Note that by the uniqueness of the co-
ordinate algebra and Prop. 39.2, every elementary frame Ω of J allows an
Ω-co-ordinatization of J.

41.13 The norm class of an elementary idempotent. Let J be a regular sim-
ple reduced Freudenthal algebra over F and write C for its co-ordinate algebra.
Since nC permits composition and the invertible elements of C are precisely
the anisotropic vectors relative to nC (Prop. 17.5), nC(C×) is a subgroup of F×.
We call the quotient Cl(J) := F×/nC(C×) the class group of J and denote by
cl : F× → Cl(J) the natural epimorphism.

Now let e be an elementary idempotent of J. By Exc. 40.15 (f), e can be
extended to an elementary frame Ω = (e1, e2, e3) of J with e1 = e. Pick any
Ω-co-ordinatization η : J → H := Her3(C,Γ), Γ = diag(γ1, γ2, γ3) ∈ GL3(F).
Then

κ(e) := cl(−γ2γ3) ∈ Cl(J) (1)

is called the norm class of e (with respect to J). We show that κ(e) is indepen-
dent of all choices made: let Ω′ = (e′1, e

′
2, e
′
3) be another elementary frame of J
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with e′1 = e and η′ : J → H′ := Her3(C,Γ′), Γ′ = diag(γ′1, γ
′
2, γ
′
3) ∈ GL3(F), be

any Ω′-co-ordinatization of J. Then the isomorphism ϕ := η′ ◦ η−1 : H → H′

maps e11 ∈ H to e11 ∈ H′, hence ϕ maps

H0(e11) = Fe22 + Fe33 +C[23] ⊆ H to H′0(e11) = Fe22 + Fe33 +C[23] ⊆ H′.

Since ϕ preserves quadratic traces, it induces an isometry from S H |H0(e11) �

h ⊥ (−γ2γ3)nC (by (36.4.9)) to S H′ |H′0(e11) � h ⊥ (−γ′2γ
′
3)nC . Thanks to Witt

cancellation, therefore, (−γ2γ3)nC � (−γ′2γ
′
3)nC , and since nC is round, this

implies cl(−γ2γ3) = cl(−γ′2γ
′
3). Thus κ(e) is well defined.

41.14 Remark. Our preceding considerations, and many more still to come,
rely on the possibility of extending an elementary idempotent to an elementary
frame. In spite of the fact that this possibility can be guaranteed only by work-
ing (as we do) with simple reduced Freudenthal algebras that are also regu-
lar, there is much room for generalizations. For example, passing from Jordan
algebras to Jordan pairs, which provide us with a much more generous sup-
ply of elementary idempotents, the Jacobson-Faulkner theorem 41.8 has been
generalized in [213, p. 196] to what is called there the isotopy theorem, a spe-
cial case of which says the following: given arbitrary co-ordinate pairs (C,Γ)
and (C′,Γ′) over a local ring, the cubic Jordan matrix algebras Her3(C,Γ) and
Her3(C′,Γ′) are isotopic if and only if C and C′ are isotopic, i.e., there exist
p, q ∈ C× such that C′ � C(p,q) as conic algebras. In particular, conditions
(i), (ii) of Theorem 41.8 are equivalent if C and C′ are only assumed to be
pre-composition algebras.

We now proceed to derive a couple of technical lemmas that pave the way
for the proof of the classification theorem 41.21.

41.15 Lemma. Let C be a regular composition algebra over F, and with Γ =
diag(γ1, γ2, γ3) ∈ GL3(F), put J := Her3(C,Γ) and S := S J .

(i) If the norm of C is surjective (in particular, if C is split of dimension
> 1), then the class group of J is trivial and κ(e) = 1Cl(J) for all ele-
mentary idempotents e ∈ J.

(ii) If C is a division algebra and 0 , x ∈ C[ jl] for some 1 ≤ i ≤ 3 , then
κ(eii) = cl(S (x)).

(iii) If C is a division algebra and x ∈ J1(eii) for some 1 ≤ i ≤ 3, with
S (x) ∈ F×, then g = S (x)−1x♯ is an elementary idempotent in J0(eii)
with κ(g) = cl(S (x)).

Proof (i) follows immediately from the definitions.
(ii) Since x , 0, x = d[ jl], d ∈ C×. So S (x) = −γ jγlnC(d) and cl(S (x)) =

cl(−γ jγl) = κ(eii).
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(iii) We may assume i = 1 and have 0 , S (x) = T (x♯) (33a.12), so x♯ , 0,
x♯ ∈ J0(e11) by (38.7.2), x♯♯ = 0 by (38.7.1). Therefore g3 := S (x)−1x♯ is an
elementary idempotent in J0(e11), andΩ := (g1, g2, g3) = (e11, 1J −e11−g3, g3)
is an elementary frame in J. Now (37.2.2) and (33a.3) imply (g2+g3)× x = −x.
But g3 × x = S (x)−1x♯ × x = −x by (33a.14). Therefore g2 × x = 0 and,
since T (x) = 0, x ∈ J1(g2) (37.2.2). So x ∈ J1(g1) ∩ J1(g2) = J12(Ω) and
κ(g3) = cl(S (x)) by (ii). □

Continue the hypothesis that J and J′ are regular cubic Jordan algebras over
F. We would like to compare the conditions S J � S J′ and S 0

J � S 0
J′ . One

direction is obvious when char(F) , 3: Because of the hypothesis on the char-
acteristic, S J � ⟨3⟩quad ⊥ S 0

J and similarly for J′, and we deduce immediately:
If S 0

J � S 0
J′ , then S J � S J′ . Conversely, we have the following.

41.16 Proposition. Suppose J and J′ are regular simple reduced Freudenthal
algebras.

(a) If S 0
J � S 0

J′ , then S J � S J′ .
(b) Suppose char(F) , 2 or J has rank 15 or 27. If S J � S J′ , then S 0

J � S 0
J′ .

Proof Suppose first that char(F) , 2, 3, in which case we exploit Example
41.5(a) to see that S J � ⟨3⟩quad ⊥ S 0

J and similarly for J′, where all the quad-
ratic forms are regular. Witt Cancellation 11.27 gives that S 0

J � S 0
J′ if and only

if S J � S J′ .
For (a), since S 0

J � S 0
J′ , we have QJ � QJ′ by Lemma 41.7(a), so

S J � S E ⊥ ⟨−1⟩ ⊗ QJ � S E ⊥ ⟨−1⟩ ⊗ QJ′ � S J′ .

Let us next consider (b) in case char(F) = 3. As in the proof of Lemma 41.7,
we use the first equation of (41.5.2) to conclude that QJ � QJ′ , from which we
use the second equation of (41.5.2) to conclude that S 0

J � S 0
J′ .

It remains to prove (b) in case char(F) = 2 and J has rank 15 or 27. We
use some concepts from the theory of quadratic forms as described in Part 1 of
[72]. In particular, we consider the Witt group of regular quadratic forms over
F, which is a module under the Witt ring of non-degenerate symmetric bilinear
forms, as well as its submodule I2

q (F) that is generated by 2-Pfister forms.
We first claim that S 0

J ⊥ [1, 1] belongs to I2
q (F). Write J as Her3(C,Γ). The

calculation in Example 41.5 (b) shows that

S 0
J � [1, 1] ⊥ b ⊗ nC

for a rank 3 bilinear form b. Since dim C = 4 or 8 by hypothesis, nC is regular
and lies in the subgroup I2

q (F) in the Witt group, as does ⟨1, 1⟩ ⊗ [1, 1], hence
so does their sum S 0

J ⊥ [1, 1].
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Using the hypothesis that S J � S J′ and rearranging terms, we find

⟨1⟩quad ⊥ S 0
J ⊥ S 0

J′ � ⟨1⟩quad ⊥ S 0
J ⊥ S 0

J .

The regular quadratic form S 0
J ⊥ S 0

J is hyperbolic [72, Lemma 8.13]. Thus,
S 0

J ⊥ S 0
J′ is isomorphic to a regular 2-dimensional form q plus a hyperbolic

form [72, Prop. 8.8]. On the other hand,

S 0
J ⊥ S 0

J′ ⊥ 2h � S 0
J ⊥ [1, 1] ⊥ S 0

J′ ⊥ [1, 1],

so S 0
J ⊥ S 0

J′ and hence also q lie in I2
q (F). It follows that q must be isotropic

by the Arason-Pfister Hauptsatz [72, Thm. 23.7(1)], hence hyperbolic. In sum-
mary, S 0

J � S 0
J′ , as required. □

One could extend the preceding result to include the case where J and J′ are
not reduced, by extending scalars to a cubic extension that reduces J or J′ as
in Prop. 46.6 below.

In the case of characteristic 2, (b), one might wonder about the omitted
ranks. We already have an example such that S J � S J′ does not imply S 0

J � S 0
J′

when J, J′ have dimension 3, see Exc. 34.25. For rank 6, J is not regular. For
rank 9, we have the following.

41.17 Example. Suppose char(F) = 2 and J := Her3(K) for K a quadratic
étale F-algebra. Then K = F[t]/(t2 + t + β) for some β ∈ F and by the calcu-
lations of Example 41.5,

S 0
J � [1, 1] ⊥ nK ⊥ nK ⊥ nK � [1, 1] ⊥ [1, β] ⊥ 2h
� [1, β + 1] ⊥ 3h,

where the last isomorphism is by [72, Example 7.23]. In any case, just as in
Exc. 34.25, we find that

S J � ⟨1⟩quad ⊥ S 0
J � ⟨1⟩quad ⊥ 4h,

regardless of the choice of K.
For example, let F be a finite field of characteristic 2 such that adjoining

the cube roots of unity is a proper extension K. (E.g., take F = F2.) Take
J := Her3(K) and take J′ to be the split Freudenthal algebra over F of rank 9,
Her3(F × F) � Mat3(F)(+). Then S J � S J′ but S 0

J � 4h � nK ⊥ 3h � S 0
J′ .

In the following result, we use the hypothesis S 0
J � S 0

J′ . One can translate
this to an alternative version that uses the hypothesis S J � S J′ instead by using
Prop. 41.16.

41.18 Lemma. Let J and J′ be two regular simple reduced Freudenthal F-
algebras and suppose that S 0

J � S 0
J′ .
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(a) The coefficient algebras of J and J′ are isomorphic; in particular, J and
J′ have the same class group.

(b) Any two elementary idempotents e ∈ J, e′ ∈ J′ with κ(e) = κ(e′) can be
mapped into each other by an isomorphism of J′ onto J.

Proof Write J = Her3(C,Γ), J′ = Her3(C′,Γ′) for composition algebras C,
C′ and diagonal matrices Γ = diag(γ1, γ2, γ3), Γ′ = diag(γ′1, γ

′
2, γ
′
3) ∈ GL3(F).

(a) There is nothing to prove for r := dimF(C) = dimF(C′) = 1, so let us
assume r > 1. Since S 0

J and S 0
J′ are isometric, so are QJ and QJ′ (Lemma 41.7).

In particular, QJ and QJ′ have the same splitting fields and by Lemma 41.7 (b),
this property carries over to nC and nC′ , forcing nC � nC′ by 41.4 (e): Thus C
and C′ are isomorphic and Cl(J) = Cl(J′).

(b) If C � C′ are both split of dimension r > 1, then Prop. 40.6 shows
J � J′ � Her3(C). Any elementary idempotent of Her3(C) has trivial norm
class (Lemma 41.15 (i)), and that any two of them can be mapped into each
other by an automorphism is an easy exercise.

We may therefore assume that C and C′ are division algebras. We may fur-
ther assume that e = e11 and e′ = e′11 where (e11, e22, e33) and (e′11, e

′
22, e

′
33)

are the diagonal elementary frames of J and J′ respectively. We wish to show
that J can be re-co-ordinatized in such a way that J � Her3(C,Γ′). To this end,
we consider the quadratic space S ∗ and S ′∗, which we define to be S J , S J′ if
char(F) , 2 and S 0

J , S 0
J′ if char(F) = 2. By hypothesis, S ∗ � S ′∗ (Prop. 41.16)

and the quadratic form is regular (Prop. 41.6). We write J∗, J′∗ for the module
underlying S ∗, S ′∗ respectively.

Put J jl = C[ jl] ⊆ J∗, J′jl = C′[ jl] ⊆ J′∗. Since κ(e) = κ(e′), there is an
isometry of ψ0 : J′23 → J23. We define subspaces E∗ ⊆ J∗, E′∗ ⊆ J′∗ by E∗ :=∑

Feii ⊆ J, E′∗ :=
∑

Fe′ii ⊆ J′ for char(F) , 2 and E∗ := E0 =
∑2

i=1 F(eii −

e33), E′∗ := E′0 =
∑2

i=1 F(e′ii − e′33) ⊆ J′0 for char(F) = 2. Then we extend
ψ0 to an isometry ψ : W ′ := E′∗ ⊕ J′23 → W := E∗ ⊕ J23 having ψ(e′ii) = eii

for 1 ≤ i ≤ 3 and char(F) , 2, ψ(e′ii − e′33) = eii − e33 for i = 1, 2 and
char(F) = 2. Applying the Witt extension theorem [72, Thm. 8.3], we can
extend ψ still further to an isometry ϕ : J′∗ → J∗, which in turn maps W ′⊥

onto W⊥, orthogonal complementation referring to S ′∗, S ∗, respectively. Thus
W ′⊥ = J′31 ⊕ J′12 and W⊥ = J31 ⊕ J12 in all characteristics. We now observe
1C′ [31] ∈ J′31 ⊆ W ′⊥ and put y := ϕ(1C′ [31]) ∈ W⊥ = J1(e11) to obtain
S (y) = S ′(1C′ [31]) = −γ′3γ

′
1. By Lemma 41.15 (iii), g2 := S (y)−1y♯ is an

elementary idempotent in J0(e11), giving rise to the elementary frame

Ω := (g1, g2, g3) := (e11, g2, 1J − e11 − g2)

of J. Since y ∈ J1(g1), (37.2.2) and (33a.3) imply (g2 + g3) × y = −y. But
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g2 × y = S (y)−1y♯ × y = −y by (33a.14) since NJ(y) = 0 by (38.7.1). Thus
g3 × y = 0 and, since TJ(y) = 0, y ∈ J1(g3). So y ∈ J1(g1) ∩ J1(g3) = J31(Ω).
On the other hand, κ(g1) = κ(e11) = κ(e′11), so there is an x ∈ J23(Ω) hav-
ing S (x) = −γ′2γ

′
3. Summing up, therefore, we deduce from Prop. 37.6 that

S := (Ω, x, y) is a co-ordinate system for J, and the Jacobson co-ordinatization
theorem 37.17 combined with the uniqueness of the coefficient algebra yields
a co-ordinatization η : J

∼
→ Her3(C,Γ′′) ,

Γ′′ = diag
(
−S (y),−S (x), 1

)
= diag(γ′3γ

′
1, γ
′
2γ
′
3, 1).

Multiplying Γ′′ by γ′3 and clearing squares, Γ′′ is converted to Γ′, which by
Exc. 37.22 (b) completes the proof. □

41.19 Corollary. If J is a regular simple reduced Freudenthal algebra over
F, then two elementary idempotents e, e′ ∈ J are in the same orbit of the
automorphism group of J if and only if κ(e) = κ(e′). □

41.20 Lemma. Let J and J′ be two regular simple reduced Freudenthal F-
algebras and suppose that S 0

J � S 0
J′ . Then there exist elementary idempotents

e ∈ J and e′ ∈ J′ with κ(e) = κ(e′).

Proof We adopt the notation used in the proof of Lemma 41.18 and, in par-
ticular, write J = Her3(C,Γ), J′ = Her3(C,Γ′). If C is split of dimension > 1
then the class groups of J and J′ are trivial and all elementary idempotents of J
and J′ have the same norm class. In view of Exercise 41.35, we may therefore
assume that C is a division algebra of dimension > 1.

By Lemma 41.7, the quadratic forms QJ and QJ′ , which act on J23 ⊕ J31 ⊕

J12 and J′23 ⊕ J′31 ⊕ J′12, respectively, are isometric. So there exists an x ∈
J23 ⊕ J31 ⊕ J12 such that S (x) = −γ′2γ

′
3. If x ∈ J1(eii) for some 1 ≤ i ≤ 3

then by Lemma 41.15 (iii), we obtain an elementary idempotent e ∈ J with
κ(e) = cl(S (x)) = κ(e′11) = κ(e′) and we are done. If not, then

x =
∑

ci[ jl] (c1, c2, c3 ∈ C×). (1)

By (36.4.5) and (36.4.9) we have

S (x) = −
∑

γ jγlnC(ci), NJ(x) = γ1γ2γ3tC(c1c2c3). (2)

Our next aim will be to show that we may assume NJ(x) = 0. Indeed, if this is
not so, we may use the co-ordinate system (e11, e22, e33, c1[23], c2[31]) to re-co-
ordinatize J, allowing us to assume c1 = c2 = 1C . Since dimF(C) > 1, we find
an element b ∈ C× having tC(b̄c3) = nC(b, c3) = 0. Putting y := b̄[23]+b[31]+
b̄c3[12], we conclude S (y) = nC(b)S (x) and NJ(y) = γ1γ2γ3tC(b̄b(b̄c3)) =
γ1γ2γ3nC(b)tC(b̄c3) = 0. Thus we may assume that x as in (1) satisfies κ(e′) =
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cl(S (x)) and NJ(x) = 0. This implies x♯♯ = 0 and forces g := S (x)−1x♯ to
be an elementary idempotent. Since TJ(x) = 0 and g × x = −x by (33a.14),
Prop. 37.2 (b) implies x ∈ J0(g).

Put T := TJ and assume first T (e11, g) = 1. Since Peirce components are or-
thogonal relative to the bilinear trace (Prop. 37.2 (b)), the Peirce-2-component
of x♯ relative to e11 is S (x)e11, while, by (1), (36.4.4) combined with Prop. 37.8
and (32.15.2), it agrees with −γ2γ3nC(c1)e11. Thus y = c1[23] ∈ C[23] has
κ(e′) = cl(S (x)) = cl(S (y)) = cl(−γ2γ3) = κ(e11).

Turning to the case T (e11, g) , 1, put f := 1J − g and consider the quantity
U f e11 ∈ J0(g). We have (U f e11)♯ = U f ♯e

♯
11 = 0 and T (U f e11) = T (U f e11, 1J) =

T (e11, f ) = T (e11, 1J−g) = 1−T (e11, g) , 0. Therefore g2 := T (U f e11)−1U f e11

is an elementary idempotent in J0(g) satisfying T (g2, x) = 0 since T (U f e11, x) =
T (e11,U f x) = T (e11, x) = 0. Since also T (x) = T (g, x) = 0, we conclude with
g3 := f − g2 that

x ∈ (Fg ⊕ Fg2 ⊕ Fg3)⊥ ∩ J0(g),

orthogonal complements being taken relative to the bilinear trace. Thus x be-
longs to the Peirce-2, 3-component relative to the elementary frame (g, g2, g3)
of J. But this means κ(g) = κ(e′), and the proof is complete. □

Collecting results, we quickly obtain:

41.21 Theorem. If J and J′ are regular simple reduced Freudenthal algebras
over F, then the following are equivalent.

(i) The algebras J and J′ are isomorphic.
(ii) The quadratic forms S 0

J and S 0
J′ are isometric.

(iii) The regular quadratic forms QJ and QJ′ are isometric.
(iv) The two Pfister forms of J and J′ are isometric: PfJ � PfJ′ and Pf+2

J �

Pf+2
J′ .

Proof The key implication is (ii)⇒ (i). By Lemma 41.18 (a), J and J′ have
isomorphic coefficient algebras. Lemma 41.20 provides elementary idempo-
tents e ∈ J and e′ ∈ J′ such that κ(e) = κ(e′). Then Lemma 41.18 (b) yields an
isomorphism between J and J′.

The implication (i)⇒ (iii) is Lemma 41.7 and (iii)⇒ (ii) is by (41.5.2). And
finally, the implication (i)⇒ (iv) follows from 41.11, while Witt cancellation
and 41.11 yield (iv)⇒ (iii). □

41.22 Remark. If J, J′ are Albert algebras (say) or F has characteristic , 2,
then the equivalent conditions of Thm. 41.21 are equivalent to

(v) The quadratic forms S J and S J′ are isometric.
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thanks to Prop. 41.16. However, Example 41.17 shows that (v) is not in general
equivalent to the statements in Thm. 41.21. (The corresponding statement of
Theorem 3 in [242] should be adjusted.)

41.23 Remark. For Freudenthal algebras of rank 9, the equivalent conditions
collected in Thm. 41.21 may be viewed in the context of a 3-Pfister form at-
tached to a unitary involution on a central simple associative algebra of degree
3 as in [160, (19.4) and Thm. (19.6)] (for char(F) , 2) or [218, Thm. 2.4] (for
char(F) arbitrary), which can in turn be related to a statement about the Rost
invariant for affine group schemes of type A2 as in [218, Remark 2.5]

The following result can be found in a variety of places, such as Springer
[264], Knus-Merkurjev-Rost-Tignol [160, Thm. 37.13], or Serre [261, §9.2,
§9.4].

41.24 Corollary. If F has characteristic , 2, then two simple reduced Freud-
enthal algebras J, J′ over F are isomorphic if and only if their bilinear traces
are isometric.

Proof Since the characteristic is not 2, J and J′ are regular (Cor. 39.15).
Hence J � J′ iff QJ � QJ′ (Thm. 41.21) iff TJ � TJ′ as symmetric bilinear
forms since (36.4.7) implies TJ = ⟨1, 1, 1⟩ ⊥ (DQJ), ditto for TJ′ . □

41.25 Vista: S 0
J versus QJ . We have proved that the quadratic forms S 0

J or QJ

serve to classify regular simple reduced Freudenthal algebras (Thm. 41.21),
but there is more to observe.

(i) While S 0
J is a classifying invariant for regular simple reduced Freudenthal

algebras over fields, it is still a strange one. For instance, by Example 41.17,
even if S 0

J is regular then neither does J split imply S 0
J hyperbolic nor, con-

versely, does S 0
J hyperbolic imply J split.

(ii) From this point of view, the classifying invariant QJ is more natural: in-
deed, if the co-ordinate algebra of J has dimension at least 2, then QJ is hyper-
bolic iff J is split, by Lemma 41.7 (b).

(iii) For an Albert algebra J, other references write f3(J) instead of PfJ , calling
it the 3-Pfister form of J or its 3-invariant mod 2, and f5(J) instead of Pf+2

J ,
calling it the 5-Pfister form of J or its 5-invariant mod 2. The fact that these
invariants classify reduced Albert algebras (i.e., the equivalence of (i) and (iv)
in Theorem 41.21) for the case char(F) , 2 appears in [94, p. 50, Thm. 22.4],
while an explicit reference to this fact in arbitrary characteristic doesn’t seem
to exist.

It is worth noting that these invariants are defined for every Albert algebra
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over a field F, not just reduced ones. See Exc. 46.23 and [230] (in general),
and [160, 40.2] or [94, p. 50] (for the case char(F) , 2).

We give two applications of the preceding results and begin with a useful
criterion for the existence of non-zero nilpotent elements.

41.26 Theorem. For a regular Freudenthal algebra J of dimension ≥ 6 over
F, the following are equivalent.

(i) J contains non-zero nilpotent elements.
(ii) J � Her3(C, diag(−1,−1, 1)), for some regular composition algebra C

over F.
(iii) J is reduced and the quadratic form QJ is isotropic.
(iv) J is reduced and the Pfister form Pf+2

J is hyperbolic.

Proof (ii)⇒ (i). Note first that by Exc. 34.23 elements in a cubic Jordan alge-
bra over a field are nilpotent if and only if their linear trace, their quadratic trace
and their norm are equal to zero We begin by assuming J � J′ := Her3(C,Γ)
with C and Γ as indicated in (ii). Then u := e22−e33+1C[23] ∈ J′ is a non-zero
nilpotent, by the formulas in 36.4, so J contains non-zero nilpotent elements.

(i)⇒ (ii). If 0 , u ∈ J is nilpotent, then (33.9.3) implies (u2)2 = u4 = 0, so
replacing u by u2 if necessary we may assume u2 = 0. By Lemma 38.4, there
exists an elementary idempotent e ∈ J such that u ∈ J0(e). Extending e to an
elementary frame Ω = (e = e1, e2, e3) in J by Exc. 40.15 (f), we write C for
the co-ordinate algebra of J. If C contains zero divisors, then J � Her3(C,Γ)
for any diagonal matrix Γ ∈ GL3(F) (Prop. 40.6), so we may assume that C
is a division algebra. Letting J

∼
→ Her3(C,Γ) be an Ω-co-ordinatization of J,

with some diagonal matrix Γ = diag(γ1, γ2, γ3) ∈ GL3(F), we may identify
J = Her3(C,Γ) in such a way that e = e11, hence u = α2e22 + α3e33 + a1[23],
α2, α3 ∈ F, a1 ∈ C not all zero. We may assume γ3 = 1. Thus α2 + α3 =

TJ(u) = 0 and α2α3 − γ2nC(a1) = S J(u) = 0. With α := α2 = −α3, we
therefore conclude α2 + γ2nC(a1) = 0. Hence α , 0 and a1 ∈ C×, so with
p := α−1a1 we obtain γ2nC(p) = −1. In view of Exc. 37.24, we may therefore
assume γ2 = −1. Consulting (41.5.1), we see that QJ is Witt equivalent to
−nC , so the Witt class of QJ is independent of γ1. Since QJ by Thm. 41.21 is a
classifying invariant for J, we may therefore assume γ1 = −1, and (ii) holds.

(ii) ⇒ (iii). From (ii) and (41.5.1) we deduce QJ = (−nC) ⊥ (−nC) ⊥ nC ,
and this is isotropic.

(iii)⇒ (iv). If (iii) holds, then Pf+2
J is isotropic, hence hyperbolic by 41.4 (d).

(iv) ⇒ (ii). If Pf+2
J is hyperbolic, then Pf+2

J � nC ⊥ (−nC) ⊥ (−nC) ⊥ nC ,
which by Witt cancellation implies QJ � (−nC) ⊥ (−nC) ⊥ nC . Since J is
reduced, QJ is a classifying invariant for J, whence condition (ii) holds. □
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41.27 Remark. For J a reduced Albert algebra over F, the equivalence of (i)
and (ii) goes back to Albert-Jacobson [11, Thm. 6] if char(F) , 2, while the
equivalence of (i), (iii), (iv) is due to Petersson [218, Thm. 4.4].

In our second application, we will be concerned with elements of rank 1 as
defined in Exc. 40.15 and their connection with the structure group.

41.28 Rank-one elements and isotopies. Let J be a cubic Jordan algebra over
F and write

Y := Y(J) := {y ∈ J | y has rank 1}

for the collection of its rank-one elements. The lines Fy, y ∈ Y , form the set
of F-points of the projective variety Y = Y(J) defined by the homogeneous
quadratic equation x♯ = 0. Note that, for J an Albert algebra, Y(J) is the E6-
variety of the introduction.

(a) Typical examples of rank-one elements are elementary idempotents but
also nilpotents of index 2, i.e., elements u ∈ J satisfying u2 = 0 , u. Indeed, we
have TJ(u) = S J(u) = 0 by Exc. 34.23, and (33a.22) yields u♯ = 0. Moreover,
Y is stable under homotheties x 7→ αx, α ∈ F×, and this procedure combined
with the preceding examples exhausts the totality of rank-one elements.

(b) By Exc. 40.15 (a), rank-one elements are stable under isotopy, so Y(J) =
Y(J(p)), for all p ∈ J×. Since isotopies are homomorphisms into appropriate
isotopes, and homomorphisms of cubic Jordan algebras preserve adjoints, it
follows that isotopies of cubic Jordan algebras preserve rank-one elements.
In particular, the structure group of J acts canonically on Y(J). Note that the
structure group of J agrees with the group of norm similarities, hence contains
the group of norm isometries, provided J is regular (Lemma 40.4).

41.29 Theorem. Let J be a regular simple reduced Freudenthal F-algebra.

(a) The group of norm similarities of J acts transitively on the rank-one ele-
ments of J.

(b) The group of norm isometries of J acts transitively on the F-points of the
projective variety Y(J): given y, y′ ∈ Y(J), there exists a norm isometry of J
sending y to αy′, for some α ∈ F×.

Proof (a) After passing to an appropriate isotope, we may assume that J =
Her3(C) for some regular composition F-algebra C. Given y ∈ Y(J), we must
find a norm similarity of J sending y to e11. In order to do so, we apply
Exc. 40.15 (a) and find an element p ∈ J× making e := y ∈ J(p) an ele-
mentary idempotent. Using Exc. 40.15 (f), we extend e to an elementary frame
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Ω = (e = e1, e2, e3) of J(p), which in turn, by Prop. 39.2, yields an Ω-co-
ordinatization χ : J(p) ∼

→ J′ := Her3(C′,Γ), for some composition algebra C′

over F and some diagonal matrix Γ ∈ GL3(F); in particular χ(y) = χ(e) =
e′11 ∈ J′. From Thm. 41.8 we deduce C � C′, so we may actually assume
C = C′ and J′ = Her3(C,Γ). Applying Exc. 37.23, we find an element q ∈ J′×

and an isomorphism ψ : J′(q) ∼
→ Her3(C) = J satisfying ψ(χ(y)) = γe11, for

some γ ∈ F×. Note that ψ, χ are bijective strong homotopies in the sense of
Exc. 31.37, hence isotopies by (a) of the same exercise. We have thus found in
ϕ := γ−1ψ ◦ χ ∈ Str(J) a norm similarity satisfying ϕ(y) = e11.

(b) Write µ ∈ F× for the multiplier of ϕ, so NJ ◦ ϕ = µNJ (as polynomial
laws over F). Setting p := e11 + µe22 + e33 ∈ J×, we obtain NJ(p) = µ,

NJ ◦
(
NJ(p)−1Up ◦ ϕ

)
= NJ , and NJ(p)−1Up ◦ ϕ(y) = µ−1e11,

which completes the proof of (b). □

Exercises
41.30. Extend the result of Exc. 40.17(a) by proving that every Freudenthal algebra of
rank 6 over a finite field is split.

41.31. Norm classes of elementary frames (Albert-Jacobson [11, Thm. 9]). Let J be
a regular reduced simple Freudenthal algebra over F. For an elementary frame Ω =
(e1, e2, e3) of J,

κ(Ω) :=
(
κ(e1), κ(e2)

)
∈ Cl(J) × Cl(J) (1)

is called the norm class of Ω in J. Prove that two elementary frames of J are in the
same orbit under the automorphism group of J if and only if they have the same norm
class. Conclude that this is always the case provided J is split of dimension at least 9.

41.32. Let J be a regular Freudenthal algebra over a field F. Show that for every rank
1 element x ∈ J, we have F

(
(x × J)♯

)
= Fx.

Remark. Note that Fx and x × J are inner ideals, see Example 34.9. Such inner ideals
are sometimes called “points” and “hyperlines” respectively, compare [277, p. 25] or
[43, §7]. This exercise gives an explicit bijection between the collection of points and
the collection of hyperlines in J.

41.33. The projective octave plane. Let C be a regular composition division algebra
over a field F and consider the Freudenthal algebra J := Her3(C,Γ) for some Γ. In this
exercise, we define a projective plane in the sense of 2.4 with “points” the set P of rank
1 elements of J, taken projectively, and “lines” the set L of hyperlines as in Exercise
41.32, which are in bijection with the points.

(i) Suppose x, y are linearly independent rank 1 elements. Prove: x × y is also of
rank 1 (and in particular is not zero).

(ii) Suppose x, y are rank 1 elements. Prove: T (x, y) = 0 if and only if x ∈ y × J.
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We say that a point Fx lies on a line y × J if T (x, y) = 0.

(iii) Suppose Fx and Fy are distinct points. Prove that (x × y) × J is the unique line
containing both of them.

(iv) Prove that the axioms of a projective plane from 2.4 hold.

Remark. This exercise was inspired by the treatment in [265], see alternatively [85, §7]
or [147]. However, our treatment here does not put any hypotheses on the field F (other
than the existence of C), whereas the results in the references require at a minimum that
F has characteristic , 2, 3.

41.34. The Skolem-Noether theorem for reduced Freudenthal algebras (Jacobson [136,
Thm. IX.3]). Let J be a Freudenthal algebra over a field F and suppose J′1, J

′
2 are re-

duced simple Freudenthal subalgebras of J. Prove that every isomorphism from J′1 to
J′2 can be extended to an automorphism of J1.

41.35. Let J, J′ be regular reduced Freudenthal F-algebras of dimension 6. Complete
the proof of Lemma 41.20 by showing that if S 0

J and S 0
J′ are isometric, then J and J′

are isomorphic.
Remark. We will see in Theorem 46.8 that Freudenthal algebras of dimension 6 are
always reduced.

1 Since the algebras involved here have dimension at least 6, it doesn’t matter by Cor. 38.18
whether we are considering isomorphisms (resp. automorphisms) of para-quadratic algebras
or of cubic Jordan algebras.
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VII

The two Tits constructions

This chapter is devoted to the two Tits constructions of cubic Jordan alge-
bras over arbitrary commutative rings. These constructions, derived from ideas
of Jacques Tits, play a role for cubic Jordan algebras similar to that of the
Cayley-Dickson construction for composition algebras; compare for example
Cor. 45.12 for Albert algebras with Cor. 19.17 for composition algebras. For
more description of the main ingredients and additional background informa-
tion, the reader is referred to the introduction.

Throughout this chapter, we let k be an arbitrary commutative ring. We sys-
tematically identify cubic norm structures and cubic Jordan algebras over k via
34.7.

42 Kummer elements

Kummer elements form the connecting thread between cubic Jordan algebras,
cubic alternative algebras and the first Tits construction. Before they can be in-
troduced, however, we require a few preparations on cubic alternative algebras
as defined in 34.11.

42.1 Proposition. Let A be a cubic alternative algebra over k.

(a) The linear trace of A is an associative linear form:

TA(x1x2) = TA(x2x1), TA
(
(x1x2)x3

)
= TA

(
x1(x2x3)

)
(1)

for all x1, x2, x3 ∈ A.
(b) The identities

(xy)♯ = y♯x♯, (2)

x(x♯y) = x♯(xy) = NA(x)y = (yx)x♯ = (yx♯)x (3)

hold strictly for all x, y ∈ A.

Proof (a) The first equation of (1) follows from Prop. 34.12. As to the sec-
ond, let R = k[ε1, ε2, ε3] be the unital commutative associative k-algebra on

444
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generators εi, subject to the relations ε2
i = 0 (1 ≤ i ≤ 3). Since NA permits

composition, we have

NA

((
(1A + ε1x1)(1A+ ε2x2)

)
(1A + ε3x3)

)
= NA

(
(1A + ε1x1)

(
(1A + ε2x2)(1A + ε3x3)

))
.

Expanding both arguments of NA and setting a :=
∑
εixi +

∑
i< j εiε jxix j, b1 :=

ε1ε2ε3(x1x2)x3, b2 := ε1ε2ε3x1(x2x3), we conclude that

NA(1A + a + bi) = NA(1A + a) + TA
(
(1A + a)♯bi

)
+ TA

(
(1A + a)b♯i

)
+ NA(bi)

does not depend on i = 1, 2. But b♯i = a♯bi = a × bi = 0 and NA(bi) = 0, while

TA
(
(1A + a)♯bi

)
= TA(bi) + TA

(
(1A × a)bi

)
+ TA(a♯bi)

= TA(bi) + TA(a × bi) = TA(bi).

Thus TA(bi) is independent of i = 1, 2, which is precisely what we had to prove.
(b) By Prop. 12.24, we may assume that x and y are both invertible in A.

Hence so they are in A(+), and the corresponding inverses coincide (31.6). From
Prop. 34.12, (13.7.1) and (33.10.1) we therefore conclude

(xy)♯ = NA(xy)(xy)−1 = NA(x)NA(y)y−1x−1 = y♯x♯,

hence (2). Using (13.6.1), (13.6.2), a similar argument yields (3). □

42.2 Corollary. Let A be a cubic alternative algebra over k. Then

Nil(A) = Nil(A(+)).

Proof The left-hand side is contained in the right since the nil radical of A
is a nil ideal in A(+). To prove equality, it suffices to show that the nil radical
of A(+) is a two-sided ideal in A. Let x ∈ N := Nil(A(+)) and y, z ∈ A. From
Propositions 34.12 and 42.1 we conclude that

TA(+) (xz, y) = TA
(
(xz)y

)
= TA

(
x(zy)

)
= TA(+) (x, zy),

TA(+)
(
(xz)♯, y

)
= TA

(
(z♯x♯)y

)
= TA(+) (x♯, yz♯), and

NA(+) (xz) = NA(+) (x)NA(z)

are all nilpotent. Hence Exercise 34.23 implies xz ∈ N. This implies zx =
−xz + x ◦ z ∈ N, and the assertion follows. □

42.3 Alternative algebras of degree 3. An alternative algebra A over k is said
to be of (or to have) degree 3 if the following conditions are fulfilled.

(i) There exists a cubic form N : A → k making A a cubic alternative k-
algebra.
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(ii) For all algebraically closed fields K ∈ k-alg, the set map

AK −→
∧3

(AK) =
(∧3

(A)
)

K , x 7−→ 1AK ∧ x ∧ x2

is different from zero.

In this case, any cubic form satisfying (i) makes A(+) a cubic Jordan algebra
over k, and we conclude that A(+) is a Jordan algebra of degree 3. Moreover,
Cor. 42.2 implies Nil(A) = Nil(A(+)). Combining all this with Theorem 38.13,
we arrive at the following conclusion.

42.4 Corollary. Let A be an alternative algebra of degree 3 over k that is
finitely generated projective as a k-module and satisfies

dimK
(
AK/Nil(AK)

)
≥ 2

for all algebraically closed fields K ∈ k-alg. Then there is a unique cubic form
over k, called the norm of A and denoted by NA, making A a cubic alternative
k-algebra. □

42.5 Regularity and semi-linearity for cubic alternative algebras. (a) A
cubic alternative algebra A over k is said to be regular if it is finitely generated
projective as a k-module and the symmetric bilinear form (x, y) 7→ TA(xy) on
A, called its bilinear trace, is regular in the sense of 11.9. This notion is stable
under base change. Moreover, by Prop. 34.12, A is regular if and only if A(+) is
regular as a cubic Jordan algebra.

(b) Let σ : K → K′ be a morphism in k-alg and A (resp. A′) be cubic alter-
native algebras over K (resp. K′). A map φ : A → A′ is called a σ-semi-linear
homomorphism of cubic alternative algebras if

(i) φ is σ-semi-linear.
(ii) φ : A→ A′ is a unital homomorphism of unital k-algebras.
(iii) The σ-semi-linear polynomial square

A
φ
//

NA

��

A′

NA′

��
K

σ
// K′

commutes in the sense of 12.28.

By 34.10 (b), this is equivalent to φ : A(+) → A′(+) being a σ-semi-linear homo-
morphism of cubic Jordan algebras such that φ(xy) = φ(x)φ(y) for all x, y ∈ A.
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42.6 Azumaya algebras of degree n. Azumaya algebras are the analogue
over commutative rings of finite-dimensional central simple associative alge-
bras over fields. For details on this important topic, the reader may consult
Knus-Ojanguren [158] or Knus [157]. In particular, we remind the reader of
the fact that a unital associative k-algebra that is finitely generated projective
as a k-module is separable in the sense of 22.4 if and only if it is separable in
the sense of [158, III, 1.4]; the proof follows easily from the definitions and
standard results assembled in [158, III].

Let n be a positive integer. By an Azumaya algebra of degree n over k we
mean a twisted form of the algebra of n-by-n matrices over k, i.e., a k-algebra
A such that there exist a faithfully flat k-algebra R ∈ k-alg and an isomorphism
AR � Matn(R) of R-algebras. In this case, A is unital, associative, central and
separable of rank n2 as a finitely generated projective k-module (Remark 25.5,
Exc. 25.37 (a) and [158, III, 2.1, 2.2, 5.1]). Moreover, by [158, p. 110], there is
a unique homogeneous polynomial law NrdA : A → k of degree n over k (the
reduced norm of A) that becomes the determinant after a faithfully flat base
change of the kind mentioned above and, in particular, permits composition in
the obvious sense. Up to isomorphism, the only Azumaya algebra of degree
1 is the base ring itself, while Cor. 26.9 shows that the Azumaya algebras of
degree 2 are precisely the quaternion algebras over k. In this section, we will
be primarily concerned with Azumaya algebras of degree 3. Their connection
with cubic Jordan algebras is the subject of the following proposition.

42.7 Proposition. A k-algebra A is an Azumaya algebra of degree 3 if and
only if A is associative and A(+) is a Freudenthal algebra that has rank 9 as a
finitely generated projective module.

Proof If A is an Azumaya algebra of degree 3, its reduced norm combined
with the Cayley-Hamilton theorem [158, IV, Corollaire 2.3] makes A a sep-
arable cubic associative algebra having rank 9 as a projective k-module. By
Exc. 42.21 (a), therefore, AL � Mat3(L) for any algebraically closed field
L ∈ k-alg, forcing A(+)

L � Her3(L × L) by Thm. 39.6 and Cor. 39.7 to be a
simple cubic Jordan algebra over L. Hence A(+)

K is a simple cubic Jordan alge-
bra over K, for any field K ∈ k-alg, and we conclude from 39.8 that A(+) is a
Freudenthal algebra over k.

Conversely, assume A is associative and A(+) is a Freudenthal algebra over
k having rank 9 as a finitely generated projective module. Then A(+)

K is simple,
for any field K ∈ k-alg, and hence so is AK , forcing A itself to be separable. By
[158, III, 5.1], therefore, it remains to show that A is central. By Cor. 39.32 and
39.20, there exists a faithfully flat k-algebra R making A(+)

R � Mat3(R)(+) split
over R. By faithful flatness, it suffices to show that AR is central. Letting x be a
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448 The two Tits constructions

central element of AR, the left multiplication operator of x in AR commutes with
the operators Uy,Vy,z (y, z ∈ AR) of A(+)

R , hence belongs to the outer centroid of
A(+)

R . But by Exc. 37.25, the outer centroid of A(+)
R � Her3(R× R) is trivial, and

we conclude x ∈ R1AR , as desired. □

After these preparations, we are now ready for the definition of Kummer
elements1.

42.8 The concept of a Kummer element. Let (J0,V) be a complemented cu-
bic Jordan subalgebra of J in the sense of 35.2. This amounts to the following:
J0 ⊆ J is a cubic Jordan subalgebra (in particular, J♯0 ⊆ J0) and V ⊆ J is a
k-submodule such that

J = J0 ⊕ V, V ⊆ J⊥0 , J0 .V ⊆ V, (1)

where J⊥0 stands for the orthogonal complement of J0 relative to the bilinear
trace of J and x . v = −x × v as in (35.1.2) for x ∈ J0 and v ∈ V . By a Kummer
element of J relative to (J0,V), we mean an element l ∈ J satisfying

(i) the invertibility condition: l is invertible in J,
(ii) the strong orthogonality condition: l and l♯ both belong to V ,
(iii) the stability condition: J0 . (J0 . l) ⊆ J0 . l.

In particular, l is strongly orthogonal to (J0,V) in the sense of 35.5. Clearly,
if l ∈ J is a Kummer element relative to (J0,V), then lR ∈ JR is a Kummer
element relative to (J0,V)R = (J0R,VR), for all R ∈ k-alg. Also, since the
linear map x 7→ x . l from J0 to V is injective, by the invertibility condition
(i) and (35.5.3), the stability condition (iii) produces a unique non-associative
k-algebra structure

Al = Al(J, J0,V) (2)

living on the k-module J0 through the multiplication (x, y) 7→ xy defined by

x . (y . l) = (xy) . l (x, y ∈ J0). (3)

Note that if l ∈ J is a Kummer element relative to (J0,V), then so is αl, for
any α ∈ k×, and Aαl = Al. Also, the construction of Al is compatible with base
change:

Al(J, J0,V)R = AlR (JR, J0R,VR) (4)

for all R ∈ k-alg.

1 In [220, 8.5], Kummer elements are called pure elements.
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If J0 is regular, then V = J⊥0 , allowing us to simplify terminology and nota-
tion, so we speak of a Kummer element of J relative to J0 (rather than (J0, J⊥0 )),
and we abbreviate

Al(J, J0) := Al(J, J0, J⊥0 ). (5)

42.9 Example. Let J be a cubic Jordan algebra over k and assume 3 ∈ k×.
Then k1J ⊆ J is a regular cubic Jordan subalgebra isomorphic to k(+) and
(k1J)⊥ = Ker(TJ) is the kernel of the linear trace of J. Hence l ∈ J is a Kummer
element relative to k1J if and only if l ∈ (k1J)⊥ satisfies l3 = µ1J , for some
µ ∈ k×, i.e., l is a Kummer element of J in the sense of Thakur [275, p. 431].

42.10 Theorem (The internal first Tits construction). Let J be a cubic Jordan
algebra over k and (J0,V) a complemented cubic Jordan subalgebra of J. If
l is a Kummer element of J relative to (J0,V), then so is l♯, and the following
statements hold.

(a) NAl := NJ0 makes Al = Al(J, J0,V) a cubic alternative k-algebra, and
A(+)

l = J0 as cubic Jordan algebras.
(b) Al♯ = Aop

l .
(c) With µ := NJ(l), the equations

1J = 1Al + 0 . l + 0 . l♯, (1)

(x0 + x1 . l + x2 . l♯)♯ = (x♯0 − µx1x2) + (µx♯2 − x0x1) . l (2)

+ (x♯1 − x2x0) . l♯,

NJ(x0 + x1 . l + x2 . l♯) = NAl (x0) + µNAl (x1) + µ2NAl (x2) (3)

− µTAl (x0x1x2)

hold strictly for all x0, x1, x2 ∈ Al.

In (3), the expression TAl (x0x1x2) is unambiguous because of (a) and (42.1.1).

Proof Abbreviating N := NJ , T := TJ , S := S J , N0 := NJ0 , T0 := TJ0 ,
S 0 := S J0 , we first prove (a), (b) by proceeding in several steps.

1◦. Al is unital with 1Al = 1J =: 1 and

Uxy = x(yx) (4)

for all x, y ∈ Al. The first part follows immediately from (42.8.3) and (35.4.1).
Similarly, from (35.4.3) we deduce (Uxy) . l = x . (y . (x . l)) = (x(yx)) . l, and
(4) holds.

2◦. Squares and cubes in J0 and Al are the same. Put y = 1, x in (4).
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3◦. N0 permits composition on Al : N0(xy) = N0(x)N0(y) holds strictly for
all x, y ∈ Al. Indeed, applying (35.4.5), we obtain N0(xy)N(l) = N((xy) . l) =
N(x . (y . l)) = N0(x)N(y . l) = N0(x)N0(y)N(l), and since µ = N(l) ∈ k is
invertible, the assertion follows.

4◦. Al is left alternative. From 2◦, (35.4.1) and (35.4.3) we deduce x . (x . v) =
x . (1 . (x . v)) = (Ux1) . v = x2 . v for all x ∈ Al, v ∈ V . Given y ∈ Al, this implies
(x2y) . l = x2 . (y . l) = x . (x . (y . l)) = x . ((xy) . l) = (x(xy)) . l, hence the left
alternative law.

5◦. T0(xy) = T0(x, y) for all x, y ∈ Al. By Prop. 12.24, we may assume that
x is invertible in J0. Then (35.4.4) yields x . (x−1 . v) = v for all v ∈ V , and for
y ∈ J0 we conclude (x(x−1y)) . l = x . ((x−1y) . l) = x . (x−1 . (y . l)) = y . l, hence
x(x−1y) = y. We now change scalars to R := k[ε], ε2 = 0, and then use 3◦,
which holds in all scalar extensions, to expand both sides of

N0(x)N0(1 + εx−1y) = N0
(
x(1 + εx−1y)

)
= N0(x + εy).

Comparing coefficients of ε yields T0(x♯, y) = N0(x)T0(x−1y) = T0(x♯y). Re-
placing x by x♯, the assertion follows from the adjoint identity.

6◦. l♯ is a Kummer element of J relative to (J0,V) and Al♯ = Aop
l . From

(33.8.18) we conclude that l♯ is invertible in J, while the adjoint identity im-
plies that l♯ satisfies the strong orthogonality condition. Therefore the assertion
will follow once we have shown the stability condition in the form x . (y . l♯) =
(yx) . l♯ for all x, y ∈ J0. In order to do so, we combine (35a.6), (35a.2) and
(42.8.3) with 5◦ to obtain

x . (y . l♯) = T0(x, y)l♯ −
(
(yx) . l

)
× l = T0(x, y)l♯ −

(
(yx) × 1

)
. l♯

=
((

T0(y, x) − T0(yx)
)
1 + yx

)
. l♯ = (yx) . l♯,

as claimed.
Combining 6◦ with 4◦ for l♯ and with 1◦, it follows that Al is alternative such

that A(+)
l = J0. In fact, N0 by 3◦ makes Al a cubic alternative k-algebra. This

completes the proof of (a) and (b).
(c) To begin with, (1) is obvious. In order to establish (2), we invoke (b) and

(35a.1), (35a.10), (35a.3) to obtain

(x0 + x1 . l + x2 . l♯)♯ = x♯0 + x0 × (x1 . l) + x0 × (x2 . l♯)

+ (x1 . l)♯ + (x1 . l) × (x2 . l♯) + (x2 . l♯)♯

= x♯0 − (x0x1) . l − (x2x0) . l♯ + x♯1 . l
♯

+
(
(x1x2) . l

)
× l♯ + µx♯2 . l
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= (x♯0 − µx1x2) + (µx♯2 − x0x1) . l + (x♯1 − x2x0) . l♯,

as desired. Finally, in order to establish (3), we use Exc. 12.40 (a) to expand
the left-hand side:

N(x0 + x1 . l + x2 . l♯) = N0(x0) + N(x1 . l) + N(x2 . l♯) + T (x♯0, x1 . l) (5)

+ T (x♯0, x2 . l♯) + T
(
x0, (x1 . l)♯

)
+ T

(
(x1 . l)♯, x2 . l♯

)
+ T

(
x0, (x2 . l♯)♯

)
+ T (x1 . l, (x2 . l♯)♯

)
+ T

(
x0 × (x1 . l), x2 . l♯

)
.

Here N(x1 . l) = µN0(x1) by (35.4.5), while this and (33a.18) yield N(x2 . l♯) =
µ2N0(x2). Since J0 .V ⊆ V ⊆ J⊥0 , we have T (x♯0, x1 . l) = T (x♯0, x2 . l♯) = 0.
From (35a.1) we deduce (x1 . l)♯ = x♯1 . l

♯, (x2 . l♯)♯ = µx♯2 . l, hence

T (x0, (x1 . l)♯) = T (x0, (x2 . l♯)♯) = 0.

Combining with (35a.4) yields

T
(
(x1 . l)♯, x2 . l♯

)
= T (x♯1 . l

♯, x2 . l♯) = 0 = µT (x1 . l, x
♯
2 . l) = T

(
x1 . l, (x2 . l♯)♯

)
.

Finally, by (35a.5),

T
(
x0 × (x1 . l), x2 . l♯

)
= −T

(
(x0x1) . l, x2 . l♯

)
= −µT0(x0x1, x2) = −µT0(x0x1x2).

Plugging all this into (5), we end up with (3). □

42.11 Theorem (The external first Tits construction). Let A be a cubic alter-
native algebra over k. If µ ∈ k is an arbitrary scalar, then the direct sum

J := A ⊕ A j1 ⊕ A j2 (1)

of three copies of A as a k-module, into which A naturally embeds through the
initial summand, carries the unique structure of a cubic Jordan algebra over
k whose identity element, adjoint and norm are respectively given by the strict
validity of the formulas

1J = 1A, (2)

x♯ = (x♯0 − µx1x2) + (µx♯2 − x0x1) j1 + (x♯1 − x2x0) j2, (3)

NJ(x) = NA(x0) + µNA(x1) + µ2NA(x2) − µTA(x0x1x2), (4)

for all x = x0 + x1 j1 + x2 j2 ∈ J, x0, x1, x2 ∈ A. Moreover, with another element
y = y0 + y1 j1 + y2 j2 ∈ J, y0, y1, y2 ∈ A, the bilinearized adjoint, trace and
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(bilinearized) quadratic trace of J have the form

x × y = (x0 × y0 − µx1y2 − µy1x2) + (µx2 × y2 − x0y1 − y0x1) j1 (5)

+ (x1 × y1 − x2y0 − y2x0) j2,

TJ(x, y) = TA(x0, y0) + µTA(x1, y2) + µTA(x2, y1), (6)

TJ(x) = TA(x0), (7)

S J(x) = S A(x0) − µTA(x1, x2), (8)

S J(x, y) = S A(x0, y0) − µTA(x1, y2) − µTA(x2, y1). (9)

Proof Thanks to Cor. 34.6, the first part will follow once we have shown that
the k-module J together with base point, adjoint, and norm defined by (2)–(4)
is a cubic norm structure X over k. It is certainly a cubic array, and setting
N := NX , T := TX , S := S X , N0 := NA, T0 := TA, S 0 := S A, we obtain

N(x, y) = N0(x0, y0) + µN0(x1, y1) + µ2N0(x2, y2) (10)

− µT0(y0x1x2 + x0y1x2 + x0x1y2)

which implies (5)–(9) in a straightforward manner; details are left to the reader.
This done, we can now tackle the defining identities (33.4.1), (33.4.2), (33.4.3)
of a cubic norm structure. They certainly hold for the elements of A. Hence
the unit identity follows immediately from (5) and (6). Moreover, (3), (4), (6)
imply

T (x♯, y) = T0(x♯0 − µx1x2, y0) + µT0(µx♯2 − x0x1, y2) + µT0(x♯1 − x2x0, y1)

= N0(x0, y0) + µ2N0(x2, y2) + µN0(x1, y1)

− µT0(x1x2y0 + x0x1y2 + x2x0y1),

and comparing with (10), the gradient identity follows. Finally, turning to the
adjoint identity, we abbreviate x♯ = z0+ z1 j1+ z2 j2, x♯♯ = w0+w1 j1+w2 j2, for
some zi,wi ∈ A, i = 0, 1, 2 and must show wi = N(x)xi. Indeed, (4), Prop. 42.1,
the middle Moufang identity (13.3.3), and (33.8.15) imply

w0 = z♯0 − µz1z2

= x♯♯0 − µx♯0 × (x1x2) + µ2(x1x2)♯ − µ2x♯2x♯1
+ µ2x♯2(x2x0) + µ(x0x1)x♯1 − µ(x0x1)(x2x0)

= N0(x0)x0 − µUx0 (x1x2) − µx♯0 × (x1x2) + µ2N0(x2)x0 + µN0(x1)x0

=
(
N0(x0) + µN0(x1) + µ2N0(x2) − µT0(x0x1x2)

)
x0

= N(x)x0.

The remaining equations wi = N(x)xi for i = 1, 2 can be proved similarly. □
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42.12 The formal first Tits construction. Let A be a cubic alternative k-
algebra and µ ∈ k.

(a) The cubic Jordan algebra constructed in Theorem 42.11 is said to arise
from A, µ by means of the first Tits construction and will be denoted by J(A, µ).
The natural map from A to the initial summand of J(A, µ) is an embedding
A(+) ↪→ J(A, µ) of cubic Jordan algebras; we usually identify A(+) ⊆ J(A, µ)
as a cubic Jordan subalgebra accordingly. Note that V := A j1 ⊕ A j2 makes
(A(+),V) a complemented cubic Jordan subalgebra of J(A, µ) such that

x0 . (y1 j1 + y2 j2) = (x0y1) j1 + (y2x0) j2 (1)

for all x0, y1, y2 ∈ A. Hence J(A, µ) is generated by A(+) and j1 as a Jordan
k-algebra.

(b) We have j21 = j♯1 = j2 and hence 1J ∧ j1 ∧ j21 , 0 in every scalar extension.
Thus J(A, µ) is a Jordan algebra of degree 3 over k.

(c) If µ ∈ k is invertible, then j1 is a Kummer element of J(A, µ) relative to
(A(+),V) satisfying j♯1 = j2, and (1) implies

A j1 (J, A(+),V) = A. (2)

(d) We continue to assume that µ ∈ k is invertible and define a change of
variables φ : J → J given by

φ(x) := x0 + x1 j1 + (µ−1x2) j2

for x = x0+ x1 j1+ x2 j2, x0, x1, x2 ∈ A. For another quantity y = y0+y1 j1+y2 j2,
y0, y1, y2 ∈ A, one checks

x♯
′

:= φ−1(φ(x)♯
)
= (x♯0 − x1x2) + (µ−1x♯2 − x0x1) j1

+ (µx♯1 − x2x0) j2, (3)

N′J(x) := NJ
(
φ(x)

)
:= NA(x0) + µNA(x1) + µ−1NA(x2) − TA(x0x1x2), (4)

T ′J(x, y) := TJ
(
φ(x), φ(y)

)
= TA(x0, y0) + TA(x1, y2) + TA(x2, y1), (5)

S ′J(x) := S J
(
φ(x)

)
= S A(x0) − TA(x1, x2) (6)

and thus arrives at formulas that are familiar from the classical first Tits con-
struction in the literature, where it is also assumed that A be associative (see,
e.g., McCrimmon [183, pp. 507–508]). Note that in these co-ordinates neither
the bilinear nor the quadratic trace of J(A, µ) depends on µ.

42.13 Corollary. Let J be a cubic Jordan algebra over k and (J0,V) a com-
plemented cubic Jordan subalgebra of J. If l ∈ J is a Kummer element relative
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to (J0,V) and Al := Al(J, J0,V) the corresponding cubic alternative k-algebra,
then the inclusion

A(+)
l = J0 ↪→ J

has a unique extension to a homomorphism

φ : J
(
Al,NJ(l)

)
−→ J

of cubic Jordan algebras satisfying φ( j1) = l. This homomorphism is an em-
bedding and

φ(x0 + x1 j1 + x2 j2) = x0 + x1 . l + x2 . l♯ (1)

for all x0, x1, x2 ∈ A.

Proof Since any such homomorphism preserves (bilinearized) adjoints, it au-
tomatically satisfies (1). Conversely, defining φ in this way and comparing
(42.10.1)–(42.10.3) with (42.11.2)–(42.11.4), we see that φ preserves base
points, norms and adjoints, hence is a homomorphism of cubic Jordan al-
gebras. It remains to show that φ is injective. Assume x0, x1, x2 ∈ A satisfy
x0 + x1 . l + x2 . l♯ = 0. Since the first summand belongs to J0 while the other
two belong to V , we conclude x0 = 0 and x1 . l + x2 . l♯ = 0. Using (35a.2),
(35a.3), this implies

0 = (x1 . l) × l + (x2 . l♯) × l = (1 × x1) . l♯ − NJ(l)x2,

hence x2 = 0 and then 0 = (x1 . l) × l♯ = −NJ(l)x1, hence x1 = 0. □

42.14 Corollary. Let A be a cubic alternative k-algebra and µ ∈ k. Then the
first Tits construction J(A, µ) is regular if and only if A is regular and µ is
invertible in k.

Proof J := J(A, µ) is finitely generated projective as a k-module if and only
if so is A. Let this be the case and identify J (resp. its dual J∗) with column
space A3 (resp. A∗3) in such a way that the canonical pairing J∗ × J → k is
given by x∗Ty for x∗ ∈ A∗3, y ∈ A3. Let φ : A → A∗ (resp. Φ : J → J∗) be the
k-linear map derived from the bilinear trace of A (resp. J). By (42.11.6) the
map Φ has the matrix form

Φ =


φ 0 0
0 0 µφ

0 µφ 0

 ,
which is invertible if and only if so are φ and µ. □
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42.15 Corollary. Let A be an Azumaya algebra of degree 3 over k and µ ∈ k×.
Then the first Tits construction J(A, µ) is an Albert algebra over k.

Proof From Prop. 42.7, Cor. 39.15 and Cor. 42.14 we conclude that J :=
J(A, µ) is regular, while Prop. 39.2 implies that JK = J(AK , µK) not only has
dimension 27 but is also simple, for any algebraically closed field K ∈ k-alg,
since already the diagonal idempotents eii ∈ A(+)

K � Her3(K × K) satisfy
(A(+)

K )1(eii) , {0} for 1 ≤ i ≤ 3. Hence J(A, µ) is an Albert algebra over k. □

Among the defining properties of Kummer elements, the stability condition
(iii) of 42.8 is arguably the most delicate. Remarkably it can be ignored under
some rather mild additional hypotheses pertaining to the linear algebra of the
situation.

42.16 Theorem. Let n be a positive integer and J a cubic Jordan algebra over
k that is finitely generated projective of rank r ≤ 3n as a k-module. Assume
J0 ⊆ J is a regular cubic Jordan subalgebra having rank exactly n as a pro-
jective module. For l ∈ J to be a Kummer element relative to J0 it is necessary
and sufficient that l be invertible and strongly orthogonal to J0. In this case,
r = 3n and setting µ := NJ(l), A := Al(J, J0), there is a unique homomorphism
of cubic Jordan algebras from the first Tits construction J(A, µ) to J extend-
ing the identity of J0 and sending j1 to l. Moreover, this homomorphism is an
isomorphism, and J is regular.

42.17 Remark. Without the rank conditions, an invertible element of J that is
strongly orthogonal to J0 may fail to be a Kummer element relative to J0: see
Exc. 42.23 (b) below for an example.

Proof Necessity being obvious, let us assume that, conversely, l is invertible
and strongly orthogonal to J0. Then so is l♯, and from (35.1.2) we deduce

J0 . l + J0 . l♯ ⊆ J⊥0 . (1)

Now suppose x0, x1, x2 ∈ J0 satisfy x0 + x1 . l + x2 . l♯ = 0. Here the first sum-
mand belongs to J0, while the other two by (1) belong to J⊥0 . Hence x0 = 0 and
x1 . l + x2 . l♯ = 0. By (35a.2), (35a.3), this implies

0 = (x1 . l) × l + (x2 . l♯) × l = (1 × x1) . l♯ − µx2,

and we conclude first x2 = 0 and then x1 = 0 as well. Thus

J0[l] := J0 ⊕ J0 . l ⊕ J0 . l♯ ⊆ J

is a finitely generated projective submodule of rank 3n. Invoking (35a.4) for
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u = l, l♯ and (35a.5) for u = l, we obtain

TJ(x, y) = TJ(x0, y0) + µTJ(x1, y2) + µTJ(x2, y1)

for x = x0 + x1 . l + x2 . l♯, y = y0 + y1 . l + y2 . l♯, xi, yi ∈ J0, i = 0, 1, 2.
Hence TJ restricts to a regular symmetric bilinear form on J0[l]. This implies
J = J0[l] ⊕ J0[l]⊥, and comparing ranks we deduce J0[l]⊥ = {0}, i.e.,

J0[l] = J0 ⊕ J0 . l ⊕ J0 . l♯ = J. (2)

In particular, J is regular of rank 3n. We are now in a position to tackle the
stability condition, so let x, y ∈ J0. Then x . (y . l) ∈ J⊥0 = J0 . l + J0 . l♯ by (1),
(2), and we find z1, z2 ∈ J0 such that x . (y . l) = z1 . l + z2 . l♯. Hence, arguing as
before, (

x . (y . l)
)
× l = (z1 × 1) . l♯ − µz2, (3)

where the first summand on the right belongs to J⊥0 . But so does the left-
hand side, by (35a.6) being equal to TJ(x, y)l♯ − y . (x . l♯). Comparing J⊥0 -
components, (3) yields z2 = 0, i.e., x . (y . l) ∈ J0 . l, and we have established the
stability condition for l. Summing up, therefore, l is a Kummer element with
respect to J0. Finally, the unique homomorphism J(A, µ) → J of Cor. 42.13 is
surjective by (2) and injective since J(A, µ) by Cor. 42.14 is regular. □

42.18 Remark. Let J = J(D, µ) be an Albert algebra arising from a first Tits
construction over a field F of characteristic , 3. Any smooth compactification
of the varieties defined by the equations NrdD = µ or NrdJ = ν (for any µ, ν ∈
F×) is a norm variety in the sense of Rost [251, §3], see [258, p. 175] for a
table of such examples.

Exercises
42.19. Let A be a cubic alternative k-algebra with norm NA, (bi-)linear trace TA, quad-
ratic trace S A over k and let p, q ∈ A×. Deduce from 33.11 and Prop. 42.1 that A(p,q) is
a cubic alternative k-algebra with norm NA(p,q) = NA(pq)NA whose linear and quadratic
traces are given by

TA(p,q) (x) = TA(pqx), S A(p,q) (x) = S A(q♯p♯x) (1)

for all x ∈ A. In particular, the unital isotope Ap of A is a cubic alternative k-algebra
with the same norm, (bi-)linear trace and quadratic trace as A.

42.20. Cubic ideals revisited. Let A be a cubic alternative k-algebra. By a (separated)
cubic ideal in A we mean a pair (a, I) consisting of an ideal a ⊆ k and a two-sided ideal
I ⊆ A such that (a, I) is a (separated) cubic ideal of the cubic Jordan algebra A(+) in the
sense of Exc. 34.21. We speak of a cubic nil ideal in A if, in addition (a, I) is a cubic
nil ideal in A(+) in the sense of Exc. 37.21. Now let µ ∈ k and write J := J(A, µ) for the
corresponding first Tits construction. Prove:
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(a) If (a, I) is a cubic (nil) ideal in A, then(
a, J(I, µ)

)
, J(I, µ) := I ⊕ I j1 ⊕ I j2 (1)

is a cubic (nil) ideal in J. Moreover, if (a, I) is separated, then so is (a, J(I, µ)), and
with the canonical projection σ : k → k0 := k/a, the algebra A/I carries a unique cubic
alternative algebra structure over k0 such that the canonical projection π : A → A/I
becomes a σ-semi-linear homomorphism of cubic alternative algebras. Finally, (a, I)
still being separated, the assignment

x0 + x1 j1 + x2 j2 7−→ π(x0) + π(x1) j1 + π(x2) j2 (x0, x1, x2 ∈ A) (2)

canonically induces an isomorphism

J(A, µ)/J(I, µ)
∼
−→ J

(
A/I, σ(µ)

)
(3)

of cubic Jordan algebras over k0.

(b) (Nil(k),Nil(A)) is a cubic nil ideal in A and

J
(

Nil(A), µ
)
⊆ Nil

(
J(A, µ)

)
. (4)

Here we never (resp. not always) have equality for k , {0} and µ nilpotent (resp. µ = 1).

(c) If the cubic nil ideal (Nil(k),Nil(A)) is separated, A/Nil(A) is regular over k0 (cf.
(a)) and µ ∈ k×, then

Nil
(
J(A, µ)

)
= J

(
Nil(A), µ

)
. (5)

42.21. (a) Show that the semi-simple cubic alternative algebras over a field F up to
isomorphism are precisely one of the following.

(i) F.
(ii) A purely inseparable field extension K/F of characteristic 3 and exponent 1.
(iii) A separable cubic field extension of F.
(iv) The split cubic étale F-algebra.
(v) Ĉ = F ×C in the sense of Exc. 34.24 (b), where C is a pre-composition algebra

over F that is not split quadratic étale.
(vi) Mat3(F).
(vii) A central associative division algebra of degree 3 over F.

(b) Let A be a cubic alternative k-algebra that is finitely generated projective of rank n
as a k-module. Prove that the following conditions are equivalent.

(i) A is regular.
(ii) A is separable, and

(a) if A � k, then 3 ∈ k×,
(b) if A � (k × k)cub, then 2 ∈ k×.

42.22. (a) Let A be a cubic associative k-algebra and µ ∈ k, p ∈ A. Show that the map

φA,µ,p : J
(
A,NA(p)µ

)
−→ J(A, µ)

defined by

φA,µ,p(x) := x0 + (x1 p) j1 + (p♯x2) j2 (1)

for all x = x0 + x1 j1 + x2 j2 with x0, x1, x2 ∈ A is a homomorphism of cubic Jordan
algebras. Moreover, φA,µ,p is an isomorphism if and only if p is invertible in A.
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(b) Let A be an Azumaya algebra of degree 3 over k and µ, ν ∈ k×. Show for any map
φ : J(A, ν)→ J(A, µ) that the following conditions are equivalent.

(i) φ is a homomorphism of cubic Jordan algebras extending the identity of A(+).
(ii) ν = NA(p)µ and φ = φA,µ,p for some p ∈ A.
In this case, φ is an isomorphism. (Hint: Prove first for x ∈ A that x[A, A] = {0} implies
x = 0.)

(c) Let A be a cubic alternative k-algebra and µ ∈ k, p ∈ A×. Show with the unital
p-isotope Ap of A (which is a cubic alternative algebra in its own right having the same
norm and, more generally, the same cubic Jordan algebra structure as A) that the map

ψA,µ,p : J(Ap, µ) −→ J
(
A,NA(p)µ

)
defined by

ψA,µ,p(x) := x0 + (x1 p−1) j1 + NA(p)−1(px2) j2 (2)

for all x = x0+x1 j1+x2 j2 with x0, x1, x2 ∈ A is an isomorphism of cubic Jordan algebras
such that, for another element q ∈ A×, the diagram

J(Apq, µ) = J
(
(Ap)q, µ

)
ψAp ,µ,q

//

ψApq ,µ,pq ))

J
(
Ap,NA(q)µ

)
ψA,NA (q)µ,pww

J
(
A,NA(pq)µ

)
(3)

commutes.

(d) Prove for a cubic alternative k-algebra A and µ ∈ k× that the k-linear map

φ : J(A, µ)
∼
−→ J(Aop, µ−1)

defined by

φ(x) := x0 + µx2 j1 + µx1 j2 (4)

for x = x0 + x1 j1 + x2 j2 with x0, x1, x2 ∈ A is an isomorphism of cubic Jordan algebras.

42.23. Let J := Her3(C) be the split Albert algebra over k, where C := Zor(k) is the
octonion algebra of Zorn vector matrices over k. Prove:

(a) The first Tits construction J(Mat3(k), µ) is split for all µ ∈ k×. (Hint: Reduce to
the case µ = 1, identify J0 := Mat3(k)(+) = Her3(k × k) ⊆ J by matching k × k
with the diagonal in C and construct a Kummer element of J relative to J0.)

(b) If 2 ∈ k×, then J0 := Sym3(k) is a regular cubic Jordan subalgebra of J, and
there exists an invertible element in J that is strongly orthogonal to J0 but not
a Kummer element of J relative to J0.

42.24. Let J be an Albert algebra over an algebraically closed field F. Show that the
automorphism group of J acts transitively on the nilpotent elements of index 2. (Hint:
Recall that u ∈ J is said to be nilpotent of index 2 if u2 = 0 , u and, in this case,
use Lemma 38.4 to exhibit a cubic Jordan subalgebra J′ of J that contains u and is
isomorphic to Mat3(F)(+).)
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42.25. Let A be a cubic alternative k-algebra, µ ∈ k and p ∈ A×. Prove for x0, x1, x2 ∈ A
and x = x0 + x1 j1 + x2 j2 ∈ J(A, µ) that

Up(x) = px0 p + (p♯x1) j1 + (x2 p♯) j2, (1)

and

x(♯,p) = p♯(x♯0 − µx1 x2)p−1 +
(
p(µx♯2 − x0 x1)

)
j1 +

(
(x♯1 − x2 x0)p

)
j2 (2)

is the adjoint of x in the isotope J(A, µ)(p). Show further that

L̃p, R̃p : J(A, µ)(p) ∼
−→ J(A, µ)

defined by

L̃p(x) := px0 + (x1 p) j1 + (p♯x2 p−1) j2, (3)

R̃p(x) := x0 p + (p−1 x2 p♯) j1 + (px2) j2 (4)

are isomorphisms of cubic Jordan algebras such that

L̃pqp = L̃pL̃qL̃p, R̃pqp = R̃pR̃qR̃p, Upq = L̃pUqR̃p = R̃qUpL̃q (5)

for all p, q ∈ A×. But note that the relations L̃pq = L̃pL̃q and R̃pq = R̃qR̃p do not always
hold, even when A is associative.

42.26. The Springer form of a cubic étale subalgebra (Springer [267, pp. 94–95],
Springer-Veldkamp [270, pp. 163–165], Petersson-Racine [223, Prop. 2.1, 2.2]). Let
J be a cubic Jordan algebra over k and E ⊆ J a cubic étale subalgebra. As in 35.1, we
denote by E⊥ the orthogonal complement of E relative to the bilinear trace of J. Prove:

(a) The action

E × E⊥ −→ E⊥, (x, u) 7−→ x . u = −x × u (1)

of (35.1.2) converts E⊥ into a left E-module.

(b) There is a unique map qE : E⊥ → E such that

TE
(
z, qE(u)

)
= −TJ(z, u♯) (2)

for all z ∈ E, u ∈ E⊥, and qE is a quadratic form over E. We call qE the Springer form
of E (relative to J).

(c) The Springer form of E is compatible with base change in the following sense: for
any R ∈ k-alg, ER ⊆ JR is a cubic étale subalgebra over R satisfying E⊥R = (ER)⊥ =
(E⊥)R as R-modules, and the diagram

E⊥R = (E⊥)R qER

//

1

��

ER

1

��
(E⊥)RE (qE )RE

// RE

(3)

commutes, where the vertical arrow on the left is the identification (12.27.1), while the
vertical arrow on the right is the identification under the switch x ⊗ r 7→ r ⊗ x.
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(d) If J is a Freudenthal algebra over k having rank n > 3 as a projective module,
then there exists an fppf algebra R ∈ k-alg and a splitting of JR matching ER with
the diagonal of J0n(R). Conclude that the Springer form of E is non-singular, and even
regular unless n = 6 and 2 is not invertible in k.

(e) An element l ∈ E⊥ is a Kummer element of J relative to E if and only if l is
invertible in J and qE(l) = 0. In this case, Al(J, E) = E and, setting λ := NE(l) ∈ k×, the
assignment

x0 + x1 j1 + x2 j2 7−→ x0 + x1 . l + x2 . l♯

defines an embedding of cubic Jordan algebras from the first Tits construction J(E, λ)
to J. Finally, l is isotropic relative to qE .

42.27. Let C be a multiplicative conic alternative k-algebra whose trace form is surjec-
tive (e.g., a regular composition algebra) and put

A := Cub(C) = Ĉ = k ×C (1)

as a direct product of ideals.

(a) Regard A as a cubic alternative k-algebra by means of Exc. 34.24 (b) and prove

J(A, µ) � Her3(Cp,Γ0), Γ0 := diag(−1,−1, 1), (2)

for all µ ∈ k×, p ∈ C× by reducing to the case µ = 1, p = 1C and then performing the
following steps.

(i) e1 := (1, 0) ∈ A(+) ⊆ J := J(A, 1) is an elementary idempotent with the Peirce
components

J2(e1) = ke1, (3)
J1(e1) = C j1 ⊕C j2, (4)
J0(e1) = C ⊕ (ke1) j1 ⊕ (ke1) j2. (5)

(ii) Picking an element u0 ∈ C of trace 1, the quantities e1,

e2 := u0 + e1 j1 +
(
nC(u0)e1

)
j2, e3 := ū0 − e1 j1 −

(
nC(u0)e1

)
j2

form an elementary frame Ω = (e1, e2, e3) of J.
(iii) The off-diagonal Peirce components of J relative to Ω are given by

J23 = {v + αe1 j1 +
(
nC(u0, v) − nC(u0)α

)
e1 j2 | v ∈ C0, α ∈ k}, (6)

J31 = {−(u0v̄) j1 + v j2 | v ∈ C}, (7)
J12 = {(ū0v̄) j1 + v j2 | v ∈ C}. (8)

(iv) S := (e1, e2, e3, u23, u31) with

u23 := (2u0 − 1C) + 2e1 j1 +
(
2nC(u0) − 1

)
e1 j2, (9)

u31 := − u0 j1 + 1C j2 (10)

is a co-ordinate system of J satisfying

S J(u23) = S J(u31) = 1.
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(v) Complete the proof by showing that the map φ : C → CJ,S defined by

φ(v) := −
(
(ū0v̄) j1 + v j2

)
for all v ∈ C is an isomorphism of conic algebras. (Hint: First establish the
formula

(uv − ūv̄)(uw) =
(
tC(u)nC(u, v̄) − nC(u)tC(v)

)
w − tC(u)ū(v̄w) (11)

for all u, v,w ∈ C.)

(b) Let C be an octonion algebra over k whose norm is split hyperbolic. Deduce from
(a) and Exc. 37.24 that the Albert algebra Her3(C,Γ) is split, for any diagonal matrix
Γ ∈ GL3(k).

Remark. We have recorded in Cor. 23.11 that octonion algebras exist whose norm
is split hyperbolic but which are not split themselves. According to part (b) above,
however, their difference from the split octonions is so small that it cannot be detected
inside the reduced Albert algebras they determine.

43 Isotopy involutions

Before we can describe the second Tits construction of cubic Jordan algebras,
it will be necessary to generalize the concept of an involution in the setting of
alternative algebras. We have learned in 10.8 how to twist involutions of unital
non-associative algebras by symmetric or skew-symmetric invertible elements
in the nucleus. This procedure is useful when the nucleus is big, e.g., for ass-
ociative algebras, but distinctly less so when it is small, e.g., when it agrees
with the scalar multiples of the identity element, as happens, for example, in
the case of octonions (Exc. 19.32). In the present section, we describe a way
out of this impasse by introducing the notion of isotopy involution for alter-
native algebras that allows twisting by arbitrary symmetric or skew-symmetric
invertible elements.

We begin with a simple but useful preparation.

43.1 Lemma. Let B be a unital alternative k-algebra, p ∈ B× and τ : B→ Bp

a unital homomorphism or anti-homomorphism. Then τ preserves U-operators
and arbitrary powers: τ ◦Ux = Uτ(x) ◦ τ for all x ∈ B and τ(xn) = τ(x)n for all
x ∈ B, n ∈ N (resp. x ∈ B×, n ∈ Z).

Proof By Lemma 15.10, U-operators and powers do not change when pass-
ing to the opposite or a unital isotope of B. □

43.2 The concept of an isotopy involution. Let B be a unital alternative alge-
bra over k. By an isotopy involution of B we mean a pair (τ, p) satisfying the
following conditions.
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(i) p ∈ B×.
(ii) τ : B→ Bp is an anti-isomorphism and τ(p) = p.
(iii) τ2 = 1B.

In explicit terms, the first part of condition (ii) by (15.9.2) is equivalent to τ
being a linear bijection satisfying

τ(xy) =
(
τ(y)p−1)(pτ(x)

)
(x, y ∈ B). (1)

Note that the preceding conditions are compatible in the following sense: sup-
pose the pair (τ, p) satisfies (i), (ii). Then Lemma 43.1 implies τ(p−1) = p−1,
we obtain isomorphisms τ : B→ (Bp)op, τ : Bop → Bp, and functoriality 15.11
applied to the latter yields the second arrow in

B
τ
// (Bp)op = (Bop)p−1

τ
// (Bp)τ(p−1) = (Bp)p−1

= B.

Thus, regardless of (iii), it follows from (i), (ii) alone that τ2 : B → B is an
isomorphism, so in the presence of (i), (ii), condition (iii) makes sense.

Trivial examples of isotopy involutions are provided by the observation that
the isotopy involutions of an associative algebra B have the form (τ, p), where
τ : B→ B is an ordinary involution and p ∈ B× is symmetric relative to τ. Less
trivial examples may be found by consulting the following lemma, which gives
a first indication of twisting in the setting of alternative algebras.

43.3 Lemma. Let (B, τ) be an alternative k-algebra with involution and sup-
pose q ∈ B× satisfies τ(q) = q. Then (τq, q3) with

τq : B −→ Bq3
, x 7−→ τq(x) := q−1τ(x)q

is an isotopy involution of B.

Proof By Cor. 14.5, the definition of τq is unambiguous, and we have (τq)2 =

1B, τq(q3) = q3. From Exc. 15.17 we deduce that Lq−1 Rq : B → Bq3
is an

isomorphism, forcing τq = Lq−1 Rq◦τ : B→ Bq3
to be an anti-isomorphism. □

43.4 Homomorphisms and base change. By an alternative k-algebra with
isotopy involution we mean a triple (B, τ, p) consisting of a unital alternative k-
algebra B and an isotopy involution (τ, p) of B. A homomorphism h : (B, τ, p)→
(B′, τ′, p′) of alternative k-algebras with isotopy involution is a unital homo-
morphism h : B → B′ of k-algebras that respects the isotopy involutions:
τ′ ◦ h = h ◦ τ and satisfies h(p) = p′. In this way, we obtain the category
of alternative k-algebras with isotopy involution. If (B, τ, p) is an alternative
k-algebra with isotopy involution over k, then (B, τ, p)R := (BR, τR, pR) is one
over R, for any R ∈ k-alg, called the scalar extension or base change of (B, τ, p)
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from k to R. Note that (B, τ, 1B) is an alternative algebra with isotopy involution
if and only if (B, τ) is an alternative algebra with involution.

We now proceed to assemble a few elementary properties of isotopy invo-
lutions. For the time being, we fix an alternative algebra (B, τ, p) with isotopy
involution over k.

43.5 Lemma. The following identities hold for all x, y ∈ B and all n ∈ Z.

τ(xpn) = pnτ(x), τ(pnx) = τ(x)pn, (1)

τ
(
τ(x)(py)

)
= τ(y)(px), τ

((
τ(x)p−1)y) = (

τ(y)p−1)x, (2)

τ
(
(xy)p

)
= pτ(xy) =

(
pτ(y)

)
τ(x), (3)

τ
(
p−1(xy)

)
= τ(xy)p−1 = τ(y)

(
τ(x)p−1). (4)

Proof Since τ preserves powers by Lemma 43.1, applying (43.2.1) to y = pn

(resp. x = pn and y = x) yields (1). Using this for n = 1 and (43.2.1) again, we
deduce τ(τ(x)(py)) = (τ(py)p−1)(px) = ((τ(y)p)p−1)(px) = τ(y)(px), hence
the first relation of (2); the second one follows analogously. To derive the first
relation in (3), one applies (1) for n = 1, while the second one is a consequence
of the Moufang identities (13.3.1), (13.3.3): pτ(xy) = p((τ(y)p−1)(pτ(x))) =
[p(τ(y)p−1)p]τ(x) = (pτ(y))τ(x). Relation (4) follows in a similar way. □

43.6 Symmetric elements. We put

H(B, τ) := Sym(B, τ) := {x ∈ B | τ(x) = x}, (1)

which by Lemma 43.1 is a subalgebra of the Jordan algebra B(+), and by
43.2 (ii) we have p ∈ H(B, τ). Applying (43.5.2) for y = x yields

τ(x)(px),
(
τ(x)p−1)x ∈ H(B, τ) (x ∈ B). (2)

By contrast,(τ(x)p)x or τ(x)(p−1x) will in general not belong to H(B, τ) (see
Exc. 43.12 below).

The twisting of isotopy involutions, which we now proceed to discuss, takes
on a slightly different form from what we have seen in the case of ordinary
involutions (Lemma 43.3).

43.7 Proposition. Let q ∈ H(B, τ)×. Then

(B, τ, p)q := (Bq, τq, pq) (1)

with

τq(x) := q−1τ(qx), pq = pq (x ∈ B) (2)
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is an alternative k-algebra with isotopy involution, called the q-isotope of
(B, τ, p), such that

τq(xq) = τ(x)q, (3)

H(Bq, τq) = q−1H(B, τ) = H(B, τ)q, (4)

((B, τ, p)q)q′ = (B, τ, p)qq′ (5)

for all x ∈ B, and all q′ ∈ H(Bq, τq)×.

Proof Starting with (3), we apply Lemma 43.1 to obtain τq(xq) = q−1τ(qxq) =
q−1τ(Uqx) = q−1Uτ(q)τ(x) = q−1[qτ(x)q], and (3) follows. Setting x = p, this
implies τq(pq) = τ(p)q = pq, while applying τq to (3) yields (τq)2(xq) =
τq(τ(x)q) = τ2(x)q = xq, hence (τq)2 = 1Bq . In order to establish (1) as an
alternative k-algebra with isotopy involution, it therefore suffices to show that
τ : Bq → (Bq)pq

= Bqpq is an anti-isomorphism, equivalently, that(
τq(y)(qpq)−1)((qpq)τq(x)

)
= τq((xq−1)(qy)

)
(x, y ∈ B). (6)

In order to do so, we replace y by yq and apply (2), (3), (43.5.3), the Moufang
identities and (43.2.1) to compute(

τq(yq)(qpq)−1)((qpq)τq(x)
)
=

[((
τ(y)q

)
q−1

)
p−1

]
q−1 · q

[
p
(
q
(
q−1τ(qx)

))]
=

(
τ(y)p−1)q−1 · q

(
pτ(qx)

)
=

(
τ(y)p−1)q−1 · q

(
pτ(x)

)
q

=
((
τ(y)p−1)(pτ(x)

))
q

= τ(xy)q = τq((xy)q
)

= τq
((

xq−1)(q(yq)
))
,

and (6) holds. It remains to establish (4), (5).While (4) follows immediately
from (2), (3), we note in (5) that (Bq)q′ = Bqq′ by (15.9.3). Also, with p′ := pq

it must be borne in mind that the expression (p′)q′ has to be computed not in
B but in Bq, so (p′)q′ = ((pq)q−1)(qq′) = p(qq′) = pqq′ . Moreover, by (4),
τ(qq′) = qq′, so the right-hand side of (5) makes sense. And finally, (3) gives

(τq)q′(x(qq′)
)
= (τq)q′

((
(xq)q−1)(qq′)

)
=

(
τq(xq)q−1)(qq′)

= τ(x)(qq′) = τqq′(x(qq′)
)

for all x ∈ B, and the proof of (5) is complete. □

43.8 Corollary. Up to isomorphism, the alternative k-algebras with isotopy
involution are precisely of the form

(B, τ, 1B)q = (Bq, τq, q),
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where (B, τ) is an alternative k-algebra with involution and q ∈ H(B, τ) is
invertible. Moreover,

τq(x) = q−1τ(x)q (x ∈ B). (1)

Proof Let (B′, τ′, p′) be an alternative k-algebra with isotopy involution and
put q := p′. Then Prop. 43.7 implies (B′, τ′, p′) = (B, τ, 1B)q, with B :=
(B′)q−1

, τ := (τ′)q−1
. In particular, (B, τ) is an alternative k-algebra with in-

volution, which combines with (43.7.2) to yield τ′(x) = τq(x) = q−1τ(qx) =
q−1τ(x)τ(q) = q−1τ(x)q, hence (1). □

43.9 Remark. According to Cor. 43.8, (τq, q) is an isotopy involution of Bq, so
τq : Bq → Bq2

is an anti-isomorphism. This is in agreement with Lemma 43.3
since τq, being an isomorphism B→ Bq3 op fixing q, is also one Bq → (Bq3 op)q =

(Bq3
)q−1 op = Bq2 op.

43.10 Concluding remark. In order to twist involutions of alternative algebras
not only by symmetric but also by skew-symmetric invertible elements (for
which there is no need in the present volume), isotopy involutions would have
to be generalized to isotopy involutions of type ε = ±, the only difference being
that the second condition in 43.2 (ii) would have to be replaced by τ(p) = εp.
Mutatis mutandis, the results of the present section carry over to this slightly
more general set-up virtually without change.

Exercises
43.11. Show that the category of alternative k-algebras with isotopy involution as de-
fined in 43.4 is isomorphic to the category of pointed alternative k-algebras with invo-
lution, which we define as follows: its objects are the pairs ((B, τ), q) where (B, τ) is
an alternative k-algebra with involution and q ∈ H(B, τ)× is called the base point of
((B, τ), q), while its morphisms are homomorphisms of alternative algebras with invo-
lution preserving base points.

43.12. Let A be a unital alternative k-algebra and q ∈ A×. Show that (Aq × Aop, εA, p),
where εA is the switch (10.4) and p := (q−1, q−1), is an alternative k-algebra with isotopy
involution. Show further that (εA(z)p)z ∈ H(Aq×Aop, εA) for all z ∈ Aq×Aop if and only
if q2 ∈ Nuc(A).

44 Involutorial systems and étale elements

The second Tits construction relies on two conceptual foundations: isotopy
involutions and étale elements. Isotopy involutions for cubic (rather than ar-
bitrary) alternative algebras are best treated within the framework of what we
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466 The two Tits constructions

call involutorial systems. The role played by étale elements in the second Tits
construction, on the other hand, is akin to the one played by Kummer elements
in the first.

Before entering into the proper subject matter of the present section, we
recall the following observation.

44.1 The opposite and unital isotopes of cubic alternative algebras. Let B
be a cubic alternative algebra over k and p ∈ B×. Then both Bop and the unital
isotope Bp in the sense of 15.9 are cubic alternative k-algebras with the same
norm as B: NBop = NBp = NB. This is obvious for Bop and follows immediately
from Exc. 42.19 for Bp. By the same token, Bop and Bp have the same adjoint
as well as the same (bi-)linear and quadratic trace as B.

44.2 The concept of an involutorial system. (a) By an involutorial system
over k we mean a quadruple

B = (K, B, τ, p)

with the following properties.

(i) K is a composition algebra of rank r ∈ {1, 2} over k, called the core of B
and denoted by Core(B), so K � k for r = 1 and K ∈ k-alg is quadratic
étale for r = 2. We write ι := ιK : K → K, a 7→ ā, for the conjugation
of K, always identify k ⊆ K canonically and have H(K, ι) = k by
Exc. 19.32 (a).

(ii) B is a cubic alternative algebra over K.
(iii) (τ, p) is an ι-semi-linear isotopy involution of B , i.e., (τ, p) is an iso-

topy involution of B as an alternative k-algebra that is ι-semi-linear and
makes a commutative ι-semi-linear polynomial square

B
τ
//

NB

��

B

NB

��
K

ι
// K

(1)

in the sense of 12.28.

We then speak, more specifically, of an involutorial system of the r-th kind.
Involutorial systems of the second kind are also called unitary. By 44.1, the
diagram (1) can also be written in the form

B
τ
//

NB

��

Bp op

NBp op

��
K

ι
// K,

(2)
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so in analogy to 34.10 (b), we may refer to τ as an ι-semi-linear isomorphism
from B to Bp op as cubic alternative algebras over K. Note that (B, τ, p) is an
alternative k-algebra with isotopy involution in the sense of 43.4.

(b) Let B′ = (K′, B′, τ′, p′) be another involutorial system over k. By a ho-
momorphism from B to B′ we mean a pair (σ, φ) such that σ : K → K′ is
an isomorphism in k-alg, hence an isomorphism of composition algebras, and
φ : B → B′ is a σ-semi-linear homomorphism of cubic alternative algebras
such that τ′ ◦ φ = φ ◦ τ and φ(p) = p′; in particular, the σ-semi-linear polyno-
mial square

B
φ
//

NB

��

B′

NB′

��
K

σ
// K′

(3)

commutes, equivalently, by Exc. 34.22 (b), φ is a σ-semi-linear homomor-
phism of algebras making

B
φ
//

♯

��

B′

♯′

��
B

φ
// B′

(4)

a commutative diagram of set maps. In this way, we obtain the category of
involutorial systems over k, denoted by k-invsys.

(c) With B as in (a) and R ∈ k-alg, we call

BR := (KR, BR, τR, pR) (5)

the scalar extension of base change of B from k to R. Identifying RK = KR as
K− and as R−algebras, 12.27 yields the identifications BR = (kB)R = BRK =

BKR , under which τR = τ ⊗ι ιR as a tensor product of ι-semi-linear maps in the
sense of 12.26. Thus BR is an involutorial system of the r-th kind over R.

44.3 Core splitness. Some of our subsequent considerations are addressed to
involutorial systems (of the second kind) whose core is split quadratic étale,
i.e., isomorphic to k × k. More specifically, these considerations often depend
on an isomorphism from the core to k×k being explicitly singled out. We there-
fore define a core-split involutorial system over k as a pair (B, ϱ) consisting of
an involutorial system B over k and an isomorphism ϱ : Core(B)

∼
→ k × k

of k-algebras. If (B′, ϱ′) is another core-split involutorial system over k, a ho-
momorphism from (B, ϱ) to (B′, ϱ′) is a homomorphism (σ, φ) : B → B′ of
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468 The two Tits constructions

involutorial k-systems such that ϱ′ ◦ σ = ϱ. In this way we obtain the category
of core-split involutorial systems over k, denoted by k-cosp. Note that our defi-
nitions give rise to the forgetful functor from k-cosp to k-invsys defined by the
assignment (B, ϱ) 7→ B on objects and the identity map on morphisms. Note
further that if (B, ϱ) is a core-split involutorial system over k, then the base
change (B, ϱ)R := (BR, ϱR) is one over R, for all R ∈ k-alg.

44.4 Admissible scalars. Let B = (K, B, τ, p) be an involutorial system over k.
Since τ fixes p, hence ι fixes NB(p), we conclude NB(p) ∈ k×. By an admissible
scalar for B we mean a quantity µ ∈ K× such that

µµ̄ = NB(p). (1)

If in this case (σ, φ) : B → B′ = (K′, B′, τ′, p′) is a homomorphism of invo-
lutorial systems, then σ(µ) ∈ K′ is an admissible scalar for B′. Equation (1)
looks like a rather restrictive condition but, actually, it isn’t: for any µ ∈ K×, put
α := µµ̄NB(p)−1 ∈ k×, p1 := αp and µ1 := αµ ∈ K×. Then B1 := (K, B, τ, p1)
is an involutorial system over k and µ1 is an admissible scalar for B1.

44.5 Associativity conventions. Let B = (K, B, τ, p) be an involutorial system
over k and µ an admissible scalar for B. By (44.4.1), the link between B and µ
is provided solely by the quantity p, regardless of whether B is associative or
not. On the other hand, if B is associative, then p becomes completely isolated
from the rest of B since Bp = B and τ : B → B is a K/k-involution of B. This
observation gives rise to the following terminological shift: by an associative
involutorial system over k, we mean a triple B = (K, B, τ) consisting of a
composition algebra K of rank r ∈ {1, 2} over k, a cubic associative algebra
B over K, and a K/k-involution τ of B. By abuse of language, an admissible
scalar for B is then defined as a pair (p, µ) consisting of invertible elements
p ∈ H(B, τ), µ ∈ K satisfying (44.4.1), i.e., nK(µ) = NB(p).

Our approach to the second Tits construction relies heavily on Thm. 42.16.
It is therefore convenient to introduce the following terminology.

44.6 Balanced pairs of cubic Jordan algebras. A pair (J, J0) of cubic Jordan
algebras over k is said to be balanced if the following conditions hold.

(i) J0 ⊆ J is a regular cubic Jordan subalgebra of rank n ∈ N.
(ii) As a k-module, J is finitely generated projective of rank 3n.

In this case we say, more specifically, that the pair (J, J0) is n-balanced. By a
homomorphism φ : (J, J0) → (J′, J′0) between balanced pairs of cubic Jordan
k-algebras we mean a homomorphism φ : J → J′ of cubic Jordan algebras
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satisfying φ(J0) ⊆ J′0. In this way, we obtain the category of balanced pairs of
cubic Jordan algebras, denoted by k-bapa.

44.7 Examples: the first Tits construction and balanced pairs. Denote by
k-cualreg the full subcategory of k-cual consisting of all regular cubic alterna-
tive k-algebras of finite constant rank as projective k-modules and fix a scalar
λ ∈ k×. Consider the category k-bapakuλ, whose objects are triples (J, J0, l)
consisting of balanced pairs (J, J0) of cubic Jordan k-algebras and Kummer
elements l ∈ J relative to J0 such that NJ(l) = λ. Its morphisms, on the other
hand, are defined as balanced pair homomorphisms respecting the correspond-
ing Kummer elements. By Theorem 42.11 (see also 42.12), the first Tits con-
struction determines a functor

J(−, λ) : k-cualreg
∼
−→ k-bapakuλ

defined by

J(A, λ) :=
(
J(A, λ), A(+), j1

)
on objects A ∈ k-cualreg and

J(φ, λ) := J(φ, λ) : J(A, λ) −→ J(A′, λ)

on morphisms φ : A → A′ in k-cualreg. In fact, J(−, λ) is an equivalence of
categories, the opposite functor being given by the assignments

(J, J0, l) 7−→ Al(J, J0)

on objects and(
φ : (J, J0, l) −→ (J′, J′0, l

′)
)
7−→ (φ|J0 : J0 −→ J′0)

on morphisms.

44.8 Étale elements. Let (J, J0) be a balanced pair of cubic Jordan algebras
over k. We write N (resp. N0) for the norm of J (resp. J0), ditto for the various
traces. In view of 44.6 (i), we obtain a direct sum decomposition J = J0⊕ J⊥0 of
k-modules and, thanks to 35.6, have the quadratic maps Q : J⊥0 → J0, H : J⊥0 →
J⊥0 given by u♯ = −Q(u) + H(u) for all u ∈ J⊥0 . Now let w ∈ J⊥0 . Then

K := Kw := k[t]
/(

t2 − N(w)t + N0
(
Q(w)

))
(1)

is a quadratic k-algebra that is free of rank 2 as a k-module, with basis 1K , ξ,
where ξ stands for the canonical image of t in K. Thus (1) implies

K =k[ξ], ξ2 − N(w)ξ + N0
(
Q(w)

)
1K = 0, (2)

tK(ξ) = N(w), nK(ξ) = N0
(
Q(w)

)
.
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Hence the discriminant of K/k is given by

∆ := ∆w = N(w)2 − 4N0
(
Q(w)

)
, (3)

and one checks

nK(ξ − ξ̄) = −∆. (4)

In the sequel, we identify k ⊆ K, J ⊆ JK , J0 ⊆ J0K , J⊥0 ⊆ (J⊥0 )K canonically.
Changing scalars from k to K, we then obtain

JK = J ⊕ ξJ, J0K = J0 ⊕ ξJ0, (J⊥0 )K = J⊥0 ⊕ ξJ⊥0 . (5)

By an étale element of J relative to J0 we mean an element w ∈ J⊥0 such that

Q(w) ∈ J×0 , ∆ = N(w)2 − 4N0
(
Q(w)

)
∈ k×, (6)

equivalently, by Prop. 19.8, the algebra K = k[ξ] is quadratic étale over k and
ξ ∈ K×. The property of an element of J to be étale relative to J0 is stable under
base change in the obvious sense.

44.9 Lemma. Let (J, J0) be a balanced pair of cubic Jordan algebras over k
and suppose w is an étale element of J relative to J0. With the notation of 44.8,

l := lw := −Q(w) .H(w) + ξw ∈ J⊥0K ⊆ JK (1)

is a Kummer element of JK relative to J0K satisfying

µ := µw := N(l) = ∆
(
− 2N0

(
Q(w)

)
+ N(w)ξ

)
, nK(µ) = −∆3N0

(
Q(w)

)
. (2)

Proof Using (35b.11), (35b.1), (35b.9), (44.8.2) and expanding yields

Q(l) = ξ2Q(w) − ξQ
(
w,Q(w) .H(w)

)
+ Q

(
Q(w) .H(w)

)
=

(
ξ2 − N(w)ξ + N0

(
Q(w)

))
Q(w) = 0.

Hence l is strongly orthogonal to J0 and by Theorem 42.16, it suffices to show
that l is invertible in JK . This in turn will follow once we have established (2).
In order to do so, we first prove

T
(
w,Q(w)♯ .w

)
= 6N0

(
Q(w)

)
= T

(
w♯,Q(w) .H(w)

)
, (3)

T
(
w,Q(w)♯ .

(
Q(w) .H(w)

))
= 3N0

(
Q(w)

)
N(w) = T

(
w,

(
Q(w) .H(w)

)♯)
. (4)

Indeed,

T
(
w,Q(w)♯ .w

)
= −T

(
w,Q(w)♯ × w

)
= −T

(
Q(w)♯,w × w

)
= 2T

(
Q(w)♯,Q(w)

)
,
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and the first relation of (3) follows from Euler’s differential equation. Similarly,
(35b.9) implies

T
(
w♯,Q(w) .H(w)

)
= −T

(
H(w),Q(w) × H(w)

)
= −2T

(
Q(w),H(w)♯

)
= 2T

(
Q(w),Q

(
H(w)

))
= 2T

(
Q(w),Q(w)♯

)
,

and the second equation of (3) follows as well. Next, applying (35.4.4), we
conclude

T (w,Q(w)♯ . (Q(w) .H(w))) = N0(Q(w))T (w,H(w)) = N0(Q(w))T (w,w♯),

giving the first equation of (4). As to the second, we apply the first, (35b.5),
(35b.10) and (3) to obtain

T
(
w,

(
Q(w) .H(w)

)♯)
= T

(
w,H

(
Q(w) .H(w)

))
= T

(
w,Q(w)♯ .H

(
H(w)

))
= N(w)T

(
w,Q(w)♯ .w) − T

(
w,Q(w)♯ .

(
Q(w) .H(w)

))
= 3N0

(
Q(w)

)
N(w),

as claimed. Expanding N(l) by using (3), (4), (35.4.5), (35b.18), we obtain
N(l) = g(ξ), where

g(t) = N(w)t3 − 6N0
(
Q(w)

)
t2 + 3N(w)N0

(
Q(w)

)
t

−
(
N(w)2 − 2N0

(
Q(w)

))
N0

(
Q(w)

)
and f (t) = t2 − N(w)t + N0

(
Q(w)

)
∈ k[t] satisfy

g(t) =
(
N(w)t − 6N0

(
Q(w)

)
+ N(w)2

)
f (t) + ∆

(
N(w)t − 2N0

(
Q(w)

))
.

Since f (ξ) = 0 by (44.8.2), we deduce N(l) = g(ξ) = ∆(N(w)ξ − 2N0(Q(w))),
hence the first equation of (2). The second one follows from (44.8.3) and

nK

(
N(w)ξ − 2N0

(
Q(w)

))
=

(
N(w)ξ − 2N0

(
Q(w))

)(
N(w)ξ̄ − 2N0

(
Q(w)

))
= N(w)2N0

(
Q(w)

)
− 2N(w)2N0

(
Q(w)

)
+ 4N0

(
Q(w)

)2

= − ∆N0
(
Q(w)

)
. □

44.10 Enter the first Tits construction. In the situation of Lemma 44.9, we
put

B := Bw := Al(JK , J0K) = Alw (JKw , J0Kw ) (1)

as a cubic alternative algebra over K, with norm NB = N0 ⊗K. By Thm. 42.16,
there is a canonical identification of the first Tits construction

J(B, µ) = B ⊕ B j1 ⊕ B j2 (2)
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over K with JK that matches B(+) with J0K as cubic Jordan algebras and j1
with l, hence j2 = j♯1 with l♯. In particular, B is a regular cubic alternative K-
algebra. Letting ι = ιK act on JK and J0K through the second factor, we obtain
ι-semi-linear maps

χ := χw := 1J ⊗ ι : JK −→ JK , τ := τw := 1J0 ⊗ ι : J0K −→ J0K (3)

that by (12.29.1) give rise to commuting ι-semi-linear polynomial squares:

JK χ
//

♯

��

JK

♯

��

J0K τ
//

♯

��

J0K

♯

��
JK χ

//

N⊗K
��

JK

N⊗K
��

J0K τ
//

N0⊗K
��

J0K

N0⊗K
��

K
ι
// K, K

ι
// K.

(4)

In the sense of 34.10, therefore, χ : JK → JK and τ : B(+) → B(+) are ι-semi-
linear homomorphisms of cubic Jordan algebras over K. We clearly have

χ(x0 . u) = τ(x0) . χ(u) (x0 ∈ J0K , u ∈ J⊥0K), (5)

and since K is étale over k, we deduce ξ − ξ̄ ∈ K× from (44.8.4), (44.8.6),
which combines with (4) to imply

H(JK , χ) = J, H(J0K , τ) = J0. (6)

44.11 Base change. Under the natural identifications, particularly those de-
scribed in 12.27 and 44.2 (c), the preceding constructions are compatible with
base change: if (J, J0) is a balanced pair of cubic Jordan algebras over k,
then (JR, J0R) is one over R, for any R ∈ k-alg. Given w ∈ J⊥0 ⊆ J, then
wR ∈ J⊥0R ⊆ JR and KwR = (Kw)R. Moreover, if w ∈ J is étale relative to J0,
then so is wR ∈ JR relative to J0R, and lwR = (lw)RK , BwR = BRK = (kB)R and
τwR = (τw)R.

44.12 Theorem (The internal second Tits construction). Let (J, J0) be a bal-
anced pair of cubic Jordan algebras over k and suppose w is an étale element
of J relative to J0. With the notation of 44.8 through 44.10, the following state-
ments hold.

(a) There is a unique element pw ∈ B such that χw( j1) = (µ−1 pw) j2.
(b) B := Bw := (Kw, Bw, τw, pw) =: (K, B, τ, p) is an involutorial system

of the second kind over k that is compatible with base change: BwR =

(Bw)R for all R ∈ k-alg. Moreover, µ is admissible for B: N(p) = µµ̄.
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(c) We have the relations

J =
{
x0 + u j1 +

(
µ−1 pτ(u)

)
j2 | x0 ∈ J0, u ∈ B}, (1)

x♯ =
(
x♯0 − u

(
pτ(u)

))
+

(
µ̄τ(u)♯p−1 − x0u

)
j1 (2)

+
(
µ−1 pτ

(
µ̄τ(u)♯p−1 − x0u

))
j2,

N(x) = N0(x0) + µN(u) + µ̄N(u) − T0

(
x0, u

(
pτ(u)

))
(3)

for all x = x0 + u j1 + (µ−1 pτ(u)) j2 ∈ JR, x0 ∈ J0R, u ∈ (kB)R = BRK ,
R ∈ k-alg.

(d) The element ξ − ξ̄ is invertible in K and

w =
(
(ξ − ξ̄)−11B

)
j1 +

(
µ−1 pτ

(
(ξ − ξ̄)−11B

))
j2. (4)

Recall from (43.5.2) that u(pτ(u)) belongs to H(B, τ) = J0.

Proof (a) Both χ( j1) and χ( j1)♯ = χ( j♯1) = χ( j2) belong to J⊥0K . Hence we can
write

χ( j1) = x1 j1 + x2 j2 (5)

for some x1, x2 ∈ B, and since µ = N(l) by Lemma 44.9 is invertible in K,
we may apply (42.11.3) to conclude x1x2 = 0, hence NB(x1)NB(x2) = 0. By
(44.10.4), and (42.11.4), on the other hand, µ̄ = N( j1) = N(χ( j1)) = µNB(x1)+
µ2NB(x2) is invertible in K, and we find b1, b2 ∈ K× satisfying b1NB(x1) +
b2NB(x2) = 1. Thus c1, c2, with ci = biNB(xi) for i = 1, 2, is a complete
orthogonal system of idempotents in K, forcing K = K1×K2 as a direct product
of ideals Ki = Kci ∈ K-alg ⊆ k-alg for i = 1, 2. Hence B = B1 × B2, Bi =

ciB = BKi , where B(+)
Ki
= JKi as cubic Jordan algebras over Ki. From (42.1.3)

we deduce x2K1 = c1x2 = b1NB(x1)x2 = b1x♯1(x1x2) = 0. On the other hand,
(44.9.1) yields j1 = l = ξw − Q(w) .H(w), hence χ( j1) = ξ̄w − Q(w) .H(w),
and since ξ − ξ̄ is invertible in K, we apply (5) to conclude

w = (ξ − ξ̄)−1((1B − x1) j1 − x2 j2
)
, (6)

hence wK1 = (ξ − ξ̄)−1
K1

((1BK1
− x1K1 ) j1K1 − x2K1 j2K1 ) ∈ BK1 j1K1 since x2K1 = 0.

Thus wK1 ∈ JK1 is strongly orthogonal to J0K1 , forcing Q(w)K1 = Q(wK1 ) = 0.
But Q(w)K1 is invertible in J0K1 by (44.8.6), forcing N0(Q(w))K1 = 0 ∈ K1 to
be invertible in K1, which is impossible unless K1 = {0}. This implies c1 = 0,
hence b2NB(x2) = c2 = 1. Thus x2 is invertible in B, and from x1x2 = 0 we
deduce x1 = 0. Hence (5) reduces to χ( j1) = x2 j2, and (a) is proved.

(b) Combining (a) with (42.11.4), we obtain N(χ( j1)) = µ−3µ2N0(p) =
µ−1N0(p), while (44.10.4) gives N(χ( j1)) = N( j1) = µ̄. Comparing, we end
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up with the final statement of (b). Moreover, χ being ι-semi-linear of period 2
combines with (a), (42.11.5), (42.11.3) and (44.10.4), (44.10.5) to yield

j1 = χ(χ( j1)) = χ(µ−1 p j2) = µ̄−1χ(p . j♯1) = µ̄−1τ(p) . χ( j1)♯

= µ̄−1τ(p) . (µ−1 p j2)♯ = µ̄−1τ(p) . ((µ−1 p♯) j1)

= N0(p)−1(τ(p)p♯) j1 = (τ(p)p−1) j1.

Thus τ(p) = p. Finally, for all x, y ∈ J0K , we obtain

χ
(
(xy) j1

)
= χ

(
(xy) . j1

)
= τ(xy) . χ( j1) = τ(xy) . (µ−1 p j2) =

(
µ−1 pτ(xy)

)
j2

on the one hand, and

χ
(
(xy) j1

)
= χ

(
x . (y . j1)

)
= τ(x) . χ(y . j1) = τ(x) .

(
τ(y) . χ( j1)

)
= µ−1τ(x) .

(
τ(y) . (p j2)

)
= µ−1((pτ(y))τ(x)

)
j2

on the other, so we conclude

pτ(xy) =
(
pτ(y)

)
τ(x) =

(
p(τ(y)p−1)p

)
τ(x) = p

((
τ(y)p−1)(pτ(x)

))
,

hence τ(xy) = (τ(y)p−1)(pτ(x)). Summing up, we have thus shown that B =
(K, B, τ, p) is a unitary involutorial system over k.

(c) For x0, x1, x2 ∈ J0K = B we put x := x0 + x1 j1 + x2 j2 ∈ J(B, µ) = JK and
compute

χ(x) = τ(x0) + τ(x1) . χ( j1) + τ(x2) . χ( j1)♯

= τ(x0) + µ−1τ(x1) . (p j2) + τ(x2) . (µ−1 p j2)♯

= τ(x0) + µ−1(pτ(x1)
)
j2 + µ−2τ(x2) . (µp♯) j1

= τ(x0) + µ−1(τ(x2)p♯
)
j1 + µ−1(pτ(x1)

)
j2

= τ(x0) + µ̄
(
τ(x2)p−1) j1 + µ−1(pτ(x1)

)
j2.

Combining this with (44.10.6), we obtain the following chain of equivalent
conditions.

x ∈ J ⇐⇒ χ(x) = x

⇐⇒ τ(x0) = x0, x1 = µ̄τ(x2)p−1, x2 = µ
−1 pτ(x1)

⇐⇒ x0 ∈ J0, x2 = µ
−1 pτ(x1)

since this implies τ(x2) = µ̄−1τ(pτ(x1)) = µ̄−1x1 p by (43.5.3), hence x1 =

µ̄τ(x2)p−1. We have thus proved (1). In (2), (3) we may assume R = k since
our constructions commute with base change. First of all, consulting (43.6.2)
and (44.10.6), we see that the right-hand sides of (2), (3) make sense. Now (3)
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follows from (42.11.4) since µ2N0(µ−1 pτ(u)) = µ−1N0(p)N0(τ(u)) = µ̄N0(u)
by (1) and (b), while (44.10.2) and (43.2.1), (43.5.3) yield (2) because

µ(µ−1 pτ(u))♯ = µ−1τ(u)♯p♯ = µ−1N0(p)τ(u)♯p−1 = µ̄τ(u)♯p−1

and µ−1(pτ(µ̄τ(u)♯p−1 − x0u)) = x♯ − µ−1(pτ(u))x0.
(d) In (6) we have x1 = 0, x2 = µ

−1 p, which immediately implies the asser-
tion. □

Before we are able to discuss the external second Tits construction (in anal-
ogy to Thm. 42.11), it will be necessary to insert the following technical ob-
servation.

44.13 Proposition. Let B = (K, B, τ, p) be an involutorial system of the r-th
kind (r = 1, 2) over k, write ϑ : k → K for the unit homomorphism of K and
put J := B(+) as a cubic Jordan algebra over K. Then there is a unique way of
making

J0 := H(B) := H(B, τ) = {x ∈ J | τ(x) = x} (1)

a cubic Jordan algebra over k such that the inclusion i : J0 ↪→ J is a ϑ-semi-
linear homomorphism of cubic Jordan algebras, i.e., there is a unique cubic
form NJ0 : J0 → k making

J0 i
//

NJ0

��

J = B(+)

NJ=NB

��
k

ϑ
// K

(2)

a commutative ϑ-semi-linear polynomial square and J0 a cubic Jordan algebra
over k.

Proof By 44.1 and 44.2 (a), the map τ : B(+) → Bop p(+) = B(+) is an ιK-semi-
linear isomorphism of cubic Jordan algebras over K, and we conclude that J0

is a Jordan k-subalgebra of J. Hence we only have to worry about its cubic
structure.

First assume r = 1, i.e., K = k and ϑ = 1k. Since J0 by (34.10.6) is stable
under the adjoint of J, we deduce from 33.5 and 34.6 that it becomes a cubic
Jordan algebra of the desired kind by defining its norm by NJ0 = NJ |J0 = NJ ◦ i
as a polynomial law over k. Uniqueness is clear.

We are left with the case r = 2, i.e., K is quadratic étale. Uniqueness follows
from the fact that ϑ and, by Exc. 44.29 (b), the inclusion i : J0 ↪→ J are strictly
injective. In order to prove existence, we first show that 1J0 = 1J ∈ J0 is
unimodular over k. It is certainly so over K, hence some K-linear form σ : J →
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K hasσ(1J0 ) = 1K . But 1K is unimodular over k, so some k-linear form ϱ : K →
k has ϱ(1K) = 1. Thus λ := ϱ ◦σJ0 : J0 → k is k-linear and satisfies λ(1J0 ) = 1.
Turning next to the existence of NJ0 , we put N := NJ and let R ∈ k-alg be
arbitrary. In view of the identifications in 12.27, the set maps

NRK = NKR : JR = (k J)R = JRK = JKR −→ KR = RK

by (44.2.1) satisfy NRK (τR(x)) = NRK (x) for all x ∈ JR. Hence there exists a
unique set map N0R : J0R → R such that the diagram

J0R = H(BR, τR)
iR
//

∃!N0R

��

JR

NRK

��
R

ϑR

// RK

(3)

commutes. We claim that the family of set maps N0R, R ∈ k-alg, is a polyno-
mial law (hence a cubic form N0 on J0) over k. To prove this, let φ : R→ S be
a morphism in k-alg and consider the cube

J0R
iR //

N0R

��

1J0⊗φ

!!

JR

NRK

��

1J⊗φ

!!
J0S iS

//

N0S

��

JS

NS K

��

R
ϑR

//

φ
!!

RK

φK !!
S

ϑS

// S K ,

where the natural identifications show that

1J ⊗ φ : JR −→ JS and 1J ⊗K φK : JRK → JS K

are the same. Hence all squares in the preceding cube commute, with the pos-
sible exception of the vertical one on the left, which by diagram chasing must
therefore commute as well since K is flat over k, so ϑS is injective. Thus
NJ0 := N0 : J0 → k is indeed a cubic form over k making the diagram (2)
commutative, and J0 a cubic Jordan algebra over k. □

44.14 Remark. In Prop. 44.13, we sometimes write J0 = J0(B) to indicate
dependence on B. By Exercises 39.40 and 44.29, passing from B to J0(B)
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is compatible with flat (resp. arbitrary) base change provided B is of the first
(resp. the second) kind. In our next result, we recall from Prop. 42.1 (a) that

TB
(
(uv)w

)
= TB

(
u(vw)

)
=: TB(uvw) (1)

for all u, v,w ∈ B.

44.15 Theorem (The external second Tits construction). Let B = (K, B, τ, p)
be an involutorial system of the r-th kind (r = 1, 2) over k and µ ∈ K an
admissible scalar for B. Writing J0 = H(B) as a cubic Jordan algebra over k
in the sense of 44.13, the direct sum

J := J0 ⊕ B j (1)

of J0 and B as k-modules, into which J0 naturally embeds through the initial
summand, carries the unique structure of a cubic Jordan algebra over k whose
identity element, adjoint and norm are uniquely determined by the formulas

1J = 1J0 = 1B = 1B + 0 · j, (2)

x♯ =
(
x♯0 − u

(
pτ(u)

))
+

(
µ̄τ(u♯)p−1 − x0u

)
j, (3)

NJ(x) = NJ0 (x0) + µNB(u) + µ̄NB(u) − TJ0

(
x0, u

(
pτ(u)

))
(4)

for all x = x0 + u j ∈ JR, x0 ∈ J0R, u ∈ BR and for all flat algebras R ∈ k-alg.
Moreover, with another element y = y0 + v j ∈ JR, y0 ∈ J0R, v ∈ BR, the
bilinearized adjoint, trace and quadratic trace of J have the form

x × y =
(
x0 × y0 − u

(
pτ(v)

)
− v

(
pτ(u)

))
(5)

+
(
µ̄τ(u × v)p−1 − x0v − y0u

)
j,

TJ(x, y) = TJ0 (x0, y0) + TB
(
upτ(v)

)
+ TB

(
upτ(v)

)
(6)

= TJ0 (x0, y0) + TB
(
upτ(v)

)
+ TB

(
vpτ(u)

)
,

TJ(x) = TJ0 (x0), (7)

S J(x) = S J0 (x0) − TJ0

(
upτ(u)

)
, (8)

S J(x, y) = S J0 (x0, y0) − TB
(
upτ(v)

)
− TB

(
upτ(v)

)
(9)

= S J0 (x0, y0) − TB
(
upτ(v)

)
− TB

(
vpτ(u)

)
.

Proof 1J = 1J0 is a unimodular element of J0 by Prop. 44.13, hence of J.
Since the polynomial ring k[T], T = (t0, t1, t2, . . . ) is a flat k-algebra, unique-
ness follows from Cor. 12.11. In order to prove existence, we note that (3)
defines a quadratic map x 7→ x♯ from J to J in the sense of 11.1. By Cor. 11.5,
therefore, it allows a natural R-quadratic extension, for any R ∈ k-alg irre-
spective of whether the right-hand side of (3) is compatible with this particular
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scalar extension, which can be guaranteed only if R is flat (44.14). Along sim-
ilar lines, the assignment u 7→ u(pτ(u)) gives a quadratic map Q : B → J0, by
means of which (4) may be rewritten as

NJ(x) = NJ0 (x0) +
(
tK ◦ (µNB)

)
(u) − TJ0

(
x0,Q(u)

)
. (10)

Hence (10) defines a cubic form NJ on J. Summing up, therefore, J together
with 1J , ♯,NJ is a cubic array over k, and it remains to show that it is, in fact,
a cubic norm structure. In order to do so, we abbreviate N := NB, T := TB,
S := S B, N0 := NJ0 , T0 := TJ0 , S 0 := S J0 . While (5) is obvious, (10) combines
with the gradient identity for J0 and B(+) to imply

NJ(x, y) = T0(x♯0, y0) + tK
(
µT (u♯, v)

)
(11)

− T0

(
x0, u

(
pτ(v)

)
+ v

(
pτ(u)

))
− T0

(
y0, u

(
pτ(u)

))
which yields (6)–(9) in the usual manner, see 33.2, 34.10, 43.5 for details.
It remains to verify the defining identities (33.4.1)–(33.4.3) of a cubic norm
structure in every scalar extension JR, R ∈ k-alg. By Cor. 12.11, it suffices to
do so for R = k[T], and since this is a flat k-algebra, it actually suffices to do
so over the base ring. The verification of the unit identity using (5) is left to the
reader. Turning to the gradient identity, let x = x0 + u j, y = y0 + v j, x0, y0 ∈ J0,
u, v ∈ B. Combining (3), (6) with (43.2.1), (43.5.2), we compute

T (x♯, y) = T0

(
x♯0 − u

(
pτ(u)

)
, y0

)
+ tK

(
T
([
µ̄τ(u♯)p−1 − x0u

]
pτ(v)

))
= T0(x♯0, y0) − T0

(
y0, u

(
pτ(u)

))
+ tK

(
T
(
µ̄τ(vu♯)

))
− tK

(
T
(
x0, u

[
pτ(v)

]))
= T0(x♯0, y0) + tK

(
µT (u♯, v)

)
− T0

(
y0, u

(
pτ(u)

))
− T0

(
x0, u

(
pτ(v)

)
+ v

(
pτ(u)

))
,

and comparing with (11), the gradient identity follows. Finally, in order to
derive the adjoint identity, we let x = x0 + u j, x0 ∈ J0, u ∈ B and write
x♯♯ = y0 + v j, for some y0 ∈ J0, v ∈ B. Then we must show

y0 = N(x)x0, v = N(x)u. (12)

From (3) we deduce, using (43.5.3),

y0 =
(
x♯0 − u

(
pτ(u)

))♯
−

(
µ̄τ(u)♯p−1 − x0u

)(
pτ

(
µ̄τ(u♯)p−1 − x0u

))
= x♯♯0 − x♯0 ×

(
u
(
pτ(u)

))
+

(
u
(
pτ(u)

))♯
−

(
µ̄τ(u)♯p−1 − x0u

)(
p
(
µp−1u♯ − τ(x0u)

))
= N0(x0)x0 − x♯0 ×

(
u
(
pτ(u)

))
+

(
τ(u)♯p♯

)
u♯ − µµ̄

(
τ(u)♯p−1)u♯
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+ µ̄
(
τ(u♯)p−1)(pτ(x0u)

)
+ µ(x0u)u♯ − (x0u)

(
pτ(x0u)

)
.

Since µ is admissible for B, we conclude µµ̄(τ(u)♯p−1)u♯ = (τ(u)♯p♯)u♯, while
(43.2.1) implies µ̄(τ(u♯)p−1)(pτ(x0u)) = µ̄τ((x0u)u♯) = µ̄N0(u)x0. Moreover,
(43.5.3) yields

(x0u)
(
pτ(x0u)

)
= (x0u)

((
pτ(u)

)
x0

)
= x0

(
u
(
pτ(u)

))
x0

= Ux0

(
u
(
pτ(u)

))
= T0

(
x0, u

(
pτ(u)

))
x0 − x♯0 ×

(
u
(
pτ(u)

))
.

Thus y0 = N0(x0) + µN0(u)x0 + µ̄N0(u) x0 − T0(x0, u(pτ(u)))x0 = N(x)x0, and
we have established the first part of (12). As to the second, again by (3),

v = µ̄τ
(
µ̄τ(u♯)p−1 − x0u

)♯p−1 −
(
x♯0 − u

(
pτ(u)

))(
µ̄τ(u)♯p−1 − x0u

)
= µ̄

(
µp−1u♯ − τ(x0u)

)♯p−1 − µ̄x♯0
(
τ(u)♯p−1)

+ x♯0(x0u) + µ̄
(
u
(
pτ(u)

))(
τ(u)♯p−1) − (

u
(
pτ(u)

))
(x0u)

= N0(x0)u + µ2µ̄u♯♯p−1♯p−1 − µµ̄
(
(p−1u♯) × τ(x0u)

)
p−1

+ µ̄τ(u♯x♯0)p−1 − µ̄x♯0
(
τ(u)♯p−1)

+ µ̄
(
u
(
pτ(u)

))(
τ(u♯)p−1) − u

((
pτ(u)

)
x0

)
u.

Here µ2µ̄u♯♯p−1♯p−1 = µN(u)u since µ is admissible for B, while linearizing
(ab)♯ = b♯a♯ gives (ab1)× (ab2) = (b1×b2)a♯, hence µµ̄((p−1u♯)×τ(x0u))p−1 =

((p−1u♯) × τ(x0u))p♯ = (p(p−1u♯)) × (pτ(x0u)) = u♯ × ((pτ(u))x0) by (43.5.3).
From (43.5.4) we conclude µ̄τ(u♯x♯0)p−1 = µ̄x♯0(τ(u)♯p−1), while (43.5.1) and
Prop. 34.12 yield

µ̄
(
u
(
pτ(u)

))(
τ(u)♯p−1)) = µ−1

(
u
(
pτ(u)

))(
τ(u)♯p♯

)
)

= µ−1((uτ(up)
)
)τ(p♯u♯)

= µ−1(uτ(up)
)
τ(up)♯ = µ−1N(u)N0(p)u = µ̄N(u) u.

Finally,

u((pτ(u))x0)u = T0(u(pτ(u)), x0)u − u♯ × ((pτ(u))x0)

= T0(x0, u(pτ(u)))u − u♯ × ((pτ(u))x0).

Summing up,

v = N0(x0)u + µN(u)u + µ̄N(u) u − T0

(
x0u

(
pτ(u)

))
u = N(x)u,

and also the second part of (12) has been established. □

44.16 The formal second Tits construction. Let B = (K, B, τ, p) be an invo-
lutorial system over k and µ ∈ K an admissible scalar for B.
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480 The two Tits constructions

(a) The cubic Jordan algebra constructed in Thm. 44.15 is said to arise from
B, µ by means of the second Tits construction. With J0 := H(B) we therefore
have J(B, µ) = J0 ⊕ B j as a direct sum of k-modules, and the natural map
from J0 to the initial summand of J(B, µ) is an embedding of cubic Jordan
algebras; we usually identify J0 ⊆ J(B, µ) accordingly. By 44.14, the second
Tits construction is compatible with flat base change, and even with arbitrary
base change if B is of the second kind or 2 ∈ k× since, in the latter case, J0 is
a direct summand of B as a k-module.

(b) By (44.15.5), (44.15.6), the pair (J0, B j) is a complementary cubic Jordan
subalgebra of J(B, µ) and

x0 . (u j) = (x0u) j

for all x0 ∈ J0 and all u ∈ B.

44.17 Corollary. Let (J, J0) be a balanced pair of cubic Jordan algebras over
k and w ∈ J an étale element relative to J0. With the notation of Thm. 44.12,
the map

φ : J(Bw, µw)
∼
−→ J

defined by

φ(x0 + u j) := x0 + u j1 +
(
µ−1

w pwτw(u)
)
j2 (1)

for x0 ∈ H(Bw, τw) = J0 and u ∈ Bw = JKw is an isomorphism of cubic Jordan
algebras satisfying

φ
((

(ξw − ξ̄w)−11B
)
j
)
= w. (2)

Proof This follows immediately from Theorems 44.12, 44.15. □

Slightly modifying the parameters entering into the second Tits construc-
tion, we can do better than that by finding an isomorphism that matches the
quantity j itself, rather than an appropriate scalar multiple, with the pre-assigned
étale element:

44.18 Corollary. In Cor. 44.17, put v := (ξw − ξ̄w)−11B and B◦w := Bw . v−1 in
the sense of Exc. 44.33. Then

B◦w = (Kw, Bw, τw, p◦w), p◦w = −∆
−1
w pw (1)

and

NBw (v)µw = ξw (2)
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is an admissible scalar for B◦w. Moreover, the isomorphism

ΦB◦w,v : J(B◦w, ξw)
∼
−→ J(Bw, µw) (3)

of Exc. 44.33 combines with the isomorphism φ of Cor. 44.17 to yield an iso-
morphism

φ◦ := φ ◦ ΦB◦w,v : J(B◦w, ξw)
∼
−→ J (4)

such φ◦( j) = w.

Proof We simplify notation by dropping the subscript w whenever there is no
danger of confusion. Since v−1 = (ξ − ξ̄)1B is a central element of B, we have
Bv−1
= B as cubic alternative K-algebras, while p◦ = p . v−1 = nK(ξ − ξ̄)−1 p =

−∆−1 p by (44.8.4). This proves (1). Next one checks

NB(v) = ∆−2(ξ − ξ̄)

and combines this with (44.8.2), (44.8.3), (44.9.2) to derive (2) by a straightfor-
ward computation. Now Exc. 44.33 produces the isomorphism (3). Summing
up, φ◦ : J(B◦, ξ)→ J is an isomorphism sending j to φ((ξ − ξ̄)−11B) = w. □

Our next aim will be to describe the most elementary connections between
the two Tits constructions. Our approach will be based on the equivalence of
categories k-cosp (of core-split involutorial systems) and k-pocu (of pointed
cubic alternative k-algebras) described in Exc. 44.31.

44.19 Theorem. Let (A, q) be a pointed cubic alternative algebra over k and

Cosp(A, q) =
(
B(A, q), 1k×k

)
the corresponding core-split involutorial k-system in the sense of Exc. 44.31.
A quantity µ = (λ, λ′) ∈ k × k is an admissible scalar for B(A, q) if and only if
λ ∈ k× and λ′ = λ−1NA(q). In this case, the map

ΦA,q : J
(
B(A.q), µ

) ∼
−→ J(A, λ) (1)

defined by

ΦA,q
(
(x0, x0) + (x1, x2) j

)
:= x0 + x1 j1 + (λ−1qx2) j2 (2)

for x0, x1, x2 ∈ A is an isomorphism of cubic Jordan algebras. Moreover,
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482 The two Tits constructions

for any homomorphism φ : (A, q) → (A′, q′) of pointed cubic alternative k-
algebras, the diagram

J
(
B(A, q), µ

)
ΦA,q

� //

J(V(Cosp(φ)),µ)
��

J(A, λ)

J(φ,λ)

��
J
(
B(A′, q′), µ

)
ΦA′ ,q′

� // J(A′, λ)

(3)

commutes, where V : k-cosp→ k-invsys is the forgetful functor.

Roughly speaking, therefore, every first Tits construction is a second Tits
construction.

Proof The very first assertion being obvious, we show that Φ := ΦA,q is an
isomorphism. By Exc. 34.18 (a), it suffices to verify that Φ preserves adjoints.
Putting x := (x0, x0) + (x1, x2) j, one checks that

Φ(x)♯ =
(
x♯0 − x1(qx2)

)
+

(
λ−1(qx2)♯ − x0x1

)
j1 +

(
x♯1 − λ

−1(qx2)x0
)
j2. (4)

On the other hand, setting x♯ = (y0, y0) + (y1, y2) j, a short computation yields

y0 = x♯0 − x1(qx2), y1 = λ
−1(qx2)♯ − x0x1, y2 = λq−1x♯1 − (x2q−1)(qx0).

Hence (2) implies

Φ(x♯) =
(
x♯0 − x1(qx2)

)
+

(
λ−1(qx2)♯ − x0x1

)
j1 +

(
x♯1 − λ

−1q
(
(x2q−1)(qx0

))
j2

=
(
x♯0 − x1(qx2)

)
+

(
λ−1(qx2)♯ − x0x1

)
j1 +

(
x♯1 − λ

−1(qx2)x0
)
j2,

which agrees with Φ(x)♯ by (4). It remains to prove that the diagram (3) com-
mutes, which is obvious since

J(V(Cosp(φ)), µ) = φ0 × (φ × φ), where φ0 : H(B(A, q))→ H(B(A′, q′))

is induced by φ × φ via restriction. □

44.20 Corollary. Let B = (K, B, τ, p) be an involutorial system of the second
kind over k.

(a) If we define ϱ : KK → K × K by ϱ(a ⊗ b) := (ab, āb) for all a, b ∈ K, then
(BK , ϱ) is a core-split involutorial system over K.

(b) Put (A, q) := Pocu(BK , ϱ) as a pointed cubic alternative K-algebra in the
sense of Exc. 44.31. Then B � A canonically as cubic alternative K-algebras,
and letting µ be any admissible scalar for B, there exists a canonical isomor-
phism

J(B, µ)K = J(BK , µK)
∼
−→ J(A, µ) � J(B, µ)
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of cubic Jordan algebras over K.

Proof (a) By Exc. 19.36 (a), ϱ is an isomorphism of K-algebras, forcing
(BK , ϱ) to be a core-split involutorial K-system.

(b) By Exc. 44.31 (c), we find a natural isomorphism

(σ, φ) : (BK , ϱ)
∼
−→ Cosp(A, q) =

(
B(A, q), 1K×K

)
of core-split involutorial systems over K. In particular, we have σ = ϱ, whence
ϱ(µK) = (µ, µ̄) is an admissible scalar for B(A, q). We have

BK = (KK , BK , τK , pK),

and with the projection π+ : K × K → K onto the first factor, Exc. 44.31 (b)
implies A = ϱ(BKK )+ � B since the composite map

K can
// KK ϱ

// K × K
π+
// K

is the identity. Now stability under arbitrary base change and functoriality of
the second Tits construction combine with Thm. 44.19 to yield isomorphisms

J(B, µ)K = J(BK , µK) � // J
(
B(A, q), (µ, µ̄)

)
ΦA,q

� // J(A, µ) � // J(B, µ),

as claimed. □

A simpler version of the preceding argument yields the following result.

44.21 Corollary. Let (B, ϱ) be a core-split involutorial system over k and
(A, q) = Pocu(B, ϱ) the corresponding pointed cubic alternative k-algebra.
For any admissible scalar µ for B, there is a natural isomorphism

J(B, µ)
∼
−→ J(A, µ+)

of cubic Jordan algebras over k, where ϱ(µ) = (µ+, µ−) ∈ k× × k×. □

44.22 Corollary. Let B be an involutorial system of the second kind over k and
µ an admissible scalar for B. Then the following conditions are equivalent.

(i) J(B, µ) is regular over k.
(ii) B is regular over K := Core(B).
(iii) H(B) is regular over k.

When the equivalent conditions of the corollary hold, we say B is regular
over k.
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Proof As an étale algebra, K is faithfully flat over k. Hence (i) holds if and
only if J(B, µ)K � J(B, µ) (by Cor. 44.20) is regular over K. By Cor. 42.14,
therefore, and since µ is invertible to begin with, (i) and (ii) are equivalent.
Since B(+) � H(B)K as cubic Jordan algebras over K by Exc. 44.29 (a), the
same argument shows that (ii) and (iii) are equivalent. □

44.23 Azumaya algebras with unitary involution. By an Azumaya algebra of
degree n ≥ 1 with unitary involution over k we mean a pair (A, τ) consisting of
an Azumaya algebra A of degree n over some quadratic étale k-algebra K and
a K/k-involution τ of A, i.e., an involution of A as a k-algebra that (stabilizes
the centre K � K1A of A and) induces the conjugation of K via restriction. In
this case, we also speak of an Azumaya algebra of degree n with involution of
the second kind. For example, let A be any Azumaya algebra of degree n over
k. Then A × Aop is an Azumaya algebra of degree n over K = k × k, the split
quadratic étale k-algebra, and the switch εA : A×Aop → A×Aop of 10.4 makes
(A × Aop, εA) an Azumaya algebra of degree n with unitary involution over k.

Most important in the present context is of course the case n = 3. Let
(A, τ) be an Azumaya algebra of degree 3 with unitary involution over k. Then
A := (K, A, τ), with K := Cent(A) the centre of A, is an associative involuto-
rial system in the sense of the associativity convention 44.5. By an admissible
scalar for (A, τ) we mean an admissible scalar for A, i.e., a pair (p, µ) consist-
ing of invertible elements p ∈ H(A, τ), µ ∈ K such that NA(p) = nK(µ).

44.24 Corollary. Let (A, τ) be an Azumaya algebra of degree 3 with unitary
involution over k and (p, µ) an admissible scalar for (A, τ). Then the second
Tits construction

J := J(A, τ, p, µ) := J(A, µ), A = (K, A, τ, p), K := Cent(A)

is an Albert algebra over k such that JK � J(A, µ).

Proof By Corollaries 44.20 and 42.15, JK � J(A, µ) is an Albert algebra over
K. Since K is a faithfully flat k-algebra, Cor. 39.32 therefore implies that J is
an Albert algebra over k. □

We conclude this section by describing certain isotopes of second Tits con-
structions in terms of appropriate isotopes of their co-ordinatizing involutorial
systems. The kind of isotopy we have in mind may be introduced as follows.

44.25 Isotopes of involutorial systems. Let B = (K, B, τ, p) be an involutorial
system over k and q ∈ H(B)×. Prop. 43.7 implies that

Bq := (K, Bq, τq, pq) (1)
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is again an involutorial k-system, called the right q-isotope of B. Recall

τq(x) = q−1τ(qx), pq = pq (x ∈ B) (2)

from (43.7.2) and H(Bq) = H(B)q = q−1H(B) as well as

(Bq)q′ = Bqq′ (3)

for all q′ ∈ H(Bq)× from (43.7.4), (43.7.5).
We also define the left q-isotope of B

qB := (K, qB, qτ, qp) := Bq♯ , (4)

where

qB = Bq−1
, qτ(u) = qτ(q−1u), qp = pq♯ (x ∈ B), (5)

and have H(qB) = H(B)q−1 = qH(B) as well as

q′ (qB) = q′qB (6)

for all q′ ∈ H(qB)×.

The following result was stated as Prop. 32 in the survey [220]. However,
that proposition is not correct as stated and has to be replaced by the version
presented here.

44.26 Theorem. Let B = (K, B, τ, p) be an involutorial system over k and
q ∈ H(B)×. If µ is an admissible scalar for B, then NB(q)µ is an admissible
scalar for qB and the map

Φ : J(B, µ)(q) ∼
−→ J

(q
B,NB(q)µ

)
defined by

Φ(x0 + u j) := qx0 + u j (x0 ∈ H(B), u ∈ B) (1)

is an isomorphism of cubic Jordan algebras.

Proof The first part follows from (44.25.5). Since Φ preserves identity ele-
ments, the second part will follow once we have shown that Φ preserves ad-
joints (Exc. 34.18). Setting J := J(B, µ), we first compute the adjoint of J(q).
For x0 ∈ H(B), u ∈ B we obtain Uqx0 = qx0q, while (33.8.15), (44.15.6),
(44.15.5) yield Uq(u j) = T (q, u j)q − q♯ × (u j) = (q♯u) j. Summing up, we
therefore obtain

Uq(x0 + u j) = qx0q + (q♯u) j. (2)
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Replacing q by q−1, writing N0 for the norm of H(B) and invoking (33.11.2),
(44.26.3), we conclude

(x0 + u j)(♯,q) = N0(q)Uq−1 (x0 + u j)♯

= N0(q)Uq−1

([
x♯0 − u

(
pτ(u)

)]
+

[
µ̄τ(u♯)p−1 − x0u

]
j
)

=
[
N0(q)q−1

(
x♯0 − u

(
pτ(u)

))
q−1

]
+

[
N0(q)µ̄q−1♯(τ(u♯)p−1 − x0u

)]
j.

Since N0(q)1B = qq♯ and

τ(v)p−1 = τ(p−1v) (v ∈ B) (3)

by (43.5.1), we thus obtain

(x0 + u j)(♯,q) =
[
q−1

(
x♯0 − u

(
pτ(u)

))
q♯

]
+

[
µ̄q

(
τ(p−1u♯) − x0u

)]
j,

hence

Φ
(
(x0 + u j)(♯,q)) = [

x♯0q♯ −
(
u
(
pτ(u)

))
q♯

]
+

[
µ̄qτ(p−1u♯) − q(x0u)

]
j. (4)

On the other hand, we have to compute the adjoint of Φ(x0 + u j) in J′ =
J(qB,N0(q)µ). Writing x · y for the product in qB, we obtain

Φ(x0 + u j)♯ = (qx0 + u j)♯ = a + b j, (5)

where a ∈ H(qB), b ∈ B by (44.15.3) and (3) (for qτ in place of τ) are deter-
mined by

a = (qx0)♯ − u ·
(
(pq♯) · qτ(u)

)
, (6)

b = N0(q)µ̄ qτ
(
(pq♯)−1 · u♯

)
− (qx0) · u. (7)

We have (qx0)♯ = x♯0q♯, and (43.5.3) implies

(pq♯) · qτ(u) =
[
(pq♯)q

][
q−1(qτ(q−1u)

)]
= N0(q)pτ(q−1u)

= N0(q)
(
pτ(u)

)
q−1,

hence

u ·
(
(pq♯) · qτ(u)

)
= N0(q)(uq)

(
q−1(pτ(u)

)
q−1

)
= N0(q)

(
u
(
pτ(u)

))
q−1

=
(
u
(
pτ(u)

))
q♯.

By (6), therefore, a agrees with the first term on the right of (4). Similarly,
(qx0) · u = (qx0q)(q−1u) = q(x0u) and

N0(q) qτ
(
(pq♯)−1 · u♯

)
= qτ

(
(qp−1q)(q−1u♯

)
= qτ

(
q(p−1u♯)

)
= qτ(p−1u♯),
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forcing the factor of j on the right of (4) by (7) to agree with b. Thus Φ((x0 +

u j)(♯,q)) = Φ(x0 + u j)♯, as desired. □

44.27 Corollary (Petersson-Racine [226, Prop. 3.9]). Let (K, B, τ) be an ass-
ociative involutorial system over k and q ∈ H(B, τ)×. If (p, µ) is an admissible
scalar for (K, B, τ), then (pq♯,NB(q)µ) is an admissible scalar for (K, B, qτ),
with qτ(u) = qτ(u)q−1 for u ∈ B, and the assignment

x0 + u j 7−→ qx0 + u j

defines an isomorphism

J
(
(K, B, τ), p, µ

)(q) ∼
−→ J

(
(K, B, qτ), pq♯,NB(q)µ

)
of cubic Jordan algebras over k. □

44.28 Corollary. Let B = (K, B, τ, p) be an involutorial system over k and
µ an admissible scalar for B. Then the isotope J(B, µ)(p) can be realized by
the second Tits construction in such a way that the isotopy involution of the
corresponding involutorial system is, in fact, an ordinary involution.

Proof pp♯ = NB(p)1B. □

Exercises
44.29. Let K be a quadratic étale k-algebra and write ι = ιK , a 7→ ā, for the conjugation
of K. Let M be a K-module and τ : M → M an ι-semi-linear map of order 2: τ2 = 1M .

(a) Prove with the k-submodule

M0 := H(M, τ) := {x ∈ M | τ(x) = x}

of τ-symmetric elements in M that the K-linear map Φ : M0 ⊗ K → M induced by the
inclusion M0 ↪→ M is bijective and makes the diagram

M0 ⊗ K
1M0⊗ι

//

Φ �

��

M0 ⊗ K

� Φ

��
M

τ
// M

(1)

commutative. (Hint: If k is a local ring, there is a basis 1K , θ of K as a k-module such
that tK(θ) = 1 and nK(1 − 2θ) = −(1 − 4nK(θ)) ∈ k×.)

(b) Deduce from (a) that the passage from (M, τ) to H(M, τ) is compatible with base
change in the following sense: for any R ∈ k-alg, the usual identifications yield MR :=
(k M)R = MRK = MKR as modules over the quadratic étale R-algebra KR (cf. 12.27) and
τR : MR → MR is an ιR(= ιKR )-semi-linear map of order 2. Moreover, the k-linear map
x 7→ xR from M to MR induces a k-linear map H(M, τ) → H(MR, τR) via restriction,
which in turn induces an R-linear isomorphism

H(M, τ)R
∼
−→ H(MR, τR). (2)
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(Hint: Show first that x0 7→ x0K defines a k-linear isomorphism from M0 onto M0 ⊗

1K = H(M0 ⊗ K, 1M0 ⊗ ι).) Summing up, we thus obtain an identification H(M, τ)R =
H(MR, τR) such that the inclusion

H(M, τ)R = H(MR, τR) ↪→ MR

is the R-linear extension of the inclusion H(M, τ) ↪→ M. In particular, the k-submodule
H(M, τ) ⊆ k M is pure in the sense that the inclusion H(M, τ) ↪→ k M stays injective
under all scalar extensions.

44.30. Let B = (K, B, τ, p) be an involutorial system over k and ϱ : K
∼
→ K′ an isomor-

phism of k-algebras. View ϱK := K′ as a K-algebra by means of ϱ and ϱB := BϱK as a
cubic alternative ϱK-algebra (with norm NϱB = NB ⊗K

ϱK) in the natural way to show
that the canonical map

canB := canB, ϱK : B −→ ϱB, u 7−→ ϱu := uϱK ,

is bijective. Conclude that the map ϱτ : ϱB → ϱB (well) defined by ϱτ(ϱu) = ϱ(τ(u)) for
all u ∈ B makes

ϱB := (ϱK, ϱB, ϱτ, ϱp)

an involutorial system over k such that

(ϱ, canB) : B
∼
−→ ϱB

is an isomorphism of involutorial k-systems.

44.31. Pointed cubic alternative algebras and core splitness. We define a pointed cubic
alternative k-algebra as a pair (A, q) consisting of a cubic alternative algebra A over k
and an invertible element q ∈ A, called the base point of (A, q). A homomorphism
φ : (A, q)→ (A′, q′) of pointed cubic alternative k-algebras is a homomorphism φ : A→
A′ of cubic alternative algebras preserving base points: φ(q) = q′. In this way, we obtain
the category of pointed cubic alternative algebras over k, denoted by k-pocu. If (A, q) is
a pointed cubic alternative algebra over k, then (A, q)R := (AR, qR) is one over R, for all
R ∈ k-alg, called the base change or scalar extension of (A, q) from k to R.

(a) Let (A, q) be a pointed cubic alternative algebra over k and put

Cosp(A, q) :=
(
B(A, q), 1K

)
, B(A, q) = (K, B, εA, p), (1)

where K := k × k is the split quadratic étale k-algebra, B := A × (Aq)op, viewed canoni-
cally as a cubic alternative K-algebra with norm NB := NA × NA,

εA : B −→ B, (u1, u2) 7−→ (u2, u1), (2)

is the switch and p := (q, q). Then show that Cosp(A, q) is a core-split involutorial
system over k. Moreover, every morphism φ : (A, q)→ (A′, q′) in k-pocu gives rise to a
morphism

Cosp(φ) := (1K , φ × φ) : Cosp(A, q)→ Cosp(A′, q′) (3)

in k-cosp.

(b) Conversely, let (B, ϱ) be a core-split involutorial system over k and write B =
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(K, B, τ, p). Write π± : k × k → k for the canonical projections, view k as a K-algebra
ϱk± by means of the homomorphism π± ◦ ϱ : K → k and show that

Pocu(B, ϱ) := (ϱB+, ϱp+), (4)

where ϱB+ := B ⊗K
ϱk+ and ϱp+ is the canonical image of p ∈ B in ϱB+, is a pointed

cubic alternative k-algebra. Show further, for any morphism (σ, φ) : (B, ϱ) → (B′, ϱ′)
in k-cosp, B′ = (K′, B′, τ′, p′), that 1k : ϱk+ → ϱ′k+ is σ-semi-linear and

Pocu(σ, φ) := φ ⊗σ 1k : (ϱB+, ϱp+) −→ (ϱ
′

B′+,
ϱ′p′+) (5)

is a homomorphism of pointed cubic alternative k-algebras.

(c) Conclude that the correspondences set up in (a), (b) determine an equivalence of
categories between k-pocu and k-cosp.

44.32. Étale elements in second Tits constructions. Let B = (K, B, τ, p) be an invo-
lutorial system of the second kind over k and µ an admissible scalar for B. Write
J := J(B, µ) for the corresponding second Tits construction, put J0 := H(B) ⊆ J
and assume (J, J0) is a balanced pair of cubic Jordan algebras.

(a) Show for u ∈ B that the following conditions are equivalent.

(i) w := u j ∈ J is étale relative to J0.
(ii) We have u ∈ B× and

tK
(
µNB(u)

)2
− 4nK

(
µNB(u)

)
∈ k×. (1)

(iii) We have u ∈ B× and K = k[µNB(u)].

In this case, using the notation of 44.8, Kw � K under the k-isomorphism matching ξ
with µNB(u).

(b) Conclude that if j ∈ J is étale relative to J0, then J is generated by J0 and j as a
Jordan k-algebra.

44.33. Moving the base point. In an involutorial system B = (K, B, τ, p) over k, the
quantity p is sometimes called the base point. Prove:

(a) (cf. Petersson-Racine [226, Prop. 3.7]) If w ∈ B is invertible, then

B .w := (K, Bw, τ, p .w), p .w := w−1(pτ(w−1)
)
∈ Bw (1)

is an involutorial system over k. Moreover, a quantity µ ∈ K is an admissible scalar for
B .w if and only if NB(w)µ is an admissible scalar for B, and in this case,

ΦB,w : J
(
B,NB(w)µ

) ∼
−→ J(B .w, µ)

defined by

ΦB,w(x0 + u j) := x0 + (uw) j, (2)

for x0 ∈ H(B) = H(B .w) and u ∈ B, is an isomorphism of cubic Jordan algebras over
k.

(b) Let v,w ∈ B×. Then (B . v) .w = B . (vw). Moreover, if µ ∈ K is an admissible
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scalar for B . (vw), then NB(w)µ (resp. NB(vw)µ) is an admissible scalar for B . v (resp.
B) and the diagram

J
(
B,NB(vw)µ

)
ΦB,vw

//

ΦB,v ((

J
(
B . (vw), µ

)

J
(
B . v,NB(w)µ

) ΦB . v,w

77

(3)

commutes.

(c) (cf. Knus-Merkurjev-Rost-Tignol [160, (39.2)(2)]) To every admissible scalar µ
for B, there exist a w ∈ B×, an admissible scalar µ′ for B .w, and an isomorphism
J(B .w, µ′) � J(B, µ) extending the identity of H(B) = H(B .w) such that nK(µ′) =
NBw (p .w) = 1. More precisely, we have µ′ = µ̄µ−1.

Remark. Over fields, the condition nK(µ′) = 1 is equivalent to µ′ = µ̄µ−1 for some
µ ∈ K× provided B is of the second kind (Hilbert’s Theorem 90). The next exercise will
show that this theorem does not hold for quadratic algebras over commutative rings,
although the example provided is fppf but not étale, compare 25.19(ix).

44.34. Let C = Z[i] = Z ⊕ Zi = Cay(Z,−1) be the quadratic Z-algebra of Gaussian
integers as defined in 3.16. Note that the norm of C is induced via restriction by the
norm of the two-dimensional composition algebra C = Cay(R,−1) over the reals, so
nC(z) = |z|2 for all z ∈ C. In particular, nC(i) = 1. But show that there is no invertible
element z ∈ C satisfying i = z̄z−1.

44.35. Core-split Azumaya algebras with unitary involution. Let (A, τ) be an Azumaya
algebra of degree n with unitary involution over k and suppose K := Cent(A) is split
quadratic étale. Show that there is an Azumaya algebra B of degree n over k such that
(A, τ) � (B × Bop, εB). Conclude that, if K is arbitrary (quadratic étale), then (A, τ)K =
(AK , τK) � (A × Aop, εA).

44.36. Let B = (k, B, τ, p) be an involutorial system of the first kind over k and µ an
admissible scalar for B. Show that the cubic Jordan algebra J(B, µ) is regular if and
only if B is regular and 2 ∈ k×.

44.37. Let B = (K, B, τ, p) be an involutorial system over k. Show for any admissible
scalar µ for B that, up to isotopy of the second Tits construction J := J(B, µ), we may
assume p = 1B. Moreover, if the norm of B is surjective as a set map from B to K,
then, up to isomorphism (resp. isotopy) of J, we may assume µ = 1K (resp, p = 1B and
µ = 1K).

44.38. Assume 2 ∈ k×, let C be a composition algebra of rank 2r (r = 1, 2, 4) over
k and B ⊆ C a composition subalgebra of rank r, so that we have the decomposition
C = B ⊕ B⊥ as a direct sum of k-modules.

(a) Show that the map τB : C → C defined by

τB(v + w) := v̄ + w (v ∈ B w ∈ B⊥) (1)

is an involution of C such that

H(C, τB) = k1B ⊕ B⊥. (2)
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(b) Conclude that Ĉ := ĈB := (k, Ĉ, τ̂B, 1Ĉ) is an involutorial system of the first kind
over k, where Ĉ = k×C is the cubic alternative k-algebra of Exc. 34.24 (c) and τ̂B : Ĉ →
Ĉ is the unital extension of τ:

τ̂B
(
(α, x)

)
:=

(
α, τB(x)

)
(α ∈ k, x ∈ C).

(c) Show that the elementary idempotent

e1 := (1, 0) ∈ J0 := H(Ĉ) ⊆ J := J(Ĉ, 1) (3)

can be extended to an elementary frame Ω = (e1, e2, e3) of J0 if and only if there is an
identification

C = Cay(B, 1) = B ⊕ B j0 (4)

by means of the Cayley-Dickson construction such that

e2 :=
(
0,

1
2

(1B + j0)
)
, e3 =

(
0,

1
2

(1B − j0)
)
. (5)

In this case, Ω can be extended to a strong co-ordinate system of J and

J � Her3(B) (6)

under an isomorphism matching Ω with the diagonal frame of Her3(B). Finally, for any
diagonal matrix Γ ∈ GL3(k), there is a q ∈ H(Ĉ) of norm 1 such that

Her3(B,Γ) � J(qB, 1), B := ĈB. (7)

44.39. Consider the involutorial system

Ĉ := (k, Ĉ, ι̂C , 1)

of the first kind over k, where C is a composition algebra of rank r = 1, 2, 4, 8 over k,
Ĉ := k × C is the cubic alternative k-algebra of Exc. 34.24 (b), and ι̂C : Ĉ → Ĉ is the
involution defined by

ι̂C
(
(α, v)

)
:= (α, v̄) (α ∈ k, v ∈ C). (1)

We wish to study the second Tits construction

J := J(Ĉ, 1) = J0 ⊕ Ĉ j, J0 := H(Ĉ) = H(Ĉ, ι̂C). (2)

(a) Assume 2 ∈ k× and show that Ω := (e1, e2, e3) with

e1 := (1, 0), e2 :=
1
2

(e0 + e1 j), e3 :=
1
2

(e0 − e1 j), e0 := (0, 1C) (3)

is an elementary frame of J such that J1(e3) = {0}. Conclude that

J � k × J(M0, q0, e0), (4)

where (M0, q0, e0) is a pointed quadratic module having M0 = J0(e3) as k-modules and
q0 � h ⊥ (−2nC) as quadratic forms.

(b) Assume 2 = 0 in k and r > 1. Then show that J has rank 2r + 1 as a finitely
generated projective k-module. Moreover,
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(i) The assignment
v 7−→ ev :=

(
1, nC(v)1C

)
+

(
nC(v), v

)
j

defines an isomorphism of k-schemes from Ca to Elid(J).
(ii) J does not contain elementary frames.
(iii) If k is reduced, then

Nil(J) = {(0, α1C) + (α, v) j | α ∈ k, v ∈ C};

in particular, Nil(J) is finitely generated projective of rank r + 1 as a k-module.

Remark. By Exc. 19.39, the examples presented in Exercises 44.38, 44.39 (a) exhaust
the involutions (of the first kind) living on a composition algebra of rank r = 1, 2, 4, 8
and their cubic companions over any commutative ring in which 2 is a unit. Also, by
Exc. 44.37, up to isotopy of the second Tits constructions arising from involutorial
systems (k, Ĉ, τ̂, p) and appropriate admissible scalars µ, it may always be assumed that
p = 1Ĉ , µ = 1.

44.40. Let K be a quadratic étale k-algebra, C a composition algebra of rank r over K
and τ a k-involution of C that is an ιK-semi-linear homomorphism from C to Cop in the
sense of 16.17.

(a) Show that there exists a composition algebra C0 over k such that (C, τ) and (C0 ⊗

K, ιC0 ⊗ ιK) are isomorphic as k-algebras with involution.

(b) Show that B := (K, Ĉ, τ̂, 1Ĉ), with Ĉ = K × C as a cubic alternative K-algebra
in the sense of Exc. 34.24 (b) and τ̂((a, v)) = (ιK(a), τ(v)) for a ∈ K and v ∈ C, is an
involutorial system of the second kind over k. Moreover, J(B, µ), for any admissible
scalar µ for B, is a Freudenthal algebra of rank 3(r + 1) over k.

(c) Does there exist a diagonal matrix Γ ∈ GL3(k) such that J(B, µ) � Her3(C,Γ)?2

44.41. The opposite of an involutorial system. Show that, if B = (K, B, τ, p) is an invo-
lutorial system over k, then so is

Bop := (K, Bop, τ, p−1),

called the opposite of B. Moreover, if µ is an admissible scalar for B, then µ−1 is an
admissible scalar for Bop and

Φ : J(B, µ)
∼
−→ J(Bop, µ−1)

defined by

Φ(x0 + u j) := x0 + τ(up) j, (1)

for x0 ∈ H(B) = H(Bop) and u ∈ B, is an isomorphism of cubic Jordan algebras over k.

45 Freudenthal pairs and the search for étale elements

Our approach to the second Tits construction of cubic Jordan algebras, relying
as it does on the notion of an étale element, would be entirely useless were we
2 The answer to this question is not known, not even for µ = 1K .
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not able to prove that, under suitable hypotheses, étale elements do indeed ex-
ist. This will be accomplished in the present section, with suitable hypotheses
pertaining to certain properties of LG rings (11.20). We begin by introducing
the relevant terminology.

45.1 Freudenthal pairs. By a Freudenthal pair of rank 3n (n ∈ Z, n > 0) over
k we mean an n-balanced pair (J, J0) of cubic Jordan k-algebras such that J
is a Freudenthal algebra. More explicitly, therefore, J is a Freudenthal algebra
of rank 3n containing J0 as a regular cubic Jordan subalgebra of rank n. We
simply speak of a Freudenthal pair if the rank does not require specifications.
Freudenthal pairs will be viewed as a full subcategory, denoted by k-frapa, of
k-bapa, the category of balanced pairs of cubic Jordan k-algebras. Freudenthal
pairs of rank 27 are also called Albert pairs. In the sequel, the base change of
Freudenthal pairs plays an important role: if (J, J0) is a Freudenthal pair over
k, then (J, J0)R := (JR, J0R) is one over R, for any R ∈ k-alg. It is also useful to
observe that two Freudenthal pairs (J, J0) and (J, J′0) with the same Freudenthal
algebra J “on top” are isomorphic if and only if J0 and J′0 are conjugate under
the automorphism group of J.

Finally, by abuse of language, the Freudenthal pair (J, J0) is said to admit
étale (resp. Kummer) elements if étale (resp. Kummer) elements of J relative
to J0 exist. Note by 42.12 (c) and Cor. 42.13 that a Freudenthal pair admits
Kummer elements if and only if it arises from the first Tits construction, i.e.,
it is isomorphic to (J(A, µ), A(+)), for some regular cubic alternative algebra A
of constant rank and some invertible element µ in the base ring. Similarly, if
a Freudenthal pair admits étale elements, then by Cor. 44.17 it arises from the
second Tits construction, i.e., there exist a regular involutorial system B of the
second kind over k as well as an admissible scalar µ for B making it isomor-
phic to (J(B, µ),H(B)). But note that, conversely, a second Tits construction
of the second kind need not admit étale elements, see Remark 45.5 below for
an example.

45.2 Proposition. Let A be a regular cubic alternative k-algebra of constant
rank and µ ∈ k an invertible scalar. Viewing A(+) ⊆ J := J(A, µ) as a regular
cubic Jordan subalgebra via 42.12 (a), and letting x1, x2 ∈ A, the following
conditions are equivalent.

(i) x := x1 j1 + x2 j2 is an étale element of J relative A(+).

(ii) x1, x2 ∈ A× and NA(x1) − µNA(x2) ∈ k×.

Proof By (42.11.3) and (42.11.4), x♯ = −µx1x2 + µx♯2 j1 + x♯1 j2 and NJ(x) =
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µNA(x1) + µ2NA(x2). In the notation of 44.8, this implies Q(x) = µx1x2, hence

NJ(x)2 − 4NJ0

(
Q(x)

)
= µ2NA(x1)2 + 2µ3NA(x1x2) + µ4NA(x2)2 − 4µ3NA(x1x2)

= µ2(NA(x1) − µNA(x2)
)2
.

The assertion follows from the definition of an étale element. □

Note by Exercise 45.22 that (J(A, µ), A(+)) , for any regular cubic alternative
k-algebra A of constant rank and any µ ∈ k×, will always be a Freudenthal pair
over k.

45.3 Corollary. Let A be a regular cubic alternative k-algebra of constant
rank and µ ∈ k×. If the Freudenthal pair (J(A, µ), A(+)) admits étale elements,
then for every maximal ideal m ⊆ k the field k/m is not F2.

Proof Otherwise, F2 would belong to k-alg, so in order to arrive at a con-
tradiction, we may change scalars and assume k = F2. But then NA(x1) −
µNA(x2) = 0 for all x1, x2 ∈ A×, violating condition (ii) of Prop. 45.2. □

45.4 Corollary. Let A be a regular cubic alternative algebra over a field F
and µ ∈ F×. Assume the norm of A is surjective as a set map from A to F. The
Freudenthal pair (J(A, µ), A(+)) admits étale elements if and only if F � F2.

Proof Necessity follows from Cor. 45.3. Conversely, assume F contains more
than two elements. By hypothesis, some x1 ∈ A× satisfies NA(x1) , µ. Hence
x1 j1 + j2 by Prop. 45.2 is an étale element of J(A, µ) relative to A(+). □

45.5 Remark. (a) Let A be a regular cubic alternative algebra over F2. Then
(J(A, 1), A(+)), the corresponding Freudenthal pair, by Cor. 45.3 does not ad-
mit étale elements despite being a second Tits construction arising from an
appropriate core-split involutorial system (Thm. 44.19).

(b) In Cor. 45.4, the hypothesis on the norm of A is fulfilled if dimF(A) > 1
and F is finite (Exc. 42.21(a)).

Our next aim will be to show that Freudenthal pairs over an algebraically
closed field always admit Kummer elements. For this we need a preparation.

45.6 Lemma. Let C be a composition algebra over a field F and K ⊆ C a
quadratic étale subalgebra. Then (J, J0), where

J := Her3(C), J0 :=
∑

Feii + K⊥[23] (1)

and K⊥ refers to the orthogonal complement of K relative to the polarized
norm of C, is a Freudenthal pair over F. Moreover, this Freudenthal pair ad-
mits étale elements provided K is a field or F contains more than two elements.
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Proof Put r := dimF(C). Then J is a Freudenthal algebra of dimension 3(r +
1), while J0 ⊆ J is a subspace of dimension r + 1. But J0 is also a regular
cubic Jordan subalgebra since (36.4.4) shows that it is stable under the adjoint
map. Summing up, therefore, (J, J0) is a Freudenthal pair, and we have J⊥0 =
K[23]+C[31]+C[12] by (36.4.7). Thanks to our hypotheses on K and F, there
exists an invertible element a ∈ C of trace 1 that generates K as an F-algebra.
Put w := a[23] + 1C[31] + 1C[12] ∈ J⊥0 . Then (36.4.5) and (36.4.4) imply

NJ(w) = tK(a) = 1,

w♯ = − nK(a)e11 − e22 − e33 + 1C[23] + ā[31] + ā[12].

In the notation of 44.8, therefore, Q(w) = nK(a)e11+e22+e33 is invertible in J0

and NJ(w)2 − 4NJ0 (Q(w)) = tK(a)2 − 4nK(a) ∈ F× by Prop. 19.8. Thus w ∈ J
is étale relative to J0. □

45.7 Proposition. Let C be a composition algebra of dimension r ≥ 4 over a
field F all of whose regular binary quadratic spaces are universal. Put J :=
Her3(C) and let J0 ⊆ J be a regular cubic Jordan subalgebra of dimension
r + 1. Then the following statements hold.

(a) C is split.
(b) If J0 is not simple, then up to isomorphism of (J, J0) there exists a quad-

ratic étale subalgebra K ⊆ C such that

J0 =
∑

Feii + K⊥[23]. (1)

Proof (a) By Thm. 19.16, there exists a quadratic étale subalgebra K ⊆ C
and, for some µ ∈ F×, the inclusion K ↪→ C extends to an embedding from the
quaternion algebra B := Cay(K, µ) to C. By hypothesis, µ is a norm of K. Now
Cor. 23.6 shows that the norm of B is isotropic. Hence so is the norm of C, and
C is split (Cor. 22.18).

(b) Since J0 is not simple, we deduce from Thm. 39.6 that J0 � F(+) ×

J(M0, q0, e0) for some regular pointed quadratic module (M0, q0, e0) over F. By
Exercises 40.15 (f) and 41.31, the automorphism group of J acts transitively
on the elementary idempotents of J. Up to isomorphism of (J, J0), we may
therefore assume

J0 = Fe11 ⊕ J(M0, q0, e0),

where M0 ⊆ J0(e11) = Fe22 + Fe33 + C[23] is a subspace of dimension r,
e0 = e22 + e33, and q0 is the restriction of S J to M0 (Cor. 37.3). By (a) and
(36.4.9), the quadratic space (J0(e11), S J |J0(e11)) is hyperbolic of dimension r+2
containing (M0, q0) as an r-dimensional quadratic subspace. Since r > 1

2 (r+2),
this subspace is therefore isotropic. By hypothesis, it is also regular, and we



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

496 The two Tits constructions

conclude from Prop. 39.5 that J(M0, q0, e0) contains an elementary idempotent.
Consulting Exc. 41.31 again, we may therefore assume up to isomorphism
of (J, J0) that J0 =

∑
Feii ⊕ U1[23], for some regular subspace U1 ⊆ C of

dimension r − 2. Thus C = U1 ⊕U⊥1 , and U⊥1 , being a regular binary quadratic
subspace of C, by hypothesis contains an element u1 of norm 1. One checks
that the assignment∑

(ξieii + vi[ jl]) 7−→
∑

ξieii + (u−1
1 v1)[23] + (v2u−1

1 )[31] + (u1v3u1)[12]

defines an automorphism of J (cf. Exc. 5.18), so up to isomorphism of (J, J0)
we may assume 1C ∈ U⊥1 . Hence K := U⊥1 ⊆ C is a quadratic étale subalgebra,
and we have established (1). □

45.8 Corollary. Every Freudenthal pair over an algebraically closed field ad-
mits Kummer elements.

Proof Let F be an algebraically closed field and (J, J0) a Freudenthal pair
over F. By Thm. 42.16, it suffices to show that J contains an invertible element
l ∈ J⊥0 having l♯ ∈ J⊥0 as well. In order to do so, we first note by Cor. 39.11 that
the dimension of J0 is one of the numbers n = 1, 2, 3, 5, 9. The corresponding
cases will now be discussed separately, bearing in mind the structure of simple
cubic Jordan algebras over algebraically closed fields as described in Cor. 39.7.

Suppose first that n = 1. Then char(F) , 3 and J = E(+), where E :=
F×F×F is the split cubic étale F-algebra. Hence J0 = F ·1E and J⊥0 = Ker(TE).
Let ζ ∈ F be a cube root of 1. Then one checks that l := (1, ζ, ζ2) is a Kummer
element of J relative to J0.

Suppose next that n = 2. Then char(F) , 2, J = Her3(F) and J0 � (k×k)(+)
cub,

where (k × k)cub is defined as in 34.15. By Cor. 39.3 and Exc. 40.15 (f), up to
isomorphism of (J.J0) we may assume J0 = Fe11 + F(e22 + e33). This implies
J⊥0 = F(e22 − e33) +

∑
F[ jl]. Letting β1 ∈ F satisfy β2

1 = −1, one checks using
the formulas from 36.4 that l = e22 − e33 + β1[23] − β1[31] + 1[12] ∈ J⊥0 is a
Kummer element of J relative to J0.

Finally suppose that n = 3, 5 or 9. Let us first assume that J0 is not simple,
which holds automatically for n , 9. Up to isomorphism of (J, J0), either for
trivial reasons or by Prop. 45.7, there exists a quadratic étale subalgebra K ⊆ C
such that J0 =

∑
Feii + K⊥[23], and F being algebraically closed, K is split.

Let c ∈ K be an elementary idempotent. The quantity l :=
∑

c[ jl] belongs
to J⊥0 = K[23] + C[31] + C[12], has norm NJ(l) = tC(c) = 1 and adjoint
l♯ =

∑
c̄[ jl] ∈ J⊥0 , hence is a Kummer element of J relative to J0.

We are left with the case that J0 is simple, i.e., isomorphic to Mat3(F)(+).
Then J is the split Albert algebra over F and by (45.18.1) combined with
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Prop. 40.6, we have an isomorphism

(J, J0) �
(
Her3

(
Zor(F)

)
,Her3(F × F)

)
,

so the assertion follows from Exc. 42.23. □

45.9 Residually big rings. We now introduce a terminology that is not stan-
dard but turns out to be convenient for our subsequent applications. We will say
that a commutative ring k is residually big if the residue fields k/m � F2,F4 for
all maximal idealsm ⊆ k. We say k is residually small otherwise. For example,
any commutative ring containing 1/2 or containing a field with more than four
elements is residually big.

45.10 Theorem. For any LG ring k, the following conditions are equivalent.

(i) k is residually big.
(ii) All Freudenthal pairs over k admit étale elements.

Proof (ii) ⇒ (i). If k were residually small, we would find a maximal ideal
m ⊆ k having k/m = F2 or k/m = F4. In the former (resp. the latter) case,
Cor. 45.3 (resp. Exc. 45.15 (d)(ii)) would lead to a contradiction.

(i)⇒ (ii). Let (J, J0) be an arbitrary Freudenthal pair over k and write n for
the rank of J0 as a k-module. Since k is an LG ring, J⊥0 is a free k-module of
rank 2n (11.24). In the notation of 44.8, therefore, the scalar polynomial law

f := fJ,J0 : J⊥0 −→ k, u 7−→ NJ0

(
Q(u)

)(
NJ(u)2 − 4NJ0

(
Q(u)

))
may be viewed as a polynomial f ∈ k[t1, . . . , t2n] that by (44.8.6) represents an
invertible element in km, m ⊆ k any maximal ideal, if and only if the Freuden-
thal pair (J, J0)(m) over k/m admits étale elements. By the definition of an LG
ring, we may thus assume from now on that F := k is a field having character-
istic 3 or containing more than four elements.

Let (J̄, J̄0) be the base change of (J, J0) to the algebraic closure of F, which
by Cor. 45.8 admits Kummer elements, hence arises form the first Tits con-
struction. By Prop. 45.2, therefore, (J̄, J̄0) admits étale elements whence fJ,J0

is not the zero polynomial. Hence a Zariski density argument shows that (J, J0)
itself admits étale elements provided F is infinite. We are thus reduced to the
case that F is a finite field of characteristic 3 or containing more than four
elements. By 23.14 all composition algebras of dimension at least 4 over F are
split, as are all Freudenthal algebra of dimension at least 15 (Exc. 40.17).

As in the proof of Cor. 45.8 we have n = 1, 2, 3, 5, 9, and each of these
cases will now be treated individually. However, the discussion that ensues
will be more complicated than in loc. cit. since F is not algebraically closed.
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This holds true, in particular, for the structure of regular cubic alternative F-
algebras as described in Exc. 42.21.

(a) n = 1. Then char(F) , 3, J = E(+) for some cubic étale F-algebra E and
J0 = F · 1E . The assertion follows from Exc. 45.15 (c), (d).

(b) n = 2. Then char(F) , 2 and J0 is a regular cubic Jordan algebra of di-
mension 2 which, thanks to Exc. 16.21, is supported by some pointed quadratic
module in the sense of Exc. 34.27. Thus, by (iii) of that exercise, J0 � (k×k)(+)

cub
as cubic Jordan algebras. On the other hand, J is a regular simple cubic Jordan
algebra of dimension 6 that inherits from J0 an elementary idempotent, denoted
by e1 and corresponding to (1, 0) ∈ (k × k)(+)

cub. By Exc. 40.15 (f), e1 can be ex-
tended to an elementary frame (e1, e2, e3) of J such that e0 := 1J − e1 = e2+ e3.
Applying Prop. 39.2, we therefore find an identification

(J, J0) =
(
Her3(F,Γ), Fe11 + F(e22 + e33)

)
,

for some diagonal matrix Γ = diag(γ1, γ2, γ3) ∈ GL3(F). This implies J⊥0 =
F(e22 − e33)+ F[23]+ F[31]+ F[12]. Hence w := 1[23]+ 1[31] ∈ J⊥0 satisfies
NJ(w) = 0 and

w♯ = −γ2γ3e11 −
1
2
γ3γ1(e22 + e33) −

1
2
γ3γ1(e22 − e33) + γ3[23].

We conclude Q(w) = γ2γ3e11 +
1
2γ3γ1(e22 + e33) and N(w)2 − 4NJ0 (Q(w)) =

− 1
4γ

2
1γ2γ

3
3 , 0, so w is an étale element of J relative to J0.

(c) n = 3. Then J0 = E(+) for some cubic étale F-algebra E, and J is a
Freudenthal algebra of dimension 9, hence identifies with Her3(L), where L
is either split quadratic étale over F or the unique (separable) quadratic field
extension of F. In any event, the norm of L is universal, so in Her3(L) no
twist by an invertible 3-by-3 diagonal matrix is required ((37.24.3)). More-
over, every elementary idempotent of J can be extended to an elementary
frame (Exc. 40.15 (f)), and any two elementary frames of J are conjugate un-
der Aut(J) (Exc. 41.31). We now discuss the following subcases.

(c1) E is split. Up to isomorphism of (J, J0) we may assume J0 =
∑

Feii, and
setting K := L in Lemma 45.6, we have K⊥ = {0}, so J0 is as in (45.6.1) and
there are étale elements of J relative to J0.

(c2) E � F ×K, where K is the unique quadratic field extension of F. By what
we have just seen, we may assume

J0 = Fe11 ⊕ K, K ⊆ J0(e11) ⊆ J. (1)

More precisely, by Prop. 37.2 and its corollary 37.3, K is a separable quadratic
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subfield of the Jordan algebra of Clifford type J(M0, q0, e0) with

M0 = Fe22 + Fe33 + L[23], q0 := S J |M0 , e0 := e22 + e33. (2)

Combining (2) with (36.4.9), we obtain

q0(ξ2e22 + ξ3e33 + u[23]) = ξ2ξ3 − nL(u) (3)

for all ξ2, ξ3 ∈ F and u ∈ L. In particular, since nL is a universal Pfister form,
we conclude

q0 � h ⊥ nL. (4)

The orthogonal complements of K in M0 relative to Dq0 will be denoted by
K⊥, so we have M0 = K ⊕ K⊥. There are the following two subcases.

(c2.1) L = F × F is split. Then J = A(+) with A := Mat3(F) after the natural
identification of Prop. 36.9. Writing ei j, 1 ≤ i, j ≤ 3, for the usual matrix units
of A, we deduce from (1) that

J0 = Fe11 ⊕ K, (5)

where K is a subfield of the Peirce component A00(e11) = Fe22 + Fe23 +

Fe32 + Fe33, which canonically identifies with the split quaternion algebra
B := Mat2(F). Note that q0 by (4) and (c2.1) is hyperbolic, so its restriction to
K⊥ must be anisotropic. From (5) we conclude

J⊥0 = J1(e11) ⊕ K⊥ = Fe12 + Fe13 + Fe21 + Fe31 + K⊥. (6)

In particular,

w = w1 + w0, w1 =


0 1 0
−1 0 0
0 0 0

 = (1,−1)[12] ∈ J1(e11) (7)

with an as yet unspecified quantity w0 ∈ K⊥ ⊆ M0 belongs to J⊥0 . Hence
(36.4.4) implies w♯

1 = e33 ∈ B \ B×, which is therefore neither contained in K
nor in K⊥. Thus

e33 = w♯
1 = a + b, a ∈ K×, b ∈ K⊥ \ {0}. (8)

Combining (38.7.11) with the fact that w0 ∈ K⊥ has trace zero in B, hence
satisfies w̄0 = −w0, we conclude

w♯ = q0(w0)e11 + w0 ◦ w1 + e33, (9)

while (38.7.12), (11.14.3) and (8) imply

NJ(w) = −q0(w0, e33) = −q0(w0, b) (10)
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On the other hand, combining (9) with (8) and the Peirce rules yields Q(w) =
−q0(w0)e11 − a, hence

NJ0

(
Q(w)

)
= −q0(w0)nK(a) = −q0(w0)q0(a). (11)

Now, if char(F) , 2,, then some w0 ∈ K⊥ \ {0} satisfies q0(w0, b) = 0, and
(10), (11) imply NJ0 (Q(w)) , 0 , NJ(w)2 − 4NJ(Q(w)). Thus w ∈ J is étale
relative to J0. On the other hand, if char(F) = 2, regularity of q0 on K⊥ implies
that some w0 ∈ K⊥ has q0(w0, e33) , 0, so (10) shows again that w is an étale
element of J relative to J0.

(c2.2) L � K. Since F contains more than two elements, it suffices to show
that (J, J0) admits Kummer elements (Cor. 45.4). This in turn will follow from
Exc. 45.16 below once we have shown that the binary quadratic space (E⊥, qE)
derived from the Springer form of E in the sense of Exc. 42.26 is a split hyper-
bolic plane. If E were a field, it would be enough to find an isotropic vector in
E⊥ relative to qE . But under the present circumstances where E � F × K, we
have to argue differently by invoking the formalism of 9.7 that will eventually
allow us to reduce everything to the field case.

Accordingly, we put ε+ := e11, ε− := e22+e33 and obtain a complete orthog-
onal system (ε+, ε−) of idempotents in E such that E = E+⊕E−, E+ = Fe11 = F
and E− = ε−E = K after the canonical identifications. From (1) we deduce

E⊥ = J⊥0 = J1(e11) ⊕ K⊥ = L[31] ⊕ L[12] ⊕ K⊥, (12)

which by Prop. 37.2 (b) gives rise to the decomposition

E⊥ = E⊥+ ⊕ E⊥− , E⊥+ := ε+ · E⊥ = K⊥, E⊥− := ε− · E⊥ = L[31] ⊕ L[12].
(13)

as a direct sum of E-modules. Note that (9.7.2), (9.7.3) yield canonical identi-
fications E⊥± = E⊥ ⊗E E± as E±-modules, allowing us to consider the regular
quadratic forms

(qE)± := qE ⊗E E± : E⊥± −→ E± (14)

over the fields E±. From these qE can be recovered via (13) and

qE = (qE)+ ⊕ (qE)−. (15)

We will therefore be through as soon as we have shown that (qE)± are both
isotropic. Note first that (qE)±(x±) = qE(x±) for all x± ∈ E⊥± ⊆ E⊥. Next we
claim

(i) (qE)+ is the restriction of −q0 to K⊥.
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(ii) (qE)−(u2[31] + u3[12]) for u2, u3 ∈ L is the K-component along K⊥ of

nL(u2)e22 + nL(u3)e33 − u2u3[23] ∈ M0 = K ⊕ K⊥.

In order to prove (i), let x+ ∈ E⊥+ = K⊥. Since the elements of K⊥ have trace
zero in J0(e11), we may write x+ = ξ(e11−e22)+u1[23] for some ξ ∈ F and some
u1 ∈ L. Hence (36.4.4) implies x♯1 = −(ξ2+nL(u1))e11 = q0(x+)e11 ∈ Fe11 ⊆ E,
and by the definition of Springer forms, (i) follows. In (ii) we use (36.4.4) again
to compute

(u2[31] + u3[12])♯ = −nL(u2)e22 − nL(u3)e33 + u2u3[23],

and the assertion follows.
Combining (4) with the decomposition q0 = nK ⊥ q0|K⊥ � nL ⊥ q0|K⊥

and Witt cancellation, we conclude that q0|K⊥ is isotropic By (i), therefore,
so is (qE)+. Moreover, some w1 ∈ L makes h := e22 − e33 + w1[23] ∈ K⊥

isotropic relative to q0, which means nL(w1) = −1. We now put u2 := 1Land
u3 := −w̄1, which implies nL(u2)e22 + nL(u3)e33 − u2u3[23] = h ∈ K⊥, so by
(ii), u2[31] + u3[12] ∈ E⊥− is isotropic relative to (qE)−.

(c3) E is the unique cubic (cyclic) field extension of F. Again we consider the
Springer form qE : E⊥ → E of E relative to J, which by Exc. 42.26 (d) is a
regular binary quadratic form over the field E. Assume first that qE is isotropic,
hence a (split) hyperbolic plane since E is a field. By Exc. 45.16, J contains
Kummer elements relative to E, so J = J(E, µ) arises from E by means of
the first Tits construction, for some µ ∈ F×. But now Cor. 45.4 implies that
(J, E) admits étale elements. We are left with the case that qE is anisotropic.
For char(F) , 2 we note that the restriction of NJ to E⊥ is a cubic form in
six variables over the finite field F, hence by the Chevalley-Warning theorem
has a non-trivial zero. Accordingly, let w ∈ E⊥ \ {0} have NJ(w) = 0. Then
NJ(w)2 − 4NE(qE(w)) , 0, and w ∈ J is étale relative to E. On the other hand,
for char(F) = 2, Exc. 45.19 leads us to an element w ∈ E⊥ having NJ(w) , 0,
and we conclude NJ(w)2 − 4NE(qE(w)) , 0, so again w is étale relative to E.

(d) n = 5. By Racine’s theorem 39.6, J0 is not simple, and by Exc. 40.17, J
is the split Freudenthal algebra of dimension 15. Combining Lemma 45.6 with
Prop. 45.7, it follows that (J, J0) admits étale elements.

(e) n = 9. Then J is the split Albert algebra over F and there are three cases.

(e1) J0 is not simple. Repeating the argument in (d) shows that (J, J0) admits
étale elements.

(e2) J0 � Mat3(F)(+) � Her3(F × F). By Exc. 42.23 (a) and 45.18 below, we
may assume (J, J0) = (J(Mat3(F), 1),Mat3(F)(+)). The assertion follows from
Cor. 45.4.
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(e3) J0 � Her3(K). By Exc. 45.18 we may assume that we are in the situation
of Exc. 45.17 with D := K. Since K is a field, it follows that (J, J0) admits étale
elements. □

For Freudenthal algebras over an LG ring, Thm. 45.10 is useful only if they
can be completed to Freudenthal pairs. Here our results are not complete but
substantial enough to cover the Albert case.

45.11 Theorem. Every Albert algebra J over an LG ring k can be completed
to an Albert pair: there exists a Freudenthal algebra J0 of rank 9 such that
(J, J0) is an Albert pair over k.

Proof We define polynomial laws ei : J × J → J for 1 ≤ i ≤ 9 by

e1(x, y) := 1JR , e2(x, y) := x, e3(x, y) := x♯, e4(x, y) := y,

e5(x, y) := y♯, e6(x, y) := x × y, e7(x, y) := x♯ × y,

e8(x, y) := x × y♯, e9(x, y) := x♯ × y♯

for all x, y ∈ JR, R ∈ k-alg. We claim that it suffices to show

det
((

TJ(ei(x, y), e j(x, y))1≤i, j≤9
))
∈ k× (1)

for some x, y ∈ J. Indeed, once such elements have been exhibited, the quan-
tities ei(x, y), 1 ≤ i ≤ 9, generate a free submodule J0 of rank 9 in J on which
the bilinear trace of J is regular. Moreover, by Exc. 33.15, J0 is the subalgebra
of J generated by x, y. Summing up, therefore, J0 ⊆ J is a regular cubic Jordan
subalgebra, and it remains to show that J0 is, in fact, a Freudenthal algebra.
By definition (39.8), we may assume that k = F is a field and must show that
J0 is simple. Otherwise, Racine’s theorem would imply J0 � F × J(M, q, e)
for some regular pointed quadratic module (M, q, e) over F, in which case the
minimal number of generators for J0 would be 7, a contradiction. Thus J0 is
indeed a Freudenthal algebra.

We therefore need only show that elements x, y ∈ J satisfying (1) exist.
Since k is an LG ring, the k-module J × J is free of rank 54, so the scalar
polynomial law det(TJ(ei, e j)) by Cor. 12.12 may be regarded as a polynomial
in k[t1, . . . , t54], which by the LG property represents an element of k× if and
only if it represents an invertible element in k/m, for each maximal idealm ⊆ k.

We are thus reduced to the case that k = F is a field, which we will assume
from now on. If J is split, it contains J0 := Her3(F × F) as a 9-dimensional
Freudenthal subalgebra, which by Exc. 45.20 is generated by two elements. In
view of Exc. 33.15, therefore, some elements x, y ∈ J0 satisfy (1). This settles
the split case, and we are done if F is algebraically closed or finite. On the
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other hand, the former alternative combines with a Zariski density argument to
settle the case of an infinite base field as well. □

45.12 Corollary. If k is (1) a field or (2) a residually big LG ring, then every
Albert algebra over k can be realized by the second Tits construction.

Proof Let J be an Albert algebra over k. By Thm. 45.11, J can be completed
to an Albert pair (J, J0) over k. If k is a residually big LG ring, then Thm. 45.10
shows that (J, J0) admits étale elements, and hence J can be realized by the
second Tits construction. On the other hand, if k is a field, then what we have
just proved allows us to assume k = F2 or k = F4. Then J is split, hence
isomorphic to the first Tits construction J(Mat3(F), 1) (Exc. 42.23), hence also
a second Tits construction. □

45.13 Remark. For a field F of characteristic , 2, 3, Parimala, Sridharan,
and Thakur have constructed in [207] examples of Albert algebras over k :=
F[t1, t2] that do not arise from the second Tits construction, so some hypothesis
on k is necessary in Cor. 45.12. Note that such a k is not LG by Exc. 11.42.

45.14 A comparison. There are important analogies connecting Thm. 45.10
with the enumeration theorem of Petersson-Racine for algebras arising from
what they call the Tits process [225, Thm. 3.1]. In order to work out the details
of these analogies, we make the following observations.

(a) The Tits process is more general than (our version of) the second Tits con-
struction as it is addressed to involutorial systems whose core, though quad-
ratic, need not be étale. Also, it works over arbitrary base fields whereas our
approach is restricted to those obeying the constraints of residual bigness; that
these constraints are a necessary methodological ingredient of our approach
follows from Thm. 45.10. On the other hand, the Tits process is less general
than the second Tits construction as it allows only involutorial systems whose
underlying alternative algebras are associative and hence are equipped with
ordinary involutions rather than isotopy ones.

(b) While [225, Thm. 3.1] is confined to arbitrary base fields, Thm. 45.10
works more generally for arbitrary LG rings. Ignoring this distinction for sim-
plicity, we assume from now on that k = F is an arbitrary field.

(c) Thm. 45.10 spells out conditions that are necessary and sufficient for any
Freudenthal pair (J, J0) over F to admit étale elements. The existence of such
elements, in turn, is sufficient (but not necessary) for J to be realizable by
means of the second Tits construction starting from J0. Note that these results
are confined to cubic Jordan algebras J, J0 that, in particular, are required to be
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regular. By contrast, [225, Thm. 3.1] says, among other things, that any simple
Jordan F-algebra of degree 3, regular or not, can be obtained by a successive
application of the Tits process either from the base field itself or from a cubic
étale subalgebra (provided there is any), depending on whether the character-
istic is not or is equal to 3.

(d) Both proofs are based on careful case-by case analyses, but the one of
[225, Thm. 3.1] doesn’t seem to stand a chance of being extended to LG rings.

Exercises
45.15. Let F be a field and E a cubic étale F-algebra. Show:

(a) If F contains more than two elements, then E as a unital F-algebra is generated
by a single element.

(b) If F contains precisely two elements, then the conclusion of (a) fails if and only
if E is split.

(c) If F contains more than two elements and char(F) , 3, then (J, J0) := (E(+), F ·
1E) is a Freudenthal pair over F such that J⊥0 = Ker(TJ).

(d) If F contains more than two elements and char(F) , 3, then, with (J, J0) as
above:
(i) a ∈ J is an étale element relative to J0 if and only if a has trace zero,
generates E as a unital F-algebra and satisfies S J(a) , 0.
(ii) Either (J, J0) admits étale elements or E is split cubic étale over F = F4 and
J � J(F, 1) arises from F and 1 by means of the first Tits construction.

45.16 (Petersson-Thakur [232, 2.8]). Let (J, J0) be a Freudenthal pair over a field F,
assume J0 = E(+) for some cubic étale F-algebra E and write qE : E⊥ → E for the
Springer form of E in the sense of Exc. 42.26. Show that if the binary quadratic space
(E⊥, qE) over E is split hyperbolic, then (J, J0) admits Kummer elements. (Hint: Argue
indirectly and use Exc. 42.26 (e).)

45.17. Let k be a commutative ring, D a quadratic étale k-algebra, (M, h) a ternary her-
mitian space over D and ∆ :

∧3(M)
∼
→ D an orientation satisfying det∆(h) = 1. Write

C := Ter(D; M, h,∆) for the octonion algebra over k arising from the preceding data
by means of the ternary hermitian construction of 21.13 and let Γ = diag(γ1, γ2, γ3) ∈
GL3(k). Identify D ⊆ C, M ⊆ C canonically and prove:

(a) (J, J0) with J := Her3(C,Γ) and J0 := Her3(D,Γ) is an Albert pair over k satisfying
J⊥0 =

∑
M[ jl].

(b) For w =
∑

wi[ jl] ∈ J⊥0 , wi ∈ M, 1 ≤ i ≤ 3 we have

NJ(w) = − γ1γ2γ3tD
(
∆(w1 ∧ w2 ∧ w3)

)
, (1)

NJ0

(
Q(w)

)
= (γ1γ2γ3)2nD

(
∆(w1 ∧ w2 ∧ w3)

)
(2)

with Q as in 44.8.

(c) Defining

δ : J⊥0 −→ D,
∑

vi[ jl] 7−→ γ1γ2γ3∆(v1 ∧ v2 ∧ v3),
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and letting w =
∑

wi[ jl] ∈ J⊥0 , wi ∈ M, the following conditions are equivalent.

(i) w is an étale element of J relative to J0.
(ii) δ(w) ∈ D is invertible and D = k[δ(w)].

(d) Conclude that (J, J0) admits étale elements if and only if M is a free D-module and
D = k[a], for some invertible element a ∈ D.

45.18. Let J, J0 be reduced simple Freudenthal algebras over a field F and suppose J0
is a subalgebra of J. Writing C (resp. C0) for the co-ordinate algebra of J (resp. J0),
show that C0 up to isomorphism is a unital subalgebra of C and, no matter how this
isomorphism has been chosen, there exists an invertible diagonal matrix Γ ∈ GL3(F)
satisfying

(J, J0) �
(
Her3(C,Γ),Her3(C0,Γ)

)
. (1)

45.19. Let (J, J0) be a Freudenthal pair of dimension 9 over a field F. Prove that there
exists an element u ∈ J⊥0 such that NJ(u) , 0. (Hint: Apply Exc. 12.40.)

45.20. Let J be a Freudenthal algebra of rank 9 over an LG ring k. Show that J is
generated by two elements.

45.21. Let J be a Freudenthal algebra of rank 9 over an LG ring k. Show that J can be
completed to a Freudenthal pair over k.

45.22. Let A be a regular cubic alternative k-algebra of constant rank and µ ∈ k×. Show
that (J(A, µ), A(+)) is a Freudenthal pair over k.

46 Cubic Jordan division algebras

This section is devoted to studying cubic Jordan algebras that are division al-
gebras, i.e., in which every non-zero element is invertible. For such an algebra,
the centroid is a field (Cor. 28.19), so without loss of generality we only con-
sider the case of a base field F.

Apart from the trivial example F(+) and, when char(F) = 3, E(+) for E a
purely inseparable field extension of F of exponent at most 1, we find that
every cubic Jordan division algebra is a regular Freudenthal algebra and such
division algebras must have dimension 1, 3, 9, or 27 (Thm. 46.8).

While division algebras of the first three dimensions are relatively easy to
exhibit, the problem of proving the existence of a cubic Jordan division algebra
of dimension 27 — an Albert division algebra — was historically very chal-
lenging. Indeed, it took 25 years from the first appearance of Albert algebras
in [3] to the first example of a division algebra in [8], and during the interven-
ing years there was an erroneous claim of non-existence [253, Thm. 1]. We
obtain examples here (see Example 46.14) using one of the Tits constructions,
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506 The two Tits constructions

as an application of general criteria for when those constructions produce di-
vision algebras. Finally, we classify Albert algebras over some special fields,
showing in particular that all Albert algebras over a global field are reduced

46.1 Proposition. For a cubic Jordan algebra J over F, the following condi-
tions are equivalent.

(i) J is a Jordan division algebra.
(ii) The norm of J is anisotropic: for all x ∈ J, NJ(x) = 0 implies x = 0.
(iii) For all x ∈ J, x♯ = 0 implies x = 0.

Proof This is an easy exercise, the relevant arguments being contained in the
proof of 39.17. □

46.2 Corollary. If a cubic Jordan algebra over F is a division algebra, then
so is any cubic Jordan subalgebra. □

46.3 Corollary. Let J be a cubic Jordan division F-algebra and K a quad-
ratic field extension of F. Then the base change JK is a cubic Jordan division
algebra over K.

Proof By Prop. 46.1, the norm of J is anisotropic, hence by Exc. 12.41 so is
its base change from F to K. By Prop. 46.1 again, JK is a cubic Jordan division
algebra over K. □

46.4 Remark. There are more profound results along these lines pertaining to
associative, octonion and Albert division algebras. For example, if D is a finite-
dimensional central associative division F-algebra of degree n and K ⊇ F is a
finite algebraic extension of degree prime to n, then DK continues to be an ass-
ociative division algebra [102, Cor. 4.5.11(2)]. Also, it follows from Springer’s
theorem for quadratic forms [72, Cor. 18.5] that an octonion division algebra
over F stays division under odd degree field extensions. And, finally, using
methods from Galois cohomology, it follows that an Albert division algebra
over F (see 46.14 below for an example) stays division under all field exten-
sions of degree not divisible by 3 [220, Cor. 50].

46.5 Lemma. If J is a finite-dimensional cubic Jordan division algebra over
F, then either (1) J is regular or (2) F has characteristic 3 and J � E(+) for
some purely inseparable field extension E of F with exponent at most 1.

Proof If char(F) , 3, Euler’s differential equation (33a.11) implies TJ(x, x♯) =
3NJ(x) , 0 for all x , 0 in J. Hence J is regular. For char(F) = 3, we first
assume that the bilinear trace of J is not zero. Since TJ(Uxy, z) = TJ(y,Uxz) for
all x, y, z ∈ J by (33a.31), Rad(TJ) ⊂ J is an outer ideal (Exc. 29.18 (a)) and
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hence an ideal since the characteristic is not 2 (28.6). But J is a simple algebra
by 28.11, and we conclude Rad(TJ) = {0}. Thus J is regular. We are left with
the case TJ = 0. By (33a.6) and the property of J being a division algebra, the
set map NJ : J → F(+) is an injective homomorphism of Jordan Z-algebras.
In particular, NJ(J) ⊆ F(+) is a Jordan division subring which, thanks to the
formula

NJ(x)NJ(y) = NJ
(
NJ(x)NJ(y)Ux−1 y−2)

for all x, y ∈ J×, is closed under the multiplication of F and thus is a subfield
of F. It follows that the F-vector space J carries the unique structure of a field
extension E of F making NJ : E → F a field homomorphism. Since NJ : J →
F(+) and NJ : E(+) → F(+) are both monomorphisms of Jordan Z-algebras, we
obtain J = E(+). Identifying F ⊆ E canonically, we have x3 = NJ(x) ∈ F for
all x ∈ E by (33.9.2), so the field extension E of F is purely inseparable of
exponent at most 1. □

46.6 Proposition. Let J be a cubic Jordan division algebra over F.

(a) J is strictly locally linear in the sense of 30.8 and Exc. 30.13.

(b) For all x ∈ J \ F1J ,

(1) E := F[x] ⊆ J is a cubic subfield of J.
(2) mJ,x = t3 − TJ(x)t2 + S J(x)t− NJ(x) ∈ F[t] is the minimum polynomial

of x with respect to E.
(3) The trace of E/F is the linear trace of J restricted to E: TE/F = TJ |E .
(4) E/F is separable if and only if TJ does not vanish identically on E.
(5) The base change JE over E is no longer a division algebra.

Proof (a) For any field extension K/F we must show that JK over K is locally
linear. This is clear if J � E(+), for some purely inseparable field extension E/F
of characteristic 3 and exponent at most 1. By Lemma 46.5, we may therefore
assume that J is regular over F. Then so is JK over K, hence satisfies Nil(JK) =
{0} (Exc. 34.23) and thus has no absolute zero divisors (Exc. 37.27 (e)). The
assertion now follows from Thm. 30.11.

(b)(1) From (a) we deduce that E carries the unique structure of a unital
commutative associative F-algebra making E(+) ⊆ J a cubic Jordan subalge-
bra., while Cor. 33.10 implies that E is in fact a field. Consulting (33.9.2), we
conclude 2 ≤ [E : F] ≤ 3. Assume [E : F] = 2. Then E(+) satisfies the
Dickson condition of Exc. 30.13, so there exists a pointed quadratic module
(M, q, e) over F having E(+) = J(M, q, e). But (34.27.4) implies that the norm
of J is isotropic on E, in contradiction to J being a division algebra. Thus E is
indeed a cubic field extension of F.
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(b)(2) By (33.9.2), the polynomial mJ,x kills x, hence is divisible by the
minimum polynomial of x over E. But that polynomial by (b)(1) has degree
3, so both polynomials must be equal.

(b)(3) For y ∈ E we must show TE/F(y) = TJ(y). This is clear for y ∈ F1J ,
while otherwise E = F[y] by (b)(1), and the assertion follows from (b)(2).

(b)(4) Being a field extension of prime degree, E/F is either separable or
purely inseparable. Hence the former case is equivalent to TE/F , 0, and the
assertion follows from (b)(3).

(b)(5) JE contains EE = E ⊗ E as a unital commutative associative subal-
gebra. But this subalgebra has zero divisors, hence is not a field. By (b)(1),
therefore, J cannot be a cubic Jordan division algebra. □

46.7 Corollary. A regular cubic Jordan division algebra J of dimension > 1
over F contains a separable cubic subfield.

Proof Note that Ker(TJ) is neither 0 (by dimension count) nor J (because J
is regular). If char(F) , 3, pick any non-zero u ∈ Ker(TJ) and put x := 1J + u.
If char(F) = 3, pick any x ∈ J \ Ker(TJ). Then apply Prop. 46.6, (b)(1) and
(b)(4). □

46.8 Theorem. Let J be a finite-dimensional cubic Jordan division algebra
over F that is not of the form described in Lemma 46.5(2). Then J is regular, is
a Freudenthal algebra, and has dimension 1, 3, 9, or 27.

Proof Lemma 46.5 gives that J is regular. If dim J = 1, then J = F(+) and
J is Freudenthal. So assume dim J > 1. By Cor. 46.7, J has dimension at
least 3, and if the dimension is equal to 3, then J is a separable cubic field
extension, hence a Freudenthal algebra. On the other hand, suppose J has di-
mension > 3 and write Fs for the separable closure of F. Since J contains
separable cubic subfields (Cor. 46.7), and the base change to separable cubic
subfields destroys the property of being a division algebra (Prop. 46.6(b)(5)),
Js := JFs is no longer a cubic Jordan division algebra. But Js is still reg-
ular, hence semi-simple, and thus satisfies one of the conditions (ii), (iii) of
Thm. 39.6. If (ii) holds, then up to isomorphism Js = F(+) × J(M, q, e) for
some non-degenerate pointed quadratic module (M, q, e) over Fs. The elemen-
tary idempotents of Js have the form e1 := (1, 0) and c := (0, c′) for some
elementary idempotent c′ ∈ J′ := J(M, q, e). From Prop. 32.8 we deduce
J1(c′) , {0} since dimFs (J′) ≥ 3, so e1 is the only elementary idempotent
of Js having Js1(e1) = {0}. Therefore the absolute Galois group of F, acting on
Js by semi-linear automorphisms through the second factor, fixes e1, and we
arrive at the contradiction e1 ∈ J. Hence Js satisfies condition (iii) of Thm. 39.6
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and, being regular, is a Freudenthal algebra over Fs. But then so is J over F,
by Cor. 39.32.

By Cor. 39.11, the proof will be complete once we have excluded dimen-
sions 6 and 15 for J. Arguing indirectly, let us assume that J has dimension 6
or 15. Since J is regular, we may apply Cor. 46.7 and pick an element x ∈ J
making E := F[x] ⊆ J a separable cubic subfield. We have the decomposition
J = E ⊕ E⊥ as a direct sum of vector spaces over F, orthogonal complementa-
tion being taken with respect to the bilinear trace of J.

Assume first dimF(J) = 6. By Exc. 42.26 (a),(b), we may regard E⊥ canon-
ically as a one-dimensional vector space over E carrying the Springer form
qE : E⊥ → E as a quadratic form over E. Moreover, the formalism of 35.6 pro-
vides us with an F-quadratic map HE : E⊥ → E⊥ such that v♯ = −qE(v)+HE(v)
for all v ∈ E⊥. Let u be a basis of E⊥ as a vector space over E, put s :=
qE(u) ∈ E and define t ∈ E by HE(u) = t . u. Then (35.8.1) implies NJ(u)1E =

qE(u,HE(u)) = 2st, whence char(F) , 2, θ := NJ(u) ∈ F× and st = θ
2 1E .

In particular t ∈ E×. Now pass to the isotope J(p) of J, p := t−1, which con-
tains E(p) := E(+)(p) as a separable cubic subfield and satisfies E(p)⊥ = E⊥ as
vector spaces over F. From (35.11.1) we deduce H(p)

E (u) = t−1 . (t . u) = u.
Thus we may assume t = 1E and obtain s = θ

2 1E . Applying (35.9.6), we con-
clude u = H(H(u)) = θu − θ

2 u = θ
2 u, hence θ = 2 and thus s = 1E . Setting

x := 1E − u ∈ J× and applying (35.8.2) now yields x♯ = 0, a contradiction.
Next assume dimF(J) = 15. For y ∈ E⊥, y , 0, write J0 for the cubic

Jordan subalgebra of J generated by x and y. By Cor. 46.2, J0 is a cubic Jordan
division algebra. It contains E as a separable cubic subfield, so it cannot be a
purely inseparable field extension of F and hence, by Prop. 46.5, is regular,
hence Freudenthal, giving rise to a decomposition J = J0 ⊕ J⊥0 as a direct sum
of subspaces. Also, by construction and Exc. 33.15, 4 ≤ dimF(J0) ≤ 9. Since
we have just excluded dimension 6, Cor. 39.11 implies dimF(J0) = 9. Now let
0 , u ∈ J⊥0 . Using the notation of (35.1.2), the linear map x0 7→ x0 . u = −x0×u
from J0 to J⊥0 by (35.4.4) satisfies x−1

0 . (x0 . u) = u for x0 ∈ J×0 and hence is
injective, a contradiction to J⊥0 having dimension 6. □

46.9 Remark. The standard proof for the preceding theorem, whose critical
part consists in excluding the numbers 6 and 15 as dimensions of cubic Jordan
division algebras, relies on properties of associative algebras with involution.
By structure theory of finite-dimensional simple Jordan algebras [191, 15.6]
or Exc. 55.13, a Freudenthal algebra of dimension 6 (resp., 15) has the form
H(A, τ), where A is a central simple associative algebra of degree 3 (resp., 6)
and τ is an orthogonal (resp., symplectic) involution of the first kind on A. But
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A cannot be a division algebra, hence neither can J, since for A to be a division
algebra it is necessary that its degree be a power of 2 [160, Thm. 3.1(1)].

We now turn to the question of when the first or second Tits construction
leads to cubic Jordan division algebras. The key result in this context reads as
follows.

46.10 Theorem (cf. Petersson-Racine [226, Thm. 5.2]). Let B = (K, B, τ, p)
be an involutorial system over F and µ ∈ K an admissible scalar for B. Then
J(B, µ) is a cubic Jordan division algebra over F if and only if the following
conditions are fulfilled.

(i) H(B) is a cubic Jordan division algebra.
(ii) µ is not a norm of B: µ < NB(B×).

In this case,

µ − µ̄ ∈ K×. (1)

Proof Suppose first J := J(B, µ) is a division algebra. Then so is J0 := H(B)
(Cor. 46.2)., and (i) holds. Assuming (ii) fails, we conclude µ = NB(u) for some
u ∈ B×. From (43.5.2) we deduce (τ(u)p−1)u ∈ J0, hence x := (τ(u)p−1)u +
u−1 j ∈ J×, and (44.15.4) yields

NJ(x) = NJ0

((
τ(u)p−1)u) + µNJ(u)−1

+ µNJ(u)−1 − TJ0

((
τ(u)p−1)u, u−1(pτ(u−1))

= 1 + 1 + 1 − 3 = 0,

a contradiction. Thus (ii) holds.
Conversely suppose conditions (i), (ii) hold. Assume x = x0 + u j ∈ J, x0 ∈

J0, u ∈ B satisfies x♯ = 0, i.e., by (44.15.3),

x♯0 = u
(
pτ(u)

)
, µ̄τ(u♯)p−1 = x0u. (2)

By Prop. 46.1, we must show x0 = u = 0. Taking adjoints in (2) and combining
admissibility of µ with (42.1.2), we conclude

NJ0 (x0)x0 = x♯♯0 =
(
τ(u♯)p♯

)
u♯ = µµ̄

(
τ(u♯)p−1)u♯ = µ(x0u)u♯ = µNB(u)x0.

If x0 were different from zero, hence invertible by (i), we would have NB(x0) =
µNB(u), forcing u ∈ B× and µ = NB(x0u−1), contradicting (ii). Hence x0 = 0,
and (2) combined with the adjoint identity implies

u
(
pτ(u)

)
= u♯ = 0, NB(u) = 0. (3)

Next we claim that (1) holds. If µ ∈ F1K , then µ = µ̄, hence NB(p) = µ2, and
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we arrive at the contradiction µ = NB(µp−1). Thus µ < F1K generates K as a
unital F-algebra, and (1) follows from Exc. 19.32 (a).

Now consider any v ∈ B. Then (3) implies (uv)♯ = v♯u♯ = 0, NB(uv) =
NB(u)NB(v) = 0, so w := uv ∈ B satisfies w + τ(w) ∈ J0 as well as

NJ0

(
w + τ(w)

)
= NB(w) + TB

(
w♯, τ(w)

)
+ TB

(
w, τ(w♯)

)
+ NB(w) = 0.

By (i) we therefore have τ(w) = −w. In the special case v = 1B, this gives
τ(u) = −u and then

uv = −τ(uv) = −
(
τ(v)p−1)(pτ(u)

)
=

(
τ(v)p−1)(pu).

For v = µ1B, this amounts to µu = µ̄u, i.e., (µ − µ̄)u = 0, and (1) yields
u = 0. □

46.11 Corollary. Let B be an involutorial system of the first kind and µ an
admissible scalar for B. Then J(B, µ) is not a cubic Jordan division algebra.

Proof (46.10.1) does not hold since Core(B) = F. □

46.12 Corollary. Let A be a cubic alternative F-algebra and λ ∈ F×. The first
Tits construction J(A, λ) is a cubic Jordan division algebra if and only if A is
a cubic associative division algebra and λ is not a norm of A: λ < NA(A×).

Proof Regarding (A, 1A) as a pointed alternative algebra over F, we apply
Thm. 44.19 with q := 1A and obtain an isomorphism J(A, λ) � J(B, µ), where

B =
(
F × F, A × Aop, εA, (1A, 1A)

)
, NB = NA × NA, µ = (λ, λ−1).

We now explore what conditions (i), (ii) of Thm. 46.10 mean for A and λ.
(i) Since εA by Exc. 44.31 is the switch, H(B) � A(+), so H(B) is a cubic

Jordan division algebra if and only if A is a cubic alternative division algebra.
But cubic alternative division algebras do not exist unless they are associative,
so (i) is equivalent to A being a cubic associative division algebra.

(ii) B× = A× × Aop× and, obviously, (ii) holds if and only if λ < NA(A×). □

46.13 Corollary. Let A be a cubic associative F-algebra that is division. For
K = F(t) or F((t)), the first Tits construction J(AK , t) is a division algebra.

Proof Since A is a division algebra, so is AK by Exc. 9.25. The field K is the
fraction field of R := F[t] or F[[t]], so every element of AK can be written as
a/y for some a ∈ AR and nonzero y ∈ R. We find that NAK (a/y) = NAR (a)/y3,
so by Exc. 12.38(a) the norm NAK (a/y) has degree (in t) divisible by 3. In
particular, it is not equal to t, so J(AK , t) is a division algebra by Cor. 46.12. □
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46.14 Examples of Freudenthal division algebras. Let us construct Freuden-
thal division algebras of all dimensions allowed by Thm. 46.8, as promised in
the introduction. Dimension 1 is trivial, take F(+).

For dimension 3, let F be a field that has a separable cubic field extension
E, and take E(+). For example, one can take F to be any finite field. Or F = Q
and E = Q[t]/(t3 − p) for p a prime.

If we take one of the examples E(+) of dimension 3 from the preceding
paragraph, then the first Tits construction J(EF(t), t) is a division algebra of
dimension 9 over F(t) by Cor. 46.13. Alternatively, take F to be a field that has
a (cyclic) associative division algebra D of degree 3 as in [255, Thm. VIII.12.1
and Lemma VIII.12.6], in which case D(+) is a cubic Jordan division algebra of
dimension 9. (Every global field F has such a D, thanks to the Albert-Brauer-
Hasse-Noether Theorem.)

Finally, for dimension 27, take a D and F as in the alternative construction of
dimension 9 algebras in the preceding paragraph. Then J(DF(t), t) is a division
algebra over F(t) by Cor. 46.13. In particular, taking F = Q, we obtain an
Albert division algebra over Q(t).

46.15 Albert algebras over special fields. Let J be an Albert algebra over F.
In what follows we specialize F to one of those fields that had already been
under consideration in connection with composition algebras.

(a) Separably closed fields. If F is separably closed, it does not admit any
separable cubic field extensions, so J cannot be a division algebra (Cor. 46.7)
and hence is reduced (Prop. 39.17), with co-ordinate algebra an octonion F-
algebra C. But C is split by 23.12 and, therefore, J is split.

(b) The real field. By Cor. 40.8, there are precisely three non-isomorphic Al-
bert algebras over F := R: (i) Her3(Zor(R)), the split one, (ii) Her3(O), the
euclidean one, (iii) Her3(O, diag(−1, 1, 1)), the non-split one containing non-
zero nilpotents.

(c) Finite fields. By Exc. 40.17, Albert algebras over a finite field, more gen-
erally, over any finite commutative ring, are split.

(d) Local fields. Let F be a local field in the sense of 23.15. Since the norm
of an Albert algebra J over F is a cubic form in at least 10 variables, it is
isotropic [235, Thm. 2], and therefore J is reduced. (This can alternatively be
seen using Prop. 1.2 and Kor. 2 of Satz 6.5 in [211].) The coefficient algebra C
is an octonion algebra and so itself is split by 23.15, hence all Albert algebras
over F are split.

The fact we have just used about cubic forms in 10 variables also shows that
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the reduced norm of any central simple associative algebra of degree 3 over F
is surjective. In fact, this result holds in any degree.

(e) C2 fields. A field F is said to be Ci if every homogeneous polynomial of
degree d with coefficients in F in at least di+1 variables is isotropic. Trivially, a
Ci field is also C j for all j > i. Certainly, every algebraically closed field is a C0

field. Every finite field is a C1 field, by the Chevalley-Warning theorem. If F is
an algebraic extension of a Ci field K, then F is also Ci; if F has transcendence
degree d over such a K, then F is Ci+d [255, Thm. 2.15.2]. For more on this
subject, see [102, §6.2], [104], [255, §2.15], or [262, §II.4.5].

The class of C2 fields, therefore, includes fields of transcendence degree ≤ 1
over a finite field (e.g., global fields of prime characteristic), or of transcen-
dence degree ≤ 2 over an algebraically closed field. If F is a C2 field, then:

(i) The norm of a central simple associative F-algebra A is surjective, see
Exc. 46.22.

(ii) Every octonion F-algebra is split. Since the norm of such an algebra is
a quadratic form in more than 4 variables, it is isotropic, so the algebra
is split by Cor. 22.18.

(iii) Every Albert F-algebra is split. To see this, note that such an algebra is
reduced, because its norm is a cubic form in more than 9 variables, i.e.,
the algebra is Her3(C,Γ) for some octonion algebra C. Since C is split
by (ii), so is the Albert algebra.

(f) Global fields. Let F be a global field in the sense of 23.16. We wish to show
that Albert algebras over F are reduced. To this end, we require the following
result from algebraic number theory.

46.16 Proposition. If A is a finite-dimensional central simple associative F-
algebra of degree 3, for F a global field, then the set map NrdA : A → F is
surjective.

Proof If F has characteristic different from zero, then it is a C2 field and the
claim is a special case of 46.15(e)(i).

So assume F has characteristic zero. Since A has degree 3, Av is split for
every real place v of F and in particular NrdAv : Av → Fv is surjective. The
Hasse-Schilling Theorem [256] implies that NrdA : A→ F is surjective. □

46.17 Corollary. Albert algebras over global fields are reduced.

Proof Let F be a global field and assume J is an Albert division algebra
over F. Following Cor. 45.12, we may write J = J(B, µ) for some involutorial
system B over F and some admissible scalar µ for B. Applying Cor. 46.11
we deduce that B is of the second kind, so K := Core(B) is a quadratic étale
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F-algebra. Changing scalars from F to K if necessary, we may assume that
K = F×F is split, making J by Cor. 44.21 a first Tits construction: J � J(A, λ)
for some central simple associative F-algebra A of degree 3 and some λ ∈ F×.
But J(A, λ) continues to be a division algebra (Cor. 46.3), so A is a division
algebra and λ < NA(A×) by Cor. 46.12, contradicting Prop. 46.16. □

46.18 Example (isotopy over global fields). For K = R or a global field,
there is a bijection between the isomorphism classes of octonion algebras and
isotopy classes of Albert algebras given by C ↔ Her3(C). Indeed, every Albert
K-algebra is reduced by 46.15 (b) and Cor. 46.17, so C 7→ Her3(C) touches
every isotopy class. Injectivity of this map follows from the Jacobson-Faulkner
theorem 41.8.

46.19 Corollary. If F is a global field with no real places, then all Albert
F-algebras are split.

Proof Let J be an Albert algebra over F. Then J is reduced by Cor. 46.17,
with an octonion F-algebra C as coefficient algebra. From Cor. 23.21 we de-
duce that C is split. Hence so is J. □

Note that in Cor. 46.19 the hypothesis on F holds automatically if char(F) >
0. What is missing, therefore, is a precise description of (reduced) Albert al-
gebras over algebraic number fields that are not purely imaginary. With the
notation of 23.16, such a desription will be provided by the following result.

46.20 Theorem (Albert-Jacobson [11, Thm. 12]). Let F be an algebraic num-
ber field, write S for the finite set of real places of F and consider the quater-
nion algebra B := Cay(F,−1,−1) over F.

(a) Every Albert algebra over F is isomorphic to

Her3
(
Cay(B, µ), diag(γ, 1, 1)

)
,

for some µ, γ ∈ F×.

(b) For µ, µ′, γ, γ′ ∈ F×, the Albert F-algebras

Her3
(
Cay(B, µ), diag(γ, 1, 1)

)
and Her3

(
Cay(B, µ′), diag(γ′, 1, 1)

)
are isomorphic if and only if, for all v ∈ S ,

(i) λv(µµ′) > 0.
(ii) If λv(µ) < 0, then λv(γγ′) > 0.

Proof We perform the following steps.

1◦. Since Albert algebras J over F are reduced (Cor. 46.17) and hence (in
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view of Thm. 41.21) are classified by the quadratic form invariants QJ of
(41.5.1), the Hasse-Minkowski theorem 23.17 implies that two Albert alge-
bras J, J′ over F are isomorphic if and only if Jv and J′v are isomorphic over
Fv, for all v ∈ Ω. But since Albert algebras over Fv are split unless v is real
(46.15 (a),(d)), we actually have

J � J′ ⇐⇒ ∀v ∈ S : Jv � J′v. (1)

2◦. Let J be one of the three Albert algebras over R (46.15 (b)), written
as J = Her3(C,Γ), with C being one of the two real octonion algebras and
Γ = diag(γ1, γ2, 1), γ1, γ2 ∈ R

×. We have

J is split ⇐⇒ C = Zor(R) is split.

J is euclidean ⇐⇒ C = O, γ1 > 0, γ2 > 0.

J is neither split nor euclidean ⇐⇒ C = O and (γ1 < 0 or γ2 < 0).

3◦. We can now prove (a). Let J be an Albert algebra over F. Since J is
reduced, it has the form J = Her3(C,Γ), C an octonion algebra over F and
Γ = diag(γ1, γ2, 1) ∈ GL3(F). By Thm. 23.22, we may assume C = Cay(B, µ)
for some µ ∈ F×. Given v ∈ S , either Cv is split or Cv � O according as
λv(µ) > 0 or λv(µ) < 0. We now define a real number γv by

γv :=

1 if λv(µ) > 0 or (λv(µ) < 0 and λv(γ1) > 0, λv(γ2) > 0),

−1 if λv(µ) < 0 and (λv(γ1) < 0 or λv(γ2) < 0).

Applying the weak approximation theorem [204, 11:8] leads to an element
γ ∈ F having |λv(γ) − γv| < 1 for all v ∈ S . Then λv(γ), γv ∈ R have the same
sign, and setting J′ := Her3(C,Γ′), Γ′ := diag(γ, 1, 1), we deduce from 2◦ that
Jv � J′v for all v ∈ S , which implies J � J′ by 1◦.

Turning to (b), we put C := Cay(B, µ), C′ := Cay(B, µ′), Γ := diag(γ, 1, 1),
Γ′ := diag(γ′, 1, 1). If J := Her3(C,Γ) and J′ := Her3(C′,Γ′) are isomorphic,
then C � C′ by Thm. 41.8, and Thm. 23.22 implies (i). If λv(µ) < 0, then
neither Jv nor J′v is split, and Jv by 2◦ is euclidean (resp., not euclidean) if and
only if λv(γ) > 0 (resp., λv(γ) < 0), ditto for J′v. Hence λv(γγ′) > 0 in any case,
and (ii) holds. Conversely, suppose (i) and (ii) hold. Then 2◦ shows Jv � J′v for
all v ∈ S , hence J � J′ by 1◦. □

46.21 Corollary (Albert-Jacobson [11, Thm. 12]). There are precisely 3|S | iso-
morphism classes of Albert algebras over F.

Proof Put n := |S | and conclude from Thm. 46.20 combined with the weak
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approximation theorem that for µ, γ ∈ F×, the assignment

J � Her3
(
Cay(B, µ), diag(γ, 1, 1)

)
7−→ (TJ ,T ∗J ),

where

TJ := {v ∈ S | λv(µ) < 0}, T ∗J := {v ∈ TJ | λv(γ) > 0}

yields a well-defined bijection from the isomorphism classes of Albert F-
algebras onto the set

X := {(T,T ∗) | T ∈ 2S , T ∗ ∈ 2T }.

Hence the number of these isomorphism classes is

|X| =
n∑

r=0

(
n
r

)
2r = 3n. □

Exercises
46.22. Suppose F is a C2 field. Prove: For every Azumaya F-algebra A, NrdA : A→ F
is surjective.

46.23. The 3-invariant mod 2 of Albert algebras (Petersson-Racine [228, Thm. 1.8]).

(a) Let (B, τ) be a central simple associative algebra of degree 3 with unitary involution
over a field F and put K := Cent(B) as a quadratic étale F-algebra. Show that the second
Tits construction J := J(B, τ, 1B, 1K) is a reduced Albert algebra over F and call the
norm of its coefficient algebra the 3-Pfister form of τ.

(b) Let J be an arbitrary Albert algebra over F. Prove that there exists a 3-Pfister
form f3(J) over F, called the 3-invariant mod 2 of J, that up to isometry is uniquely
determined by the following condition: for all field extensions E/F making the base
change JE a reduced Albert algebra over E, the extended quadratic form f3(J)E is the
norm of the coefficient algebra of JE . Moreover, if J � J(B, τ, p, µ) is realized by the
second Tits construction, with (B, τ) as in (a) and (p, µ) is an admissible scalar for (B, τ)
in the sense of 44.23, then f3(J) is the 3-Pfister form in the sense of (a) of the p-twist pτ
in the sense of (44.25.5). (Hint: For uniqueness, use Springer’s theorem [72, Cor. 18.5,
18.6] on quadratic forms under odd degree field extensions.)

46.24. Let J be a cubic Jordan division algebra over a field F of characteristic not 2.
Show that J, viewed as a linear Jordan algebra as in 29.3, is a division algebra in the
sense of 8.6. (Hint: Reduce to the finite-dimensional case and then show that there are
no linear zero divisors:

∀x, y ∈ J
(
x ◦ y = 0 =⇒ x = 0 or y = 0

)
. (1)

In order to do so, argue indirectly and assume x ◦ y = 0 for some non-zero elements
x, y ∈ J to distinguish between the cases that E := F[x] ⊆ J is or is not a separable
cubic subfield of J.)
Remark. In his two fundamental papers [8, 10] on exceptional division algebras, Albert
does not explain how Jordan division algebras are defined. But since he always excludes
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characteristic 2, and the U-operator doesn’t show up in his investigations, it is safe to
assume that he understood Jordan division algebras, in contradistinction to the present
work, in the linear sense of 8.6. The preceding exercise closes the gap by showing that,
over fields of characteristic not 2, Albert and we are talking about the same thing.

46.25. Cyclic cubic subfields of Freudenthal division algebras (Petersson-Racine [222,
Thm. 4]). Let J be a Freudenthal division algebra of dimension at least 9 over a field
F of characteristic not 2 or 3 containing the cube roots of unity. Show that J contains
a cyclic cubic subfield. (Hint: Note that, by the hypothesis on F, any field extension
F( 3√α) for α ∈ F× \ F×3 is automatically cyclic over F and apply Springer’s theorem
[72, Cor. 18.5, 18.6] on quadratic forms under odd-degree field extensions.)
Remark. By a classical theorem of Wedderburn [9, Thm. IX.5], every central ass-
ociative division algebra D of degree 3 over F contains a cyclic cubic subfield, so the
preceding exercise is valid for J � D(+), irrespective of any hypothesis on F. But it is
not valid for all cubic Jordan division algebras of dimension 9 [222, Prop. 5].

On the other hand, Albert [10, p. 378] has asked whether every Albert division al-
gebra over F contains a cyclic cubic subfield. While the present exercise provides a
positive answer to this question if the characteristic is not 2 or 3 and in the presence of
the cube roots of unity, the answer in general is not known. But there is an important
affirmative variant due to Thakur [276], which says that any Albert division algebra
over any field has an isotope that contains a cyclic cubic subfield. Again, this statement
is not true for Freudenthal division algebras of dimension 9.
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VIII

Lie algebras

The rest of the book will concern connections between Freudenthal and com-
position algebras on the one hand and Lie algebras and group schemes on the
other. We begin with Lie algebras, the subject of this chapter. The classifica-
tion of finite-dimensional simple Lie algebras over the complex numbers (47.9)
leads to the notion of root system (47.10), a language that will be used for the
rest of the book. In that classification, one finds infinite families that are re-
lated to the unitary, orthogonal and symplectic involutions of n-by-n matrices
(see section 10). The five isolated cases are usually referred to as exceptional,
and those cases are where we find the closest links with Albert and octonion
algebras. Most of this chapter is devoted to the study of Der(A) for A a non-
associative or para-quadratic k-algebra.

47 Lie algebras

47.1 Definition. As usual let k be a commutative associative ring. A non-
associative k-algebra L is a Lie algebra if its product, denoted [−,−] : L× L→
L, satisfies

[x, x] = 0, (1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, (2)

for all x, y, z ∈ L. The first equation linearizes to

[x, y] = −[y, x]. (3)

Equation (2) is called the Jacobi identity. The theory of Lie algebras can be
found, for example, in books by Bourbaki [31, 33], Humphreys [126], and
Jacobson [135].

47.2 Examples. (1) The cross product × endows R3 with a Lie algebra struc-
ture (1.1).

(2) Any associative k-algebra A can be endowed with a Lie algebra structure
A(−) by defining the product

[x, y] := xy − yx

518



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

47 Lie algebras 519

where juxtaposition denotes the multiplication in A. This product is easily seen
to satisfy (47.1.1) and (47.1.2). If B is a subalgebra of A then B(−) is a Lie
subalgebra of A(−).

(3) For any k-module M, denote Endk(M)(−) by gl(M). In the special case M =
kn, we write gln(k) instead of gl(M).

(4) If τ is an involution of A, then Skew(A, τ) (10.6.3) is a Lie subalgebra of
A(−) and Alt(A, τ) (10.6.4) is a Lie subalgebra of Skew(A, τ) and of A(−).

(5) LetO be the Graves-Cayley octonions and ui, 0 ≤ i ≤ 7, a Cartan-Schouten
basis of O (2.1). Since

[u1, [u2, u3]] + [u2, [u3, u1]] + [u3, [u1, u2]] = 12u6,

O(−) is not a Lie algebra. Instead, it is merely a “Malcev algebra”, see Exc. 47.16.

A Lie algebra L is abelian if [L, L] = {0}. For example if L = Matn(k)(−) then
the diagonal matrices H form an abelian subalgebra of L. The map x 7→ adx ∈

Endk(L) given by adx(y) := [x, y] for all x, y ∈ L, is the adjoint representation
of L.

Before working out a useful example, we recall some standard facts from
commutative algebra.

47.3 Base change of endomorphisms of finitely generated modules.

(a) Let R ∈ k-alg be flat, M a k-module, N ⊆ M a submodule and i : N →
M the inclusion. Since the R-linear extension iR : NR → MR is injective by
flatness of R, we may and always will identify NR ⊆ MR as an R-submodule
accordingly.

(b) Let R ∈ k-alg be arbitrary and suppose M,N are k-modules. Then the
natural k-linear map

Homk(M,N) −→ HomR(MR,NR), f 7−→ fR,

canonically extends to an R-linear map Homk(M,N)R → HomR(MR,NR) (9.2),
which is injective if R is a flat k-algebra and M is finitely generated [27, I.2.10,
Prop. 11]; we will then identify Homk(M,N)R ⊆ HomR(MR,NR) as an R-
submodule canonically.

(c) If M is a finitely generated projective k-module, (b) can be improved: for
any R ∈ k-alg, [28, II.5.3, Prop. 7(ii)] yields an identification

Homk(M,N)R = HomR(MR,NR)
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of R-modules such that

( f ⊗ r)(x ⊗ r′) = f (x) ⊗ rr′ (x ∈ M, r, r′ ∈ R). (1)

Note that this identification yields fR = f ⊗ 1R = f ⊗ 1R for the R-linear
extension fR of f .

47.4 Orthogonal Lie algebras. Let (M, q) be a quadratic module over k (11.12).
Consider

o(q) := o(M, q) := {ϕ ∈ Endk(M) | q(ϕx, x) = 0 ∀x ∈ M}.

If ϕ ∈ o(q) then q(ϕx, y) + q(x, ϕy) = 0. One checks that o(q) is closed under
the bracket on Endk(M)(−) and therefore is a Lie subalgebra. It is called the
orthogonal Lie algebra of (M, q). (Note that o(q) depends on the bilinear form
Dq rather than the quadratic form q, i.e., if q′ is a quadratic form such that
Dq � Dq′, then o(q) � o(q′).)

47.5 Lemma. Let (M, q) be a quadratic module over k with M finitely gener-
ated projective. Then for every R ∈ k-alg, o(M, q)R ⊆ o(MR, qR). If R is flat,
then the containment is an equality.

Proof Put TS2(M) for the submodule of M ⊗ M consisting of elements fixed
by the automorphism τ : m⊗m′ 7→ m′⊗m, called the symmetric tensors in [28,
§III.6.3]. Then o(M, q) is the kernel of the linear map

δ : Endk(M)→ Homk(TS2(M), k)

defined by δ(ϕ)(m ⊗m′) := q(m, ϕm′). The claimed containment is immediate.
So suppose R is flat. Because TS2(M) can be defined as the kernel of τ −

1M⊗M ∈ Endk(M⊗M), we have a natural identification (TS2(M))R � TS2(MR).
We note that if M is finitely generated free, so is TS2(M) by [29, §IV.5.5,

Prop. 4]. From this, in the general case where M is finitely generated projective,
standard reductions such as in the solution to Exc. 25.36 show that TS2(M) is
also finitely generated projective. Consequently,

Homk(TS2(M), k)R = HomR(TS2(M)R,R) � HomR(TS2(MR),R).

where the first identification is as in 47.3. From the flatness of R, we find that

o(q)R = (Ker δ)R = Ker(δR) = o(qR),

as desired. □

47.6 Remark. Readers who are familiar with Lie algebras of affine group
schemes (as described in §52, for example) may prefer to view the conclu-
sion of the lemma as a consequence of the fact that O(M, q) is smooth via
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[61, Prop. II.4.8], which requires some additional hypotheses on (M, q) as in
Remark 25.22.

47.7 Elementary orthogonal transformations. Let (M, q) be a quadratic mod-
ule over k. For any a, b ∈ M define the elementary orthogonal transformation
S a,b ∈ Endk(M) via

S a,b(m) := q(a,m)b − q(b,m)a ∈ M

for m ∈ M. Not only does S a,b belong to o(q) but since for all ϕ ∈ o(q) and a,
b ∈ M,

[ϕ, S a,b] = S ϕa,b + S a,ϕb,

the span s(q) of the S a,b for a, b ∈ M is an ideal of o(q).

47.8 Proposition. Let (M, q) be quadratic space over k. If M is of constant
even rank then o(q) = s(q).

Proof Suppose first (M, q) is a split hyperbolic space of rank 2l (11.18). Write
M = ⊕1≤i≤l(kxi ⊕ kyi), a finite direct sum of mutually orthogonal hyperbolic
planes. Suppose E ∈ o(q) and define

L :=
∑

1≤i< j≤l

q(Eyi, y j)S xi,x j +
∑

1≤i< j≤l

q(Exi, x j)S yi,y j +
∑
i, j

q(Exi, y j)S yi,x j .

Using q(Ex, x) = 0 and q(Ex, y) + q(Ey, x) = 0 for all x, y ∈ M, one computes

Lxr =
∑

1≤i< j≤l

q(Exi, x j)(δiry j − δ jryi) +
∑
i, j

q(Exi, y j)δir x j

=
∑

1≤ j≤l

q(Exr, x j)y j +
∑

1≤ j≤l

q(Exr, y j)x j

= Exr.

Similarly Lyr = Eyr and for an arbitrary a ∈ M, La = Ea.
In the general case, by Exc. 26.12, there exists an étale cover R ∈ k-alg mak-

ing (MR, qR) a split hyperbolic quadratic space over R. Concerning s(q), it is
the image of a linear map M ⊗M → Endk(M). Since (Endk(M))R � EndR(MR)
and R is flat, we obtain via 25.3 (3) a natural identification s(q)R = s(qR). Con-
cerning o(q), Lemma 47.5 gives o(q)R = o(qR). The inclusion s(q) ↪→ o(q) by
the special case just treated becomes an isomorphism when changing scalars
from k to R, so it must have been one all along. □

47.9 Lie algebras over a field of characteristic zero. Suppose now that L is
a finite-dimensional Lie algebra over a field F of characteristic 0. We say that
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L is semisimple if the only abelian ideal in L is 0. It is simple if [L, L] , 0
and the only ideals in L are 0 and L. (Note that this definition agrees with the
one in 8.6.) For example, {0} is a semisimple Lie algebra but not a simple one.
A semisimple Lie algebra is a direct sum of simple Lie algebras [30, §I.6.2,
Prop. 2].

Suppose now that L is semisimple and F is algebraically closed. An ele-
ment a ∈ L is semisimple if the minimal polynomial of ada ∈ EndF(L) has
no repeated roots, compare Exc. 8.11. Let S be the set of abelian subalgebras
of L whose elements are all semisimple. Maximal elements of S are called
Cartan subalgebras. Cartan subalgebras exist [33, §§VII.2.3, VII.2.4] and are
conjugate under the action of the group Aut(L) [33, §VII.3.2, Thm. 1]. Let H
be a Cartan subalgebra of L. For every α ∈ H∗ the dual of H, let Lα be the
set of elements a ∈ L such that [h, a] = α(h)a for all h ∈ H. If α = 0 then
Lα = H. The set R of nonzero α ∈ H∗ such that Lα , {0} is called the set
of roots of L with respect to H. The pair (V,R), where V is the real subspace
of H∗ ⊗ R spanned by R, is something called a root system, whose definition
we now recall. The historical origin of root systems came from the discovery
that isomorphism classes of semisimple Lie algebras over C are in bijection
with isomorphism classes of root systems; this powerful theorem reduces the
classification problem for Lie algebras to one of finite combinatorial data.

47.10 Root systems. Our aim is to recall the classification of irreducible root
systems. Let V be a finite-dimensional real euclidean vector space. A reflection
with respect to α ∈ V \{0} is an endomorphism s ∈ End(V) such that s(α) = −α
and s|W = Id for some hyperplane W ⊂ V .

Consider the natural pairing V∗⊗V → R, λ⊗v 7→ ⟨λ, v⟩ = λ(v). A reflection
with respect to α is given by sα(v) := v−⟨α,̌ v⟩α, where αˇ is the unique element
of V∗ such that α |̌W = 0, where W = α⊥ with respect to the euclidean structure,
and ⟨α,̌ α⟩ = 2.

47.11 Definition. A root system is a pair (V,R) where V is a finite-dimensional
real euclidean space and R is a subset of V which satisfies

I. R is finite, 0 < R and R generates V .
II. For every α ∈ R, sα stabilizes R.
III. For any α ∈ R, αˇ(R) ⊂ Z.

We will focus on root systems that are reduced, meaning that they also satisfy:

IV. If α, rα ∈ R for some r ∈ R, then r = ±1.

For example:
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(a) (0, ∅) is a reduced root system, called the zero root system.
(b) (R, {±1}) is also a reduced root system, called A1.
(c) In the situation of 47.9, for each α ∈ R, the subspace [Lα, L−α] ⊆ H is

1-dimensional and contains a unique element Hα such that α(Hα) = 2.
For V the real subspace of H∗ ⊗ R spanned by R and α ∈ R, we define
sα : v 7→ v − v(Hα)α. With the inner product on V as in [33, §VIII.2.2,
Rmk. 2], (V,R) is a reduced root system.

If (V,R) and (V ′,R′) are root systems, an isomorphism of (V,R) to (V ′,R′) is
an isomorphism of euclidean vector spaces ϕ : V → V ′ such that ϕ(R) = R′.
Two root systems (V,R) and (V ′,R′) are isomorphic if there exists an isomor-
phism between them. A subset B ⊂ R is said to be a basis of a root system
(V,R) if for any α ∈ R, α =

∑
β∈B cββ for some uniquely determined cβ ∈ Z

such that cβ ≥ 0 for all β ∈ B or cβ ≤ 0 for all β ∈ B. We say that the root α is
positive or negative depending on which case applies. Every root system has a
basis [31, §§VI.1.5, VI.1.6] and any two bases of (V,R) can be mapped to each
other by an automorphism of (V,R).

We are furthermore interested in reduced root systems that are also irre-
ducible, defined as follows: If (Vi,Ri), 1 ≤ i ≤ n, are root systems then
R = R1 +R2 + · · ·+Rn := ∪n

i=1Ri is a root system on V = ⊕n
i=1Vi. A root system

V,R is irreducible if V , 0 and (V,R) � (V1,R1) + (V2,R2) implies (V1,R1) or
(V2,R2) is zero. In the setting of 47.9, the root system R is irreducible if and
only if the Lie algebra L is simple.

47.12 Dynkin Diagrams. The key properties of a particular root system (V,R)
can be summarized by its Dynkin diagram. It is a graph whose vertex set is a
basis B of the root system. Vertices α , β are connected by ⟨α ,̌ β⟩⟨β ,̌ α⟩ edges.
In particular, α, β are connected by a single edge if and only if they have the
same length [31, §VI.4.2]. If α, β are connected by more than one edge, then
the two roots have different lengths, and one draws a < sign on those multiple
edges, indicating that the shorter root is “less than” the longer root. (Formally,
the Dynkin diagram is a directed graph, where vertices connected by a single
edge are bidirectional, and vertices connected by multiple edges have those
edges going from the longer root to the shorter.)

Up to isomorphism, this diagram is independent of the choice of basis.
The Dynkin diagram determines the root system up to isomorphism. A root
system is irreducible if and only if its Dynkin diagram is connected. Finite-
dimensional simple Lie algebras over an algebraically closed field of character-
istic 0 correspond to irreducible reduced root systems and hence to connected
Dynkin diagrams. These have been classified [31, §VI.4.2, Thm. 3]. We repro-
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duce part of the information found in the appendices of ibid. In each case, we
specify a basis B = {α1, . . . , αl} and we label the vertex αi ∈ B in the diagram
by the symbol i. We omit the root systems E7 and E8, because we do not use
the properties of those root systems in this book.

Al
1 2 l − 1 l

(l ≥ 1)

Let V be the hyperplane of E = Rl+1 composed of the points orthogonal to
ϵ1 + ϵ2 + · · · + ϵl+1 where ϵi, 1 ≤ i ≤ l + 1 is the standard basis of E . The
roots are ϵi − ϵ j, 1 ≤ i , j ≤ l + 1. The roots α1 = ϵ1 − ϵ2, α2 = ϵ2 − ϵ3, . . . ,
αl = ϵl − ϵl+1 form a basis of this root system.

Bl
1 2 l − 2

l − 1

l
(l ≥ 2)

Let V = E = Rl. The roots are ±ϵi, 1 ≤ i ≤ l; ±ϵi ± ϵ j, 1 ≤ i , j ≤ l. The roots
α1 = ϵ1 − ϵ2, α2 = ϵ2 − ϵ3, . . . , αl−1 = ϵl−1 − ϵl, αl = ϵl form a basis of this root
system.

Cl
1 2 l − 2

l − 1

l
(l ≥ 2)

Let V = E = Rl. The roots are ±2ϵi, 1 ≤ i ≤ l; ±ϵi ± ϵ j, 1 ≤ i < j ≤ l. The roots
α1 = ϵ1 − ϵ2, α2 = ϵ2 − ϵ3, . . . , αl−1 = ϵl−1 − ϵl, αl = 2ϵl form a basis of this root
system.

Dl
1 2 l − 3

l − 2

l − 1

l

(l ≥ 3)

Let V = E = Rl. The roots are ±ϵi ± ϵ j, 1 ≤ i < j ≤ l. The roots α1 = ϵ1 − ϵ2,
α2 = ϵ2 − ϵ3, . . . , αl−1 = ϵl−1 − ϵl, αl = ϵl−1 + ϵl form a basis of this root system.

E6
1

2

3 4 5 6
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Let V be the subspace of E = R8 whose points have coordinates (ξi) such
that ξ6 = ξ7 = −ξ8. The roots are ±ϵi ± ϵ j, 1 ≤ i < j ≤ 5, ± 1

2 (ϵ8 − ϵ7 − ϵ6 +∑5
i=1(−1)ν(i)ϵi) with

∑5
i=1 ν(i) even. The roots α1 =

1
2 (ϵ1 + ϵ8) − 1

2 (ϵ2 + ϵ3 + ϵ4 +

ϵ5 + ϵ6 + ϵ7), α2 = ϵ1 + ϵ2, α3 = ϵ2 − ϵ1, α4 = ϵ3 − ϵ2, α5 = ϵ4 − ϵ3, α6 = ϵ5 − ϵ4

form a basis of this root system.

F4
1 2 3 4

Let V = E = R4. The roots are ±ϵi, 1 ≤ i ≤ 4; ±ϵi ± ϵ j, 1 ≤ i < j ≤ 4,
1
2 (±ϵ1 ± ϵ2 ± ϵ3 ± ϵ4). The roots α1 = ϵ2 − ϵ3, α2 = ϵ3 − ϵ4, α3 = ϵ4, α4 =
1
2 (ϵ1 − ϵ2 − ϵ3 − ϵ4) form a basis of this root system.

G2
1 2

Let V be the hyperplane of E = R3 orthogonal to ϵ1 + ϵ2 + ϵ3. The roots are
ϵi−ϵ j, 1 ≤ i , j ≤ 3 and ±(2ϵi−ϵ j−ϵk), {i, j, k} a cyclic permutation of {1, 2, 3}.
The roots α1 = ϵ1 − ϵ2 and α2 = −2ϵ1 + ϵ2 + ϵ3 form a basis of this root system.

47.13 Example. Let us now produce a root system in the case of the Lie alge-
bra o(M, q), where q is a split hyperbolic quadratic space with basis x1, . . . , xl,
y1, . . . , yl of M as in the proof of Prop. 47.8. In this case, one typically writes
simply o2l(k) instead of o(M, q).

Writing Ei, j for the matrix units of Mat2l(k), S yi,x j corresponds to E j, i −

El+i, l+ j. For i < j, S xi,x j corresponds to E j,l+i − Ei,l+ j and S yi,y j corresponds to
El+ j,i − El+i, j. So o2l corresponds to the matrices(

A B
C −AT

)
(1)

where A ∈ Matl(k) and B, C ∈ Altl(k). In particular, o2l is free as a k-module
of rank 2l2 − l. It has a Cartan subalgebra h with basis

Hi = Ei,i − El+i, l+i, 1 ≤ i ≤ l.

(In the special case where ℓ = 1, we have o(q) = h.) Let ϵi be the basis of the
dual h∗ which is dual to the Hi. For 1 ≤ i, j ≤ l, let

Xϵi−ϵ j = Ei, j − El+ j, l+i i , j,

Xϵi+ϵ j = E j, l+i − Ei, l+ j i < j,

X−ϵi−ϵ j = El+i, j − El+ j, i i < j.
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For l ≥ 4 this is a root decomposition of o2l(k) of type Dl. If we let Hαi =

Hi − Hi+1, 1 ≤ i ≤ l − 1 and Hαl = Hl−1 + Hl, we have a basis of o2l(k).

47.14 Example. For b an alternating bilinear form on a k-module M, de-
fine sp(M, b) to be the subspace of gl(M) consisting of elements ϕ such that
b(ϕx, y) + b(x, ϕy) = 0 for all x, y ∈ M. One checks that it is closed under the
bracket and so it is a subalgebra of gl(M), called the symplectic Lie algebra.

In the case where M = k2l and b is the bilinear form

⟨
(

0 1l
−1l 0

)
⟩

in the notation of 11.7, we find that sp(M, b) consists of matrices as in (47.13.1)
with A ∈ Matl(k) and B,C ∈ Syml(k). We will denote this algebra sp2l(k). In
a manner similar to the previous example, one can exhibit inside sp2l(k) a root
system of type Cl, see for example [33, §VIII.13.3].

47.15 Remark. Lie algebras, even over a field, are sensitive to whether the
field has characteristic zero or not (see for example [257], [273]) and even to
whether the field has characteristic 2, 3, or 5, see for example [239]. The case
of characteristic 2 poses particular challenges, leading McCrimmon to quip
[190, §0.3]: “Lie algebras in characteristic 2 are weak, pitiable things.”

Exercises
47.16. A non-associative k-algebra L is a Malcev algebra if the product [−,−] : L×L→
L is alternating (i.e., [x, x] = 0 for all x ∈ L) and the identity

[[x, y], [x, z]] = [[[x, y], z], x] + [[[y, z], x], x] + [[[z, x], x], y],

called the Malcev identity, holds for all x, y, z ∈ L.

(a) Put J(x, y, z) := [[xy]z] + [[yz]x] + [[zx]y], so the Jacobi identity (47.1.2) reads
J(x, y, z) = 0. Verify that, if the product in L is alternating, then the Malcev identity is
equivalent to the identity

J(x, y, [xz]) = [J(x, y, z), x].

It immediately follows that every Lie algebra is a Malcev algebra.

(b) Let A be a non-associative k-algebra that is flexible, meaning that the flexible law
(13.1.3) holds. Define

S (x, y, z) := [x, y, z] + [y, z, x] + [z, x, y]

for x, y, z ∈ A. Verify that, for every permutation π of {1, 2, 3}, we have

S (xπ(1), xπ(2), xπ(3)) = (sgn π)S (x1, x2, x3),

where sgn π = 1 if π is an even permutation and −1 if π is odd.
Remark. This is a weaker statement than to say that S is alternating, as we do not claim
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that S vanishes whenever two of its arguments are equal. Let A(−) be the algebra defined
from A as in 47.2 with product [−,−]. Expanding the definitions shows that

J(x, y, z) = S (x, y, z) − S (x, z, y) ∀x, y, z ∈ A

where the expression on the left is computed in A(−).

(c) Continue the notation of (b), except we assume the stronger hypothesis that A is
alternative. Prove that A(−) is Malcev. Prove: in case 6 is invertible in k, A(−) is a Lie
algebra if and only if A is associative. (Hint: Use the Kleinfeld function of Exercise
14.8.)

47.17. Let C be a composition k-algebra of rank 4 or 8. Then C(−) is a Malcev algebra
by the preceding exercise and k is an ideal in C(−), so C(−)/k is also a Malcev algebra.
Assuming k is a field, prove: C(−)/k is simple (as a Malcev algebra) if and only if k has
characteristic different from 2.

Remark. It turns out that, if k is a field of characteristic , 2, 3, then every simple Malcev
algebra over k is either a Lie algebra or is of the form C(−)/k for C an octonion k-algebra,
see [167, Thm. 3.11] and [82]. This statement is strongly reminiscent of (1) Kleinfeld’s
Theorem 13.10, which says that every simple alternative algebra is associative (and
therefore described by the Wedderburn-Artin Theorem) or an octonion algebra, and (2)
the fact that every simple Jordan algebra is either special (and therefore arises from an
associative algebra) or is an Albert algebra.

47.18. For a ring k and n ≥ 1, write sln(k) for the collection of trace zero matrices in
gln(k). Since tr(xy) = tr(yx) for x, y ∈ Matn(k), sln(k) is closed under the bracket and so
is a Lie subalgebra of gln(k). Trivially, sl1(k) = {0}. In the case of a field F, prove:

(a) If char F does not divide n, then sln(F) is simple for n ≥ 2.
(b) If char F divides n and n > 2, then F1n is the unique proper nonzero ideal in

sln(F).
(c) In the cases considered in (a) and (b), verify that [sln(F), sln(F)] = sln(F).

47.19. Let F be a field of characteristic 2 and consider the Lie algebra sp2n(F) defined
in Example 47.14. Prove:

(a) [sp2n(F), sp2n(F)] = o2n(F) if n ≥ 2.
(b) [o2n(F), o2n(F)] is the subalgebra of o2n(F) consisting of matrices as in (47.13.1)

with A ∈ sln(F) (and B,C ∈ Altn(F)).

47.20. Pick an orientation ∆ : ∧2n (k2n) → k and define a bilinear form b on ∧nk2n via
b(x, y) := ∆(x ∧ y). It is symmetric if n is even and alternating if n is odd. (We assume
n ≥ 1 to avoid triviality.) Prove:

(a) The action of sl2n(k) on ∧n(k2n) gives a nonzero homomorphism of Lie algebras
ρ : sl2n(k)→ g, where g := o(∧nk2n, b) if n is even and sp(∧nk2n, b) if n is odd.

(b) If k is a field of characteristic not dividing 2n and n ≥ 1, then ρ is injective. If
additionally n = 2, then ρ is an isomorphism sl4(k) � o6(k).

(c) If k is a field of characteristic 2 and n > 1, then Ker(ρ) = k12n. If additionally
n = 2, then ρ induces an isomorphism

sl4(k)/k12n � [o6(k), o6(k)].
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Remark. The root systems A3 and D3 have isomorphic Dynkin diagrams and so are
isomorphic, and it follows that the simple Lie algebras sl4(C) and o6(C) are isomorphic.
This exercise provides corresponding statements over an arbitrary field.

48 Derivations

Most results of the next two sections can be found in [176], some in more
generality. Unless otherwise specified, we assume that k is a commutative ring.

48.1 Definition. A derivation of a non-associative algebra A is an element
D ∈ Endk(A), the associative algebra of endomorphisms of A as a k-module,
satisfying one (and hence all) of the following equivalent relations, for all x, y ∈
A:

D(xy) = (Dx)y + x(Dy), (1)

[D, Lx] = LDx, (2)

[D,Ry] = RDy. (3)

The derivations of A form a Lie algebra — more precisely, a subalgebra of
Endk(A)(−) — denoted by Der(A). The elements of Der(A) also act on commu-
tators and associators in a derivation-like manner, i.e., we have

D([x, y]) = [Dx, y] + [x,Dy], (4)

D([x, y, z]) = [Dx, y, z] + [x,Dy, z] + [x, y,Dz] (5)

for all x, y, z ∈ A. Moreover if A is unital,

D1A = 0. (6)

In general we will refer to the action of Der(A) on A as the natural represen-
tation of Der(A). If A is unital, in view of (6) we consider the action of Der(A)
on A/k1A as the natural representation.

48.2 Example. The notion of a derivation for a non-associative algebra A over
k is naturally related to the notion of an automorphism as follows. Suppose
D ∈ Endk(A) and put R := k[ε] for the k-algebra of dual numbers. We have: D
is a derivation of A if and only if ϕD : AR → AR defined by

ϕD(x + εy) := x + ε(Dx + y)

for x, y ∈ A is an automorphism of AR. While R-linearity is straightforward to
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check, the equations

ϕD
(
(x + εy)(x′ + εy′)

)
= ϕD

(
xx′ + ε(xy′ + yx′)

)
= xx′ + ε

(
D(xx′) + xy′ + yx′

)
and

ϕD(x + εy)ϕD(x′ + εy′) =
(
x + ε(Dx + y)

)(
x′ + ε(Dx′ + y′)

)
= xx′ + ε

(
x(Dx′) + xy′ + (Dx)x′ + yx′

)
for all x, x′, y, y′ ∈ A show the desired equivalence.

48.3 Example. If A is an associative algebra then for a ∈ A, Ea := La − Ra

is a derivation of A and also of the Lie algebra A(−). (We will see that this is
not true in general for alternative algebras.) Such derivations of an associative
algebra are said to be inner. Note that [Ea, Eb] = E[a, b] so InDerass(A) := {Ea |

a ∈ A} is a subalgebra of Der(A) which is in fact an ideal of Der(A) since
(48.1.2), (48.1.3) give [D, Ea] = EDa. Jacobson showed that if A is a finite-
dimensional central simple associative algebra over a field, then all derivations
of A are inner [131, Thm. 7]. The same holds for separable algebras (42.6) over
a ring k [158, III, Theorem 1.4 (7)] and semisimple Lie algebras over a field of
characteristic zero [30, §I.6.2, Cor. 3].

48.4 Proposition. Let A be a k-algebra that is a finitely generated projective
k-module and suppose R ∈ k-alg is flat. Then

(Derk(A))R = DerR(AR)

under the identifications of 47.3.

Proof Let

δA : Endk(A)→ Homk(A ⊗ A, A)

be the unique linear map satisfying

δA( f )(a1 ⊗ a2) = f (a1a2) − f (a1)a2 − a1 f (a2)

a1, a2 ∈ A, so that Derk(A) = Ker δA. Combining the identifications of 47.3
with (A ⊗ A)R = AR ⊗R AR, one checks that (δA)R = δAR , and the assertion
follows. □

The conclusion of the proposition may be stated informally as “Der(A) is
compatible with flat base change”.

Regardless of whether A is associative, the subset {Ea} of Endk(A) is the im-
age of a linear map A→ Endk(A), and so the same proof shows that InDerass(A)
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is also compatible with flat base change, i.e., InDerass(A)R � InDerass(AR) for
flat R ∈ k-alg.

48.5 Identities of alternative algebras. To study derivations of alternative
algebras we will need some identities which we collect here. Let Vy := Ly +Ry

and x ◦ y := Vxy = Vyx = xy + yx.

[La,Rb] = [Ra, Lb], (1)

[La, Lb] = L[a,b] − 2[La,Rb], (2)

[Ra,Rb] = −R[a,b] − 2[La,Rb], (3)

[[La,Rb], Lc] = L[a,b,c] − [L[a,b],Rc], (4)

[[La,Rb],Rc] = R[a,b,c] − [Lc,R[a,b]], (5)

[La,Rb]Lc = −Lc[La,Vb] − L[Va,Rb]c, (6)

[La,Rb](xy) = ([La,Rb]x)y + x([La,Rb]y) + [x, [a, b], y]. (7)

Identity (1) is the linearized version of flexibility (13.1.3). Since the associator
is alternating, [a, c, b] = −[a, b, c] = [b, a, c]. So in operator form,

−[La,Rb] = −Lab + LaLb = Lba − LbLa (8)

which yields (2). Reading (2) in the opposite algebra, using (1), yields (3).
From the last equality of (8) we get

LaLb = −LbLa + La◦b (9)

and from the first

RbLa = LaVb − Lab. (10)

We will prove (6) next. Using (9) and (10),

LaRbLc = La(LcVb − Lcb)

= −LcLaVb + La◦cVb + LcbLa − La◦(cb),

RbLaLc = Rb(−LcLa + La◦c)

= −LcVbLa + LcbLa + La◦cVb − L(a◦c)b.

Subtracting, we obtain (6). Rewriting (6), using (2)

[La,Rb]Lc = −Lc[La, Lb] − Lc[La,Rb] − L[Va,Rb]c

= −LcL[a,b] + Lc[La,Rb] − L[Va,Rb]c.
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Using (3)

[[La,Rb], Lc] = −LcL[a,b] − L[La,Rb]c − L[Ra,Rb]c

= −LcL[a,b] − L[La,Rb]c + LR[a,b]c + L2[La,Rb]c

= −LcL[a,b] + L[a,b,c] + LR[a,b]c

= L[a,b,c] − [L[a,b],Rc]

since

−LcL[a,b]x + LR[a,b]cx = −c([a, b]x) + (c[a, b])x

= [c, [a, b], x] = [[a, b], x, c] = −[L[a,b],Rc]x.

So we have (4). Reading it in the opposite algebra yields (5). Finally, using (6),
(2) and (3),

[La,Rb](xy) = −Lx[La,Vb]y − L[Va,Rb]xy

= −Lx[La, Lb]y − Lx[La,Rb]y − L[La,Rb]xy − L[Ra,Rb]xy

= −LxL[a,b]y + Lx[La,Rb]y − L[La,Rb]xy + LR[a,b] xy + L2[La,Rb]xy

= ([La,Rb]x)y + x([La,Rb]y) + [x, [a, b], y]

yielding (7).

48.6 Lie multiplication algebra. We define the Lie multiplication algebra of
an algebra A, denoted by L(A), to be the Lie subalgebra of gl(A) generated by
all left and right multiplications of A (see section 8.3). If A is an associative
algebra then L(A) = LA + RA. If 2 ∈ k× and J is a linear Jordan algebra over k,
then L(J) = LJ + [LJ , LJ].

By (48.1.2) and (48.1.3),

[Der(A),L(A)] ⊆ L(A).

48.7 Proposition (McCrimmon [176, Prop. 2.2]). The Lie multiplication al-
gebra of an alternative algebra A is

L(A) = LA + RA + [LA,RA].

Proof By (48.5.2)–(48.5.5) it suffices to verify that

[[LA,RA], [LA,RA]] ⊆ LA + RA + [LA,RA].

This follows from the Jacobi identity and applying (48.5.4) and (48.5.5) twice.
□

48.8 Lie multiplication derivations. We will assume from now on in this
chapter that alternative algebras are unital. General results on derivations of
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alternative algebras including not necessarily unital ones can be found in [176].
For a unital alternative algebra A, we define the Lie multiplication derivation
algebra of A by

LMDer(A) := L(A) ∩ Der(A)

and refer to its elements as Lie multiplication derivations. Thanks to [176, Prop
1.4], this definition is consistent with the corresponding one in [176, (1-7)].

48.9 Theorem (McCrimmon [176, Thm. 2.3]). An endomorphism D of an
alternative algebra A is a Lie multiplication derivation if and only if

D = La − Ra +

m∑
i=1

[Lai ,Rbi ] (1)

for some m ∈ N, a, ai, bi ∈ A satisfying

3a +
m∑

i=1

[ai, bi] ∈ Nuc(A). (2)

Proof If D is a Lie multiplication derivation of A then D = La + Rb +∑m
i=1[Lai ,Rbi ] for some m ∈ N, a, b, ai, bi ∈ A and b = −a since D1A = 0.

Therefore D is of the form (1). Now (La−Ra)(xy)−((La−Ra)x)y−x((La−Ra)y) =
a(xy)− (xy)a− (ax)y+ (xa)y− x(ay)+ x(ya) = −[a, x, y]− [x, y, a]+ [x, a, y] =
[x, 3a, y].

On the other hand, (48.5.7) states

[La,Rb](xy) = ([La,Rb]x)y + x([La,Rb]y) + [x, [a, b], y].

Therefore for D as in (1),

D(xy) − D(x)y − xD(y) = [x, 3a +
m∑

i=1

[ai, bi], y]

for all x, y ∈ A and (2) is equivalent to D being a derivation of A. □

48.10 Derivations of alternative algebras and exterior powers. We can re-
state Theorem 48.9 using exterior powers. Let

W(A) := A ⊕
2∧

A.

We introduce two linear maps on W(A).

s : W(A)→ A, s((a, b ∧ c)) := 3a + [b, c] a, b, c ∈ A.
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By (13.1.3), the bilinear expression [La,Rb] is alternating in a and b. Hence we
can define the linear map

∆ : W(A)→ gl(A), ∆((a, b ∧ c)) := La − Ra + [Lb,Rc], a, b, c ∈ A.

For x ∈ W(A), denote ∆(x) by ∆x. In this notation, Theorem 48.9 implies

LMDer(A) = {∆x | x ∈ W(A), s(x) ∈ Nuc(A)}. (1)

Observe that every g ∈ gl(A) induces a linear map

ĝ : W(A)→ W(A), ĝ((a, b ∧ c)) := (g(a), g(b) ∧ c + b ∧ g(c))

for a, b, c ∈ A, thus providing an embedding of Lie algebras

gl(A)→ gl(W(A)).

48.11 Inner derivations. A homomorphism f : A→ B of alternative algebras
may fail to map the nucleus of A into the nucleus of B; for example, this hap-
pens for a quaternion subalgebra A of an octonion algebra B, with f being the
inclusion (Exc. 19.32 (b)). It follows that Lie multiplication derivations of A
do not necessarily extend to Lie multiplication derivations of B. We wish to
avoid this difficulty by defining the inner derivations of A

InDeralt(A) := {∆x | x ∈ W(A), s(x) = 0}. (1)

More explicitly they are the linear maps

La − Ra +

m∑
i=1

[Lai ,Rbi ] with 3a +
m∑

i=1

[ai, bi] = 0.

48.12 Proposition (Schafer [254, p. 77]). Let A be an alternative algebra and
a, b ∈ A. Then

Da,b := [La, Lb] + [La,Rb] + [Ra,Rb] (1)

= L[a,b] − R[a,b] − 3[La,Rb]

= ∆
(
[a, b], (−3a ∧ b)

)
is an inner derivation of A.

Proof If x ∈ A then

Da,bx = a(bx) − b(ax) + a(xb) − (ax)b + (xb)a − (xa)b

= −[a, b, x] + (ab)x + [b, a, x] − (ba)x − [a, x, b]

+ [x, b, a] + x(ba) − [x, a, b] − x(ab)

= L[a,b]x − R[a,b]x + 3[a, x, b]
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and the second equality of (1) holds. Since s([a, b], (−3a ∧ b)) = 0, Da,b is an
inner derivation by Theorem 48.9. □

48.13 Various classes of inner derivations.

(a) Commutator derivations. Derivations of the form La − Ra with 3a = 0 are
called commutator derivations. We put

ComDer(A) = {La − Ra | a ∈ A, 3a = 0} = {∆(a) | a ∈ A, s(a) = 0}.

Nontrivial commutator derivations exist only in the presence of 3-torsion.

(b) Associator derivations. Derivations of the form
∑m

i=1[Lai ,Rbi ] such that∑m
i=1[ai, bi] = 0 are called associator derivations. We put

AssDer(A) := {
m∑

i=1

[Lai ,Rbi ] | m ∈ N, ai, bi ∈ A,
m∑

i=1

[ai, bi] = 0}

= {∆(u) | u ∈
2∧

A, s(u) = 0}.

Since
∑m

i=1[Lai ,Rbi ]c = −
∑m

i=1[ai, c, bi] up to a sign is a sum of associators, we
have AssDer(A) = {0} if A is associative.

(c) Standard derivations. Linear combinations of derivations having the form
Da,b, a, b ∈ A, are called standard derivations of A. We denote by

StanDer(A) = {
m∑

i=1

Dai,bi | m ∈ N, ai, bi ∈ A} = {∆(s(u),−3u) | u ∈
2∧

A}

the k-module of standard derivations of A.

48.14 Proposition. The k-modules InDer(A), ComDer(A), AssDer(A) and
StanDer(A) are ideals of Der(A).

Proof This follows immediately from (48.1.2), (48.1.3), (48.1.4). □

48.15 Proposition (Schafer [254, pp. 77–78]). If D ∈ Der(A) then Db,a =

−Da,b and

[D,Da,b] = DDa,b + Da,Db, Dab,c + Dbc,a + Dca,b = 0

for all a, b, c ∈ A.

Proof The first two statements follow from (48.1.2), (48.1.3), (48.1.4). Let a,
b, c, x be elements of an alternative algebra A. Then

[ab, c] + [bc, a] + [ca, b] = 3[a, b, c]. (1)
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Adding the following three versions of (7.5.2), using the fact that the associator
is alternating,

x[a, b, c] + [x, a, b]c = [xa, b, c] − [x, ab, c] + [x, a, bc],

−a[b, c, x] − [a, b, c]x = −[ab, c, x] + [a, bc, x] − [a, b, cx],

a[x, b, c] + [a, x, b]c = [ax, b, c] − [a, xb, c] + [a, x, bc],

we obtain

[x, [a, b, c]] = [xa + ax, b, c] − 2[x, ab, c] − [x, bc, a] − [cx, a, b] − [xb, c, a].

Taking the sum over cyclic permutations of a, b, c, we get

3[x, [a, b, c]] = 3
∑
(abc)

[ab, x, c],

hence

3[[a, b, c], x] + 3
∑
(abc)

[ab, x, c] = 0.

Since [ab, x, c] = −[Lab,Rc]x, this amounts to

3
(
L[a,b,c] − R[a,b,c] − [Lab,Rc] − [Lbc,Ra] − [Lca,Rb]

)
= 0. (2)

Thus, (1) implies

Dab,c + Dbc,a + Dca,b = L[ab,c] − R[ab,c] − 3[Lab,Rc]

+ L[bc,a] − R[bc,a] − 3[Lbc,Ra]

+ L[ca,b] − R[ca,b] − 3[Lca,Rb]

= 3L[a,b,c] − 3R[a,b,c] − 3[Lab,Rc] − 3[Lbc,Ra] − 3[Lca,Rb],

which is 0 by (2). □

It is well known that 3 plays a special role in alternative theory.

48.16 Proposition. Let A be an alternative k-algebra.

(a) If 3A = A then InDer(A) = StanDer(A) + ComDer(A).
(b) If 3 ∈ k× then InDer(A) = StanDer(A).
(c) If 3A = {0} then InDer(A) = AssDer(A) + ComDer(A).

Proof Let x = (a, u) ∈ W(A) with s(x) = 0. If 3A = A then u = 3w for some
w ∈

∧2 A. So s(u) = 3s(w) and 0 = s(x) = 3a + s(u) = 3a + 3s(w). Letting
b = a + s(w),

∆(x) = ∆(−s(w), 3w) + ∆(b) ∈ StanDer(A) + ComDer(A).
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If 3 ∈ k× there is no 3-torsion and ComDer(A) = {0} so InDer(A) = StanDer(A).
Finally if 3A = {0} then s(x) = s(u) = 0 and ∆(x) = ∆(a)+∆(u) ∈ ComDer(A)+
AssDer(A). □

If 3 ∈ k×, for example if k is a field of characteristic not 3, then InDer(A) =
StanDer(A) and standard derivations suffice. In general we will need associator
derivations. Let us first show that, under the identifications of 25.3, they are
compatible with flat base change.

48.17 Proposition. Let A be an alternative algebra that is finitely generated
as a k-module. The associator derivations of A commute with flat base change,
i.e., for all flat R ∈ k-alg, AssDer(A)R = AssDer(AR).

Proof Let KA := Ker(sA) ∩
∧2 A and TA = Ker(∆A). Taking exterior pow-

ers commutes with flat (even arbitrary) base change [28, III.7.5, Prop. 8], ergo
so do the linear maps ∆A and sA as does [A, A]. By (25.3.2), Ker(sA) com-
mutes with flat base change. Therefore so does KA. Since AssDer(A) = {∆(u) |
u ∈

∧2 A, s(u) = 0}, ∆ restricts to a surjection ∆|KA : KA → AssDer(A) and we
obtain the following commutative diagram with exact rows and columns:

0

��

0

��
0 // TA // KA

��

∆|KA // AssDer(A)

��

// 0

∧2 A

s

��

∆ // Endk(A)

[A, A]

��
0

Tensoring with R yields the desired result. □

The other classes of derivations we introduced also commute with flat base
change, see Exc. 48.25.

48.18 Corollary. Let A be an alternative algebra that is finitely generated as
a k-module. If DerR(AR) = AssDerR(AR) for a faithfully flat R ∈ k-alg, then
Derk(A) = AssDerk(A).
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Proof Both Der(A) and AssDer(A) are compatible with flat base change by
Propositions 48.4 and 48.17, therefore

(Der(A)/AssDer(A))R � Der(AR)/AssDer(AR) = 0.

Because R is faithfully flat, we conclude that Der(A) � AssDer(A). □

To show that associator derivations arise naturally we need to consider grad-
ings of alternative algebras.

48.19 3-gradings. Let Γ be a finite abelian group and M = ⊕γ∈ΓMγ a Γ-graded
k-module. Since Γ is finite, this induces a Γ-grading on the algebra End(M) =
⊕γ∈ΓEnd(M)γ, where End(M)γ = { f ∈ End(M) | f (Mβ) ⊆ Mβ+γ,∀β ∈ Γ},
and then on the Lie algebra gl(M). Moreover, if M carries a non-associative
k-algebra structure A, then Der(A) is easily seen to be a graded subalgebra of
gl(A). In particular if e is an idempotent of a unital alternative algebra A, letting
e1 = e, e2 = 1A − e and A = A11 ⊕ A12 ⊕ A21 ⊕ A22 the Peirce decomposition
of A with respect to e (cf. Exc. 14.12), then one checks that A0 = A11 ⊕ A22,
A1 = A12, A2 = A21 is a Z/3Z-grading of A. We refer to this as the e-grading
of A and write

g = g0 ⊕ g1 ⊕ g2

for the corresponding Z/3Z-grading of the derivation algebra g = Der(A) and
call this the e-grading of g. Fixing i, j ∈ {1, 2}, i , j and ui j ∈ Ai j = Ai, it is
straightforward to check, using the Peirce relations, that the derivation

Di(ui j) := −Dei,ui j = De j,ui j ∈ StanDer(A)

satisfies the relations

Di(ui j)xii = xiiui j, (1)

Di(ui j)x j j = −ui jx j j, (2)

Di(ui j)xi j = ui jxi j, (3)

Di(ui j)x ji = −[ui j, x ji] (4)

for all xλ,µ ∈ Aλ,µ, λ, µ = 1, 2. These and the Peirce relations yield Di(ui j) ∈ gi,
i = 1, 2. If D ∈ g satisfies D(e) = 0 then D(1A − e) = 0 and D stabilizes Ai,
i = 0, 1, 2. So D ∈ g0. In fact

48.20 Proposition. Let e , 0, 1 be an idempotent of an alternative algebra A.
The e-grading g = g0 ⊕ g1 ⊕ g2 of g = Der(A) is given by

g0 = {D ∈ g | De = 0}, gi = {Di(ui j) | ui j ∈ Ai j} ({i, j} = {1, 2}).
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Moreover, the maps ui j 7→ Di(ui j) are k-module isomorphisms Ai j � gi for
i , j.

Proof For any D ∈ g, De = D(e2) = (De)e + e(De). Therefore the 22 and
hence the 11 Peirce components of De are 0 and De = u12 + u21, for some
u12 ∈ A12, u21 ∈ A21. Thus

D = D0 + D1 + D2,

where

D0 := D − D1(u12) + D2(u21),

D1 := D1(u12),

D2 := −D2(u21).

Since D0(e) = 0, we have Di ∈ gi, i = 0, 1, 2. Thus the first statement of the
proposition holds. Finally, Di(ui j) = 0 implies Di(ui j)ei = ui j = 0 by (48.19.1),
proving the last statement. □

48.21 Corollary. Let C be an associative composition algebra over k.

(a) If C = k or C is quadratic étale, then Der(C) = {0}.

(b) If C is a quaternion algebra over k then

Der(C) = InDerass(C) = {La − Ra | a ∈ C}.

Proof Suppose first that C is split. If C = k, Der(C) = {0} follows immedi-
ately from D(1C) = 0. For C split quadratic étale, C = k × k and C12 = {0} =
C21. Therefore Der(C) = g0 = {0} by Prop. 48.20.

If C is a split quaternion algebra over k, C = Mat2(k). Letting e = e1 =(
1 0
0 0

)
, we may consider the e-grading of C and of Der(C) = g. For i = 1 or

2, gi = {Di(ui j) | ui j ∈ Ci j} by Prop. 48.20. Since C is associative, up to sign,
Di(ui j) = Dei,ui j = L[ei,ui j] −R[ei,ui j] = Lui j −Rui j . Since C0 = ke1 ⊕ ke2, if D ∈ g0
then the restriction D|C0 = 0 . So D

( α1 v
u α2

)
=

(
0 D1v

D2u 0

)
, where Di = Lλi ,

λi ∈ k. Computing (48.1.1) for x =
(

0 0
u 0

)
and y =

(
0 v
0 0

)
yields λ2 = −λ1 and

D = Lλ1e1 − Rλ1e1 . So Der(C) = {La − Ra | a ∈ C}.
In the general case, let R ∈ k-alg be faithfully flat so that CR is split. Since

Der(C) and InDerass(C) are compatible with flat base change (Prop. 48.4 and
its proof) and R is faithfully flat, we are done by the split case. □

48.22 Remarks. (a) By Exc. 14.12, since any element a ji ∈ A ji, {i, j} = {1, 2},
squares to 0, any two elements of A ji skew-commute.

(b) By left and right alternativity ai j(ai jb) = a2
i jb = 0 = ba2

i j = (bai j)ai j.
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(c) By definition the 0-component g0 is a subalgebra and g1, g2 are g0-modules.

The elements of g1 and g2 are obviously standard derivations. But in impor-
tant cases they also turn out to be associator derivations. An explicit description
of these cases will now be given.

48.23 Proposition. Let A be a unital alternative algebra, e an idempotent of
A and A = A0 ⊕ A1 ⊕ A2 the e-grading of A. Let i, j ∈ {1, 2} be distinct and
u ji, v ji ∈ A ji. Then the derivation Di(u jiv ji) is in AssDer(A).

Proof Let

D := 2[Lei ,Ru jiv ji ] − [Lu ji ,Rv ji ].

By Remark 48.22 (a),

2[ei, u jiv ji] − [u ji, v ji] = 2u jiv ji − 0 − u jiv ji + v jiu ji = 0

and D ∈ AssDer(A). To show that Di(u jiv ji) = D and hence that Di(u jiv ji) ∈
AssDer(A), it suffices to show that they have the same action on arbitrary ele-
ments of Alk, l, k ∈ {1, 2}.

The identities (48.19.1)–(48.19.4) as well as the Peirce multiplication rules
will be used throughout without further reference. The linearization of left al-
ternativity (13.2.1) yields

Dxii = 2ei((xii(u jiv ji)) − 2(eixii)(u jiv ji) − u ji(xiiv ji) + (u jixii)v ji

= (u jixii + xiiu ji)v ji = u ji(xiiv ji) + xii(u jiv ji)

= Di(u jiv ji)xii.

Similarly, using the linearization of right alternativity (13.2.2), we obtain

Dx j j = 2ei(x j j(u jiv ji)) − 2(eix j j)(u jiv ji) − u ji(x j jv ji) + (u jix j j)v ji

= −u ji(x j jv ji + v jix j j) = −(u jix j j)v ji − (u jiv ji)x j j

= Di(u jiv ji)x j j.

Using the linearization of Remark 48.22 (b),

Dx ji = 2ei(x ji(u jiv ji)) − 2(eix ji)(u jiv ji) − u ji(x jiv ji) + (u jix ji)v ji

= x ji(u jiv ji) − (u jiv ji)x ji = −[u jiv ji, x ji]

= Di(u jiv ji)x ji.
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Finally, using the fact that the associator is alternating and (13.2.2),

Dxi j = 2ei(xi j(u jiv ji)) − 2(eixi j)(u jiv ji) − u ji(xi jv ji) + (u jixi j)v ji

= −2xi j(u jiv ji) − u ji(xi jv ji) + (u jixi j)v ji

= −2(xi ju ji)v ji − 2(u jixi j)v ji + 2u ji(xi jv ji) − u ji(xi jv ji) + (u jixi j)v ji

= u ji(xi jv ji) − (u jixi j)v ji = u ji(v jixi j + xi jv ji) − (u jixi j)v ji = (u jiv ji)xi j

= Di(u jiv ji)xi j.

Therefore Di(u jiv ji) = D. □

48.24 Corollary. The g0-modules g1 and g2 are contained in StanDer(A). If
Ai j = A2

ji, then gi ⊆ AssDer(A) for i = 1, 2. □

Exercises
48.25. Show that if an alternative algebra A is finitely generated as a k-module the
Lie algebras LMDer(A), InDer(A), ComDer(A) and StanDer(A) commute with flat base
change. That is, show that for all flat R ∈ k-alg:

(a) LMDer(A)R = LMDer(AR);
(b) InDer(A)R = InDer(AR);
(c) ComDer(A)R = ComDer(AR); and
(d) StanDer(A)R = StanDer(AR).

49 Derivations of octonions

In 48.13, we have encountered various classes of inner derivations for unital
alternative algebras. These classes will now be investigated more closely in the
important special case of octonion algebras, where we will realize all deriva-
tions as inner derivations of a specific type. The idea to achieve this objective
with standard derivations, however, is doomed to failure since, given an octo-
nion algebra C over a field of characteristic 3, StanDer(C) turns out to be a
seven-dimensional proper ideal in the full derivation algebra (49.7).

Associator derivations to the rescue! We will show in Thm. 49.5 below that
every derivation of an octonion algebra over any commutative ring is an asso-
ciator derivation. The proof will be based on our results on e-gradings, which
can be achieved since any octonion algebra is split by a suitable faithfully flat
extension (Cor. 26.9), and both the full derivation algebra and the algebra of
associator derivations behave nicely under such extensions (Cor. 48.18).

49.1 Derivations and the norm. Let C be a conic algebra over k, g = Der(C),
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D ∈ g and k[ε], the algebra of dual numbers. The map 1 + εD is an automor-
phism of Ck[ε] by Example 48.2, and hence leaves the norm and trace of Ck[ε]

invariant (Prop. 16.16). In particular

nC(x,Dx) = 0 ∀x ∈ C, (1)

tC(Dx) = 0 ∀x ∈ C. (2)

So g ⊆ o(C, nC), the orthogonal Lie algebra of (C, nC). As in 16.6, let C0 be the
submodule of trace-zero elements in C . By (2), gC0 ⊆ C0 and, writing n0

C for
nC |C0 , we have g ⊆ o(C0, n0

C).

49.2 Reduced octonion algebras. Let C be a reduced octonion algebra over k.
Then C is a twisted Zorn vector matrix algebra (22.14), that is,

C = Zor(M, θ) =
(

k M∗

M k

)
,

where M is a finitely generated projective k-module of rank 3, and θ is an
orientation of M. The product is given by (22.14.3).

For g ∈ Endk(M), let g∗ ∈ Endk(M∗) be the dual of g, so with respect to the
canonical pairing

M∗ × M −→ k, (x∗, y) 7−→ ⟨x∗, y⟩,

we have ⟨g∗(w∗), x⟩ = ⟨w∗, g(x)⟩, for all x ∈ M, w∗ ∈ M∗. Then (22.14.2)
implies

⟨g(x) ×θ g(y), g(z)⟩ = θ(g(x) ∧ g(y) ∧ g(z))

= det(g)θ(x ∧ y ∧ z) = det(g)⟨x ×θ y, z⟩

for all x, y, z ∈ M. Differentiating at 1M in the direction g ∈ Endk(M) yields

⟨g(x) ×θ y, z⟩ + ⟨x ×θ g(y), z⟩ + ⟨x ×θ y, g(z)⟩ = tr(g)⟨x ×θ y, z⟩

or, since ⟨−,−⟩ is regular,

−g∗(x ×θ y) = g(x) ×θ y + x ×θ g(y) − tr(g)x ×θ y. (1)

Consider the canonical identification of M∗ ⊗ M with Endk(M) via

(v∗ ⊗ u)(x) = ⟨v∗, x⟩u for any u, x ∈ M, v∗ ∈ M∗, (2)

and of M ⊗ M∗ with Endk(M∗) via u ⊗ v∗ : y∗ 7→ ⟨y∗, u⟩v∗. One checks that
(v∗ ⊗ u)∗ = u ⊗ v∗. Since

tr(v∗ ⊗ u) = ⟨v∗, u⟩ = tr(u ⊗ v∗), (3)
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we conclude

tr(g) = tr(g∗) (4)

for any g ∈ Endk(M).
Now let e = e1 =

(
1 0
0 0

)
and e2 = 1C−e1. Consider the e-grading of Der(C) =

g = g0 ⊕ g1 ⊕ g2.

49.3 Proposition. If C = Zor(M, θ) is a reduced octonion algebra over k and
Der(C) = g = g0⊕g1⊕g2 as above, then the Lie subalgebra g0 of g is isomorphic
to sl(M) := {g ∈ Endk(M) | tr(g) = 0} via the map ϕ : sl(M)→ g0 given by

ϕ(g)
(
α1 v∗

v α2

)
:=

(
0 −g∗v∗

gv 0

)
. (1)

Proof For D ∈ g0,

D
(
α1 v∗

v α2

)
=

(
0 D1v∗

D2v 0

)
, (2)

where D1 ∈ End(M∗) and D2 ∈ End(M).

For x =
(

0 0
u 0

)
and y =

(
0 v∗
0 0

)
, (48.1.1) and De2 = 0 yield 0 = ⟨v∗,D2u⟩ +

⟨D1v∗, u⟩. Hence

D1 = −D∗2. (3)

For x =
(

0 0
u 0

)
and y =

(
0 0
v 0

)
, (48.1.1) yields

−D∗2(u ×θ v) = (D2u) ×θ v + u ×θ D2v. (4)

Comparing with (49.2.1), this is equivalent to tr(D2)u×θ v = 0 for all u, v ∈ M.
Recall from 22.14 that ⟨u×θ v,w⟩ = θ(u∧ v∧w) and θ :

∧3 M
∼
→ k. Therefore

tr(D2) = 0. (5)

Note that if D1, D2 satisfy (3), (4) and (5) then to show that D as in (2) is a
derivation of C we only need the relation D2(v∗ ×θ w∗) = (D1v∗) ×θ w∗ + v∗ ×θ
(D1w∗). This in turn will follow from (49.2.1) once we know tr(D∗2) = 0, which
is clear since tr(g) = tr(g∗) for all linear endomorphisms of a finitely generated
projective k-module (49.2.4).

By definition ϕ(g)(ei) = 0 and D = ϕ(g) satisfies (3). Since g ∈ sl(M), by
(49.2.1) ϕ(g) satisfies (4) and therefore ϕ(g) ∈ g0. Bijectivity is obvious. □

49.4 Corollary. For every octonion algebra C over a ring k, Der(C) is finitely
generated projective of rank 14 as a k-module.
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Proof Making C reduced after a faithfully flat base change, combine Propo-
sitions 48.20 and 49.3 to see that Der(C) � sl3(k)⊕M⊕M∗ as a k-module. □

49.5 Theorem (Loos-Petersson-Racine [176, Thm. 5.1]). Every derivation of
an octonion algebra C is an associator derivation, i.e., AssDer(C) = Der(C).

Proof By Corollaries 26.9 and 48.18, we may assume that C is split. The fol-
lowing argument works more naturally by merely assuming that C be reduced,
as above. As shown in 22.14, locally, M is free and a basis can be chosen such
that ×θ is the classical vector product × and

C2
ji = Ci j {i, j} = {1, 2}.

So Cor. 48.24 holds and gi ⊂ AssDer(C), i = 1, 2. Therefore it remains to
prove that g0 ⊂ AssDer(C). Recall the canonical identification of M∗ ⊗M with
End(M) (49.2.2). Let

a =
(
0 0
u 0

)
, b =

(
0 v∗

0 0

)
, c =

(
0 0
x 0

)
∈ C. (1)

Using (22.14.3) one computes

[a, b] = ⟨v∗, u⟩(e1 − e2), [La,Rb]e1 = 0, [La,Rb]c =
(

0 0
−(u ×θ x) ×θ v∗ 0

)
.

(2)

Now by the first of the Grassmann identities of Exc. 22.29,

−(u ×θ x) ×θ v∗ = ⟨v∗, x⟩u − ⟨v∗, u⟩x = (v∗ ⊗ u − ⟨v∗, u⟩1M)x (3)

in the identification of (49.2.2). With the same identification, any g ∈ sl(M)
corresponds to some

∑
i v∗i ⊗ ui of trace 0 (49.2.3). Letting

ai =

(
0 0
ui 0

)
, bi =

(
0 v∗i
0 0

)
,

the derivation ϕ(g) =
∑

i[Lai ,Rbi ] is an associator derivation by (2) and (3). □

49.6 Corollary. If 3 is invertible in k, then every derivation of an octonion
algebra C over k is standard, i.e., it is a sum of derivations Da,b, a, b ∈ C.

Proof We have in general AssDer(C) ⊆ InDer(C) ⊆ Der(C), with equality by
the theorem and InDer(C) = StanDer(C) by Prop. 48.16. □

Over fields of characteristic not 2 and 3, the preceding result is due to
Schafer [254, III, Cor. 3.29].

49.7 Derivation algebra of octonions over a field. The derivation algebra
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Der(C) of an octonion algebra C over a field k has been studied in many places.
For example, using the language of octonion algebras, as we do here, see [132],
[1], and [46]. An alternative is to use the language of group schemes, as we do
in the next chapter, for which see [121], [123], and [233, §1]. (We will see in
Thm. 53.1 and 53.14 that Der(C) is the Lie algebra of a simple group scheme
of type G2.) The group scheme results provide a general context for the fact
that Der(C) is simple if and only if char(k) , 3, which we now prove.

49.8 Proposition. The derivation algebra Der(C) of an octonion algebra C
over a field k of characteristic not 3 is a simple Lie algebra.

Proof We may assume that C = Zor(k) is split so for g := Der(C),

g = g0 ⊕ g1 ⊕ g2

has a Z/3Z-grading (Prop. 48.20). By Exc. 49.11 and the characterization of g1
and g2 in the proof of Proposition 48.20, g1 and g2 are irreducible g0-modules
and g is a direct sum of inequivalent irreducible g0-modules.

Let i be an ideal of g. Since the characteristic is not 3, g0 � sl3(k) is simple so
if i∩g0 , {0} then g0 ⊆ i . In that case, using Exc. 49.11 and the characterization
of g1 and g2, we have g1 ⊕ g2 ⊆ i and i = g. If i ∩ g0 = {0}, since i is a g0-
submodule of g, i = g1, g2 or g1 ⊕ g2. Since none of these are ideals, we are
done. □

If k is of characteristic 3 then by Proposition 48.12, a standard derivation
Da,b has the form

Da,b = L[a,b] − R[a,b]

and StanDer(C) is an ideal of Der(C) of dimension 7 since [C, C] = C0.
Since Der(C) has dimension 14, this is a proper ideal and Der(C) is not sim-
ple. In fact one can show that StanDer(C) is a simple Lie algebra and that
Der(C)/StanDer(C) � StanDer(C).

If k is a field of characteristic 2, the special linear Lie algebra sl2n(k) defined
in Exc. 47.18 is not simple because k1 is a central ideal. Instead, psl2n(k) :=
sl2n(k)/k1 is simple for n > 2. It is sometimes called the classical Lie algebra
of type A2n−1.

49.9 Proposition. The derivation algebra Der(C) of an octonion algebra C
over a field k of characteristic 2 is isomorphic to psl4(k) and hence depends
only on the field k and not on C.

This can be seen by examining the multiplication table, which is the method
suggested in [272, p. 1121]. Instead, we follow the argument from [46].
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Proof Put g := Der(C). In general, g ⊆ o(C0, nC0 ) (49.1). If the characteristic
is 2, 1C ∈ C0 and since g(1C) = {0}, C̃0 := C0/k1C is also a g-module. Denote
D ∈ g acting on C̃0 by D̃. The non-degenerate symmetric bilinear form nC(x, y)
is alternating. Since nC(1C , 1C) = 0 = nC(x, 1C) for x ∈ C0, the restriction of
the bilinear form to C0 has radical k1C , and nC induces an alternating form ñC

on C̃0.
If C is split, then C12 ⊕C21 is a hyperbolic space of dimension 6 isomorphic

to C̃0 and ñC is non-degenerate. For general C, since ñC is non-degenerate over
an extension field of k, it is non-degenerate over k. We obtain a map

ϕ : g→ sp(C̃0, ñC), D 7→ D̃,

a homomorphism of Lie algebras, where the codomain was defined in Example
47.14. Now, ñC is a non-degenerate alternating bilinear form and all such forms
are isomorphic, so sp(C̃0, ñC) � sp6(k). Since g is simple ϕ is injective and the
second derived power g(2) := [[g, g], [g, g]] equals g. So

ϕ(g) = ϕ(g(2)) ⊆ sp((C̃0, ñC)(2) � sp6(k)(2).

This last algebra is isomorphic to psl4(k) by Exercises 47.19 and 47.20(c).
Since g is of dimension 14 (Cor. 49.4) while psl4(k) has dimension 15−1 = 14
we obtain the desired isomorphism. □

In contrast to the conclusion of the proposition, if k has characteristic , 2,
then the isomorphism class of Der(C) determines the octonion algebra C, see
Prop. 55.7.

Exercises
49.10. Verify: For every octonion k-algebra C, the subspace [C,C] generated by the
commutators equals C0, the trace 0 elements.

49.11. Let C = Zor(k), k a field of characteristic not 3, e = e1 =

(
1 0
0 0

)
and Der(C) =

g = g0 ⊕ g1 ⊕ g2 the e-grading of Der(C) as in Prop. 48.20. By Prop. 49.3, the Lie
subalgebra g0 of g is isomorphic to sl(M) := {g ∈ Endk(M) | tr(g) = 0} via the map
ϕ : sl(M)→ g0 given by

ϕ(g)
(
α1 v∗
v α2

)
:=

(
0 −g∗v∗
gv 0

)
.

Show that the two representations of sl3(k) above are faithful irreducible and inequiva-
lent.
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50 Lie algebras obtained from a Jordan algebra

Our presentation of the results concerning Lie algebras obtained from Jordan
algebras is inspired by Jacobson’s books [138] and [140].

50.1 The structure Lie algebra of a Jordan algebra. We let J be a Jordan
algebra over k and denote by str(J), or by strk(J) to indicate dependence on k,
the k-module of all k-linear maps A : J → J such that there exists a k-linear
map A′ : J → J satisfying

AUx + UxA′ = Ux,Ax (1)

for all x ∈ J. Letting x = 1J , A + A′ = U1J ,A1J . So

A′ = VA1J − A (2)

is uniquely determined by (1). Equation (1) linearizes to

AUx,y + Ux,yA′ = UAx,y + Ux,Ay. (3)

which is equivalent to

[A,Vx,z] = VAx,z − Vx, A′z. (4)

50.2 Proposition. The k-module str(J) is a subalgebra of gl(J) and in partic-
ular a Lie algebra. Moreover, we have

[A, B]′ = −[A′, B′] (A, B ∈ str(J)). (1)

Proof For A, B ∈ str(J) and x ∈ J, using (50.1.1) and (50.1.3),

[A, B]Ux = Ux[A′, B′] + AUx,Bx + Ux,BxA′ − BUx,Ax − Ux,AxB′

= Ux[A′, B′] + UAx,Bx + Ux,ABx − UBx,Ax − Ux,BAx

= Ux[A′, B′] + Ux,[A,B]x.

So [A, B] ∈ str(J), and (1) holds. □

50.3 The Derivation Algebra of a Jordan algebra J. A derivation of J is an
element D ∈ str(J) such that D1J = 0. By (50.1.2),

D′ = −D (1)

for a derivation D. Condition (50.1.1) becomes more suggestive if we write it

[D,Ux] = UDx,x, (2)

D1J = 0 (3)



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

50 Lie algebras obtained from a Jordan algebra 547

for all x ∈ J, which linearizes to

[D,Ux,y] = UDx,y + Ux,Dy. (4)

So if D is a derivation, (4) can be written as

D{x, z, y} = {Dx, z, y} + {x,Dz, y} + {x, z,Dy} (5)

and the derivation D behaves as one expects on the triple products. Putting
z = 1J ,

D(x ◦ y) = (Dx) ◦ y + x ◦ Dy or [D,Vx] = VDx. (6)

Letting (2) act on 1J ,

D(x2) = x ◦ D(x). (7)

Rewriting (5) in operator form, we obtain

[D,Vx,z] = VDx,z + Vx,Dz. (8)

We put Der(J) for the subalgebra of str(J) consisting of derivations.
Derivations were defined in §48 for arbitrary non-associative algebras over

a ring k and hence for linear Jordan algebras. If 2 ∈ k× then Lx := 1
2 Vx endows

J with a linear Jordan algebra structure. If D ∈ Der(J) then (6) shows that
D is a derivation of J as a linear Jordan algebra. Conversely if J is a linear
Jordan algebra and [D, Lx] = LDx for all x ∈ J one checks that (2) holds for
Ux = 2(Lx)2 − Lx2 . So if 2 ∈ k×, the above definition of a derivation of a
quadratic Jordan algebra is equivalent to the usual definition for unital linear
Jordan algebras.

In view of Proposition 48.4 one expects Der(J) and str(J) to be compatible
with flat base change.

50.4 Proposition. Let J be a Jordan algebra over k. If J is finitely generated
projective as a k-module and R ∈ k-alg a flat extension of k then (strk(J))R �

strR(JR) and (Derk(J))R � DerR(JR).

Proof Denote by QLk(J × J) the k-module of quadratic-linear maps (over k)
from J × J to J, i.e., maps that are quadratic in the first variable and linear in
the second. Scalar extensions of quadratic-linear maps exist by Exc. 11.34.

Let s : Endk(J)→ QLk(J × J) be the unique linear map satisfying

s( f )(a, b) = f (Uab) − Ua f (b) + UaV f (1J )b − Ua, f (a)b.

By (50.1.1) and (50.1.2), we have Ker( f ) = strk(J), and (11.34.1) implies
s( fR) = s( f )R. From (25.3.1) we therefore deduce strR(JR) = strk(J)R, as
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claimed. Since DerR(JR) = { f ∈ strR(JR) | f (1JR ) = 0} and 1JR = 1J ⊗ 1R

we also have the result for Derk(J). □

We next identify a large class of elements of str(J).

50.5 Proposition. If J is a Jordan k-algebra then Va,b ∈ str(J) for any a, b ∈ J
with Va,b

′ := Vb,a. In particular Va ∈ str(J) for all a ∈ J. If A ∈ str(J) then
A′ ∈ str(J) and θ : str(J) → str(J) given by Aθ := −A′ is an automorphism of
period 2 of str(J).

Proof Letting Va,b
′ := Vb,a, (29a.26) becomes (50.1.1) and Va,b ∈ str(J).

If A ∈ str(J) then A′ = VA1J − A ∈ str(J) since VA1J = V1J ,A1J ∈ str(J),
(50.1.2). The map θ is easily seen to be of period 2, and by (50.2.1) it is an
automorphism. □

We denote by instr(J) the submodule of str(J) spanned by the Va,b, a, b ∈ J.
By (50.1.4), instr(J) is an ideal of str(J) called the inner structure algebra
of J. Absorbing the coefficients in the a’s, a typical element of instr(J) can be
written as

∑
i Vai,bi . The element

∑
i Vai,bi annihilates 1J if and only if

∑
i ai◦bi =

0. By (50.3.8) these span an ideal of Der(J) the inner derivation algebra:

InDer(J) = {
∑

i Vai,bi |
∑

i ai ◦ bi = 0}. (1)

50.6 Corollary. If J is a Jordan k-algebra, then for any a, b ∈ J,

Da,b := Va,b − Vb,a

is a derivation of J, and we have

[D,Da,b] = DDa,b + Da,Db

for all D ∈ Der(J). In particular, the submodule StanDer(J) of Der(J) spanned
by Da,b, a, b ∈ J, is an ideal of Der(J). □

The elements of StanDer(J) are called standard derivations. Note that Da,b =

[Va,Vb] by (29a.12).

50.7 Examples. (1) If J is special, say J is a subalgebra of A(+), for A a unital
associative algebra, then, for any a, b ∈ J, Da,b = L[a,b] − R[a,b] on J, so Da,b

extends to a derivation of A. If D ∈ Der(A) stabilizes J then D restricts to a
derivation of J. We will see in Cor. 51.3 that for an important class of special
Jordan algebras, any D ∈ Der(J) extends to a unique derivation D′ of the
associative algebra A. In that case Der(J) = {D′|J | D′ ∈ Der(A), D′(J) ⊆ J}.

(2) If (A, ι) is an associative algebra with involution then Sym(A, ι) is a subal-
gebra of A(+), [Skew(A, ι),Sym(A, ι)] ⊆ Sym(A, ι), and {Ea | a ∈ Skew(A, ι)} ⊆
Der(Sym(A, ι)).
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(3) Just as the prime 3 gives rise to special behavior for derivations of alter-
native algebras, we expect that 2 will do so for derivations of Jordan algebras.
In general Vx ∈ str(J) (Prop. 50.5). If 2J = {0} then Vx1J = 2x = 0 for all
x ∈ J and VJ ⊆ Der(J). Since V ′x = Vx, if D ∈ Der(J), [D,Vx] = [D,Ux,1J ] =
UDx,1J + Ux,D1J = VDx by (50.3) and VJ is an ideal of Der(J).

(4) A 2-Lie algebra [135, p. 187], is a Lie algebra L over a ring k such that
2L = {0} endowed with an operation [2] : L → L, x 7→ x[2] which is quadratic,
i.e., for all α ∈ k, x, y ∈ L

(αx)[2] = α2x[2],

(x + y)[2] = x[2] + [x, y] + y[2], and

[x[2], y] = [x, [x, y]].

If 2J = {0} then J is not only a Jordan algebra but also a 2-Lie algebra [137,
Thm. 4 in §1.4]. Let L = L(J) = J as a k-module with [x, y] := x ◦ y and
x[2] := x2, the square in J. The last equation follows from (29.2.10).

(5) Let O be the Graves-Cayley octonions and ui, 0 ≤ i ≤ 7 a Cartan-Schouten
basis of O (2.1). Let Du1,u2 be the standard derivation of O(+). One checks that

Du1,u2 (u3u5) − (Du1,u2 u3)u5 − u3Du1,u2 u5 = −4u1,

so Du1,u2 is a derivation of O(+) but not a derivation of O.

50.8 Proposition. Let J be a Jordan k-algebra. If J is finitely generated pro-
jective as a k-module then the Lie algebras instr(J), InDer(J), and StanDer(J)
are compatible with flat base change.

Proof The linear map ν : J⊗ J → Endk(J) given by ν(a⊗b) := Va,b has image
instr(J), so instr(J) is compatible with flat base change by (25.3.3). Similarly,
StanDer(J) is also the image of a linear map J ⊗ J → Endk(J), so it too is
compatible with flat base change.

Let c : J⊗ J → J be the linear map defined by c(a⊗b) := a◦b. Then Ker(c)
is compatible with flat base change, and InDer(J) is the image of ν : Ker(c)→
Endk(J), so InDer(J) is also compatible with flat base change. □

51 Derivations of Freudenthal algebras

In the preceding section, we defined a number of Lie algebras obtained from
Jordan algebras. We are interested in identifying those Lie algebras when the
Jordan algebra is a Freudenthal algebra. Since the derivation algebra of a Freud-
enthal algebra J is stable under flat base change (Prop. 50.4) and J can be split
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by a faithfully flat base change (Cor. 39.32), many proofs can be reduced to
the split case. For example:

51.1 Lemma. If J is a Freudenthal algebra over k of rank 1 or 3, then Der(J) =
{0}.

Proof A Freudenthal algebra of rank 1 is k(+), and it immediately follows
from (50.3.3) that Der(k(+)) = {0}.

For the case of rank 3, we may assume that J = (k × k × k)(+). For any
D ∈ Der(J), by (50.3.7), Dei = D(e2

i ) = ei ◦ Dei, and (32.2.7) implies Dei ∈

J1(ei) = {0}. □

To treat the Freudenthal algebras of rank 6, 9, or 15, we will need the fol-
lowing special case of a result of Martindale [180, Thm. 1].

51.2 Proposition. Let J = Her3(C), C an associative composition algebra,
A = Mat3(C) and τ the conjugate transpose involution as in 10.7. Then any
homomorphism f : J → B(+), B a unital associative algebra, such that f (eii) ,
0, for all i ∈ {1, 2, 3}, factors through A, that is, there exists a unique unital
homomorphism f ′ : A→ B such that f = f ′|J .

Proof Without loss of generality, we may assume that B is generated as an
associative algebra by f (J). We will abbreviate ei := eii, use the notation of
(36.2) and write ei j, i, j = 1, 2, 3, for the standard matrix units of A. Let Ω :=
( f (e1), f (e2), f (e3)). By Exc. 28.25(b), Ω is a complete orthogonal system of
idempotents in B and Exc. 32.22(d) implies f (C[ jl]) = B jl + Bl j. If f ′ exists, it
must respect the Peirce decompositions. So it suffices to define f ′ on the Peirce
components of A and extend by linearity. For arbitrary x, y ∈ C and arbitrary i,
j ∈ {1, 2, 3}, put xi j := xei j. Assume f ′ exists. We first show it is then unique.
Now f ′(xi j) = f ′(eix[i j]) = f (ei) f (x[i j]) and f determines a unique f ′ on off-
diagonal elements of A. In other words, f (x[i j]) ∈ Bi j ⊕ B ji and f ′(xi j) is the i j
component of f (x[i j]). Since the xi j’s generate A (as an associative algebra),
the map f ′ is uniquely determined by f provided it is well-defined on Aii. We
must also show that f ′ is a homomorphism of associative algebras.

We start with the off-diagonal Peirce spaces,

f (xi jy jl + ȳl j x̄ ji) = f (x[i j] ◦ y[ jl]) = f (x[i j]) ◦ f (y[i j])

= ( f ′(xi j) + f ′(x̄ ji)) ◦ ( f ′(y jl) + f ′(ȳl j))

= f ′(xi j) f ′(y jl) + f ′(ȳl j) f ′(x̄ ji)

and we obtain

f ′(xi jy jl) = f ′(xi j) f ′(y jl). (1)
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Consider 1[i j] = ei j + e ji; 1[i j]2 = ei + e j so f (1[i j])2 = f (ei) + f (e j) and
f ′(ei j) f ′(e ji) = f (ei). Using (1), f ′(ei j) f ′(e ji) = f ′(eil) and the f ′(ei j)’s form
a set of matrix units of B. If a, b ∈ Bi j then a f (1 jl) ∈ Bil and f (eli)b ∈ Bl j.
Therefore a f ′(e jl) f ′(eli)b ∈ Bi j defines a product on Bi j. So B = Mat3(F), for
some unital associative algebra F over k.

Define f ′(xii) := f ′(xi j) f ′(e ji). To show that f ′(xii) is well-defined, we must
show that f ′(xil) f ′(eli) = f ′(xi j) f ′(e ji). By (1), f ′(xil) f ′(el j) = f ′(xi j) and
f ′(xi j) f ′(e ji) = f ′(xil) f ′(el j) f ′(e ji) = f ′(xil) f ′(eli). Therefore the definition
does not depend on the choice of index other than i and we note

f ′(xii) = f ′(xi j) f ′(e ji) = f ′(xil) f ′(eli). (2)

We have shown that f ′, if it exists, is uniquely determined by f and have given
explicit formulas for f ′.

It remains to show that f ′ is a homomorphism of associative algebras in the
few cases that are not already covered by (1) or automatically zero by Peirce
considerations. Using (1) and (2),

f ′(xi j) f ′(y ji) = f ′(xi j) f ′(y jl1li) = f ′(xi j) f ′(y jl) f ′(1li)

= f ′(xi jy jl) f ′(eli)

= f ′(xi jy ji).

We have

f ′(xii) f ′(yii) = f ′(xi j) f ′(e ji) f ′(yil) f ′(eli) = f ′(xi j) f ′(y jl) f ′(eli)

= f ′(xyil) f ′(eli) = f ′(xyii) = f ′(xiiyii).

Finally

f ′(xi j) f ′(y j j) = f ′(xi j) f ′(y jl) f ′(el j) = f ′(xi jy jl) f ′(el j)

= f ′(xi jy jl) f ′(1l j) = f ′(xyil1l j)

= f ′(xi jy j j)

and

f ′(xii) f ′(yi j) = f ′(xil) f ′(1li) f ′(yi j) = f ′(xil)) f ′(yl j)

= f ′(xilyl j) = f ′(xiiyi j).

Thus f ′ is a homomorphism of associative algebras, completing the proof. □

51.3 Corollary. Let C be an associative composition k-algebra. Then any der-
ivation D of the Jordan algebra J := Her3(C) extends to a unique derivation
D′ of the associative algebra A := Mat3(C).
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Proof Let R = k[ε], the algebra of dual numbers. Consider JR ⊆ AR and
write x for x ⊗ 1 and xε for x ⊗ ε. The map f : J → JR given by f (x) := x +
D(x)ε is a k-module homomorphism which, by (50.3.2), is a homomorphism
of Jordan algebras. Since f (ei) , 0, Prop. 51.2 applies, so f extends to a unique
homomorphism f ′ : A→ AR of associative algebras. We claim that

A′ := {x ∈ A | f ′(x) − x ∈ εA} = A.

Indeed, A′ is a k-submodule of A containing J and since J generates A as an
associative algebra, it suffices to show that A′ is closed under multiplication, so
let x, y ∈ A′. Then there are u, v ∈ A having f ′(x) = x+εu, f ′(y) = y+εv and we
conclude f ′(xy) = f ′(x) f ′(y) = xy+ε(uy+xv), hence xy ∈ A′, as claimed. Thus,
for x ∈ A, f ′(x) = x+D′(x)ε, where D′ : A→ A is a linear map which extends
D. If x, y ∈ A then f ′(xy) = xy+D′(xy)ε = f ′(x) f ′(y) = xy+(D′(x)y+xD′(y))ε.
Therefore D′(xy) = D′(x)y + xD′(y) and D′ is a derivation of the associative
algebra A. Uniqueness of D′ follows from the uniqueness of f ′. □

We need to take a closer look at associative composition algebras. We begin
by fixing some notation.

51.4 Notation. We fix a composition k-algebra C of rank r ∈ {1, 2, 4} and put
A := Mat3(C), J := Her3(C). In the case where C is split, we will determine
Der(J) in Cor. 51.9, Prop. 51.11, or Prop. 51.13 respectively.

We write τ for the conjugate transpose involution of A and denote by Ea =

La − Ra as in 48.3 the inner derivation of A affected by a ∈ A.

51.5 Lemma. Let C be a conic k-algebra and assume k has no 2-torsion. If C
is projective as a k-module, then H(C, ιC) = k1C

Proof By Prop. 16.7, 1C is unimodular. Hence there is a submodule M ⊆ C
satisfying C = k1C ⊕ M, and x ∈ H(C, ιC) may be written x = ξ1C + m, ξ ∈ k,
m ∈ M. We conclude tC(x)1C = x + x̄ = 2x = 2ξ1C + 2m, hence 2m = 0. But
M is projective and since 2 is not a zero divisor in k it is not one in M either
(18.8). Thus, m = 0 and x = ξ1C . □

51.6 Lemma. With the notation and assumptions of 51.4, let a ∈ A. The fol-
lowing conditions are equivalent.

(i) EaJ = {0}.
(ii) Ea = 0.
(iii) a ∈ Cent(C)13.

Proof The implications (ii)⇒ (iii)⇒ (i) are obvious, while (i)⇒ (ii) follows
from the fact that J generates A as an associative algebra and the kernel of a
derivation of A is a unital subalgebra. □
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51.7 Proposition. With the notation and assumptions of 51.4, we have

Der(J) = {Ea|J | a ∈ A, EaJ ⊆ J}. (1)

Moreover, if k has no 2-torsion, then for any a ∈ A the following conditions
are equivalent.

(i) EaJ ⊆ J.
(ii) a + āT ∈ Cent(C)13.
(iii) If a = (ai j)1≤i, j≤3, ai j ∈ C, we have ā ji = −ai j for i , j, and tC(a11) =

tC(a22) = tC(a33).
(iv) 2a ∈ tC(C)13 + Alt(A, τ).

Finally, assuming 2 ∈ k×, these conditions are also equivalent to

(v) a ∈ k13 ⊕ Skew(A, τ).

Proof By Cor. 51.3, every derivation of J extends to a derivation of A, and
by Example 48.3, the derivations of A are all inner, i.e., have the form Ea for
some a ∈ A. This proves (1). For the rest of the proof we may assume that k
has no 2-torsion.

(i)⇔ (ii). By Lemma 51.5, J = Sym(A, τ). Thus (i) holds if and only if, for
all x ∈ J, ax− xa = ax − xaT

= xāT− āTx, which with b := a+ āT is equivalent
to bx = xb for all x ∈ J, i.e., with EbJ = {0}. By Lemma 51.6, this in turn is
equivalent to (ii).

(ii)⇔ (iii). Condition (ii) is equivalent to a ji = −āi j for i , j and tC(aii1C) =
aii + āii being independent of i = 1, 2, 3.

(iii) ⇔ (iv). Condition (iii) implies a + āT ∈ tC(C)13, and we conclude
2a = (a + āT) + (a − āT), where the first summand belongs to tC(C)13 and
the second one belongs to Alt(A, τ). Thus (iv) holds. Conversely, (iv) implies
2a = tC(u)13 + b − b̄T for some u ∈ C, b ∈ A, hence 2(a + āT) = 2tC(u)13, and
the absence of 2-torsion combines with 18.8 to yield a + āT = tC(u)13, so (iii)
holds.

Finally, if 2 is invertible in k, then tC(C) = k and Alt(A, τ) = Skew(A, τ),
proving the equivalence of (iv) and (v). □

51.8 Corollary. With the notation and assumption of 51.4, suppose 2 is in-
vertible in k and put K = Cent(C). Then the assignment a 7→ Ea|J defines a
surjective homomorphism Skew(A, τ) → Der(J) of Lie algebras with kernel
Skew(K, ιK)13. In particular,

Der(J) � Skew(A, τ)/Skew(K, ιK)13.
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Proof The map in question is clearly a homomorphism of Lie algebras. Thanks
to Prop. 51.7, the elements of Der(J) have the form Ea|J , with a = α13 + b,
α ∈ k, b ∈ Skew(A, τ). Since Ea = Eb, the map in question is surjective and,
by Lemma 51.6, has kernel Skew(K, ιK)13. □

We will now consider separately the various possibilities for the rank r of C.

51.9 Corollary. In the situation of 51.4, assume k has no 2-torsion. Then the
assignment a 7→ Ea|J determines an isomorphism Alt3(k)

∼
−→ Der(Her3(k)) of

Lie algebras.

Proof It suffices to show that the map in question is bijective. Suppose a ∈
Alt3(k) has EaJ = {0}. Then a ∈ k13 by Lemma 51.6. On the other hand, the
diagonal entries of a ∈ Alt3(k) are zero, and we conclude a = 0. Thus the
map in question is injective. Furthermore, (51.7.1) implies that any derivation
of J has the form D = Ea|J , for some a = (ai j) ∈ A having EaJ ⊆ J. From
Prop. 51.7 (iii) for C = k we conclude that the 2aii = tk(aii) are independent
of i = 1, 2, 3. Since k has no 2-torsion, so are the aii, and we find an α ∈ k
such that b := a − α13 ∈ Alt3(k). Thus D = Eb|J , and the map in question is
surjective. □

We wish to derive an analogous result for the case r = 2 by specializing C
to the split quadratic étale k-algebra. To this end, we need a preparation.

51.10. Let C = k × k, the split quadratic étale k-algebra, and assume 2 ∈ k×.
Note that C = K in the notation of Cor. 51.8. There is a natural identification

A = Mat3(C) = Mat3(k) ×Mat3(k)

matching

a = (ai j) ∈ A, ai j = (α1i j, α2i j) ∈ C

with

(a1, a2) where ar := (αri j) for r = 1, 2.

Under this identification we have

(a1, a2)
T
= (aT

2 , a
T
1 ) (ar ∈ Mat3(k), r = 1, 2), (1)

which implies

Her3(C) = Sym(A, τ) = {(a1, aT
1 ) | a1 ∈ Mat3(k)}, (2)

Alt(A, τ) = Skew(A, τ) = {(a1,−aT
1 ) | a1 ∈ Mat3(k)}. (3)
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We also consider the first projection

π1 : A = Mat3(k) ×Mat3(k)→ Mat3(k), (a1, a2) 7→ a1. (4)

51.11 Proposition. Assume 2 ∈ k× and let C = k × k, the split quadratic étale
k-algebra. With the notation of 51.4 and 51.10, the first projection π1 : A →
Mat3(k) restricts to an isomorphism

ϱ : Skew(A, τ)
∼
−→ gl3(k)

of Lie algebras sending Skew(C, ιC)13 to k13. In particular,

Der(Her3(C)) � Skew(A, τ)/Skew(C, ιC)13 � gl3(k)/k13.

If 3 ∈ k×, then Der(Her3(C)) � sl3(k).

Proof The first part follows by combining (51.10.3), (51.10.4) with the fact
that the elements of Skew(C, ιC)13 have the form (α,−α)13 = (α13,−α13) for
α ∈ k. In the second displayed equation, the first isomorphism is Cor. 51.8 and
the second follows from the isomorphism ϱ. For the final claim, since 3 ∈ k×,
gl3(k) = k13 ⊕ sl3(k) as a direct sum of Lie ideals. □

51.12 A few facts concerning split symplectic involutions. Before tackling
the last case, we recall a few facts concerning split symplectic involutions.
Again we assume 2 ∈ k×. In (10.10) (a), the split symplectic involution τspl is
defined on Mat2l(k). In fact, by (10.10.4), if a, b, c, d ∈ Matl(k),

τspl(
(
a b
c d

)
) =

(
dT −bT

−cT aT

)
.

Since 2 ∈ k× we have Mat2l(k) = Sym(Mat2l(k), τspl) ⊕ Skew(Mat2l(k), τspl). In
(10.10) (b), it is noted that when l = 1 this involution coincides with the stan-
dard involution ιC of C = Mat2(k)). Finally in (10.10) (c), it is explained that
(Matl(C), τ) � (Mat2l(k), τspl) as algebras with involution, with an explicit iso-
morphism being given in Exc. 10.11 (b). The Lie algebras Skew(Mat2l(k), τspl)
are called symplectic Lie algebras and denoted spl(k), see Ex. 47.14.

51.13 Proposition. If 2 ∈ k×, then Der(Her3(Mat2(k))) � sp3(k).

Proof Put C := Mat2(k) and J := Her3(C). We have the following isomor-
phisms of Lie algebras

Der(J) � Skew(A, τ) � Skew(Mat6(k), τspl) = sp3(k).

Indeed, in the notation of Cor. 51.8, we have K = k1C , so Skew(K, ιK) = {0}.
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Cor. 51.8 therefore implies that the assignment a 7→ Ea|J gives an isomorphism
Skew(A, τ)

∼
−→ Der(J) of Lie algebras, hence the first isomorphism above.

The second isomorphism arises from 51.12 for l = 3 via restriction of the
isomorphism of algebras with involution to Skew(A, τ), keeping in mind that
2 ∈ k×. □

Before discussing derivations of Albert algebras, we need a few technical
results.

51.14 Lemma. Let J be a cubic Jordan k-algebra, e ∈ J an elementary idem-
potent and a ∈ J1(e). Then

De,ae = −a, De,ax1 = TJ({aex1}, e)e − {aex1}, De,ax0 = {eax0}

for all xi ∈ Ji(e), i = 0, 1. Moreover, De,x0 = 0.

Proof The Peirce rules of Thm. 32.2 and J2(e) = ke imply

Ve,a(e + x1 + x0) = {eae} + {eax1} + {eax0} = TJ({eax1}, e)e + {eax0},

Va,e(e + x1 + x0) = {aee} + {aex1} + {aex0} = a + {aex1}.

Subtracting these relations from one another yields the displayed equation of
the lemma. The final claim follows from the Peirce rules. □

51.15 Lemma. Let J be a cubic Jordan algebra over k, e ∈ J an elementary
idempotent and a, b ∈ J1(e). Then

Va,be = TJ({abe}, e)e. Da,be = 0.

Proof The Peirce rules guarantee that {abe} ∈ J2(e) = ke, hence the first
equation. Since Da,b = Va,b − Vb,a, the second one now follows from (33a.32).

□

51.16 Lemma. Let J be a Freudenthal algebra over k. A k-linear map D : J →
J is a derivation of J if and only if D1J = 0 and the identity

TJ(x♯,Dx) = 0 (1)

holds strictly. In this case,

TJ(Dx) = TJ(x,Dx) = 0

for all x ∈ J.

Proof Let R := k[ε], ε2 = 0, be the k-algebra of dual numbers. Arguing along
the lines of Example 48.2, one checks that D is a derivation of J if and only if
ϕD : JR → JR defined by

ϕD(x + εy) := x + ε(Dx + y)
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for all x, y ∈ J is an automorphism of JR as a para-quadratic R-algebra. By
Cor. 39.13, this is equivalent to ϕD being an automorphism of JR as a cubic
Jordan R-algebra, i.e., to ϕD(1J) = 1J and to NJR ◦ϕD = NJR as polynomial laws
over R. The former condition amounts to D1J = 0, while the latter condition is
equivalent to

NJR

(
x + ε(Dx + y)

)
= NJR

(
ϕD(x + εy)

)
= NJR (x + εy)

for all k′ ∈ k-alg, x, y ∈ Jk′ , where R′ := Rk′ = k′[ε] is the algebra of dual num-
bers over k′. Expanding both sides, strict validity of (1) follows. Linearizing we
conclude TJ(x× y,Dx)+TJ(x♯,Dy) = 0 for all x, y ∈ J. Since D1J = 0, setting
x := 1J implies TJ(Dy) = 0, while setting y = 1J implies TJ(x,Dx) = 0. □

51.17. We now proceed to discuss derivations of Albert algebras and, unless
stated otherwise, consider the following set-up. C is an octonion algebra over
an arbitrary base ring k and J := Her3(C) is the corresponding Albert algebra
of un-twisted 3-by-3 hermitian matrices with entries in C and diagonal entries
in k. Systematic use will be made of the ternary cyclicity convention 36.1, ac-
cording to which an index i = 1, 2, 3 will always be thought of as the first com-
ponent of the cyclic permutation (i jl) of (123) starting with i. Recall that this
convention was employed extensively in connection with cubic Jordan matrix
algebras (36.4). Recall also the diagonal frame Ω = (e11, e22, e33) of J whose
off-diagonal Peirce components are given by J jl(Ω) = J1(e j j) ∩ J1(ell) = C[ jl]
for all i = 1, 2, 3 (Prop. 37.8). Finally, since (C, nC) is a quadratic space of
constant even rank over k, we can form the orthogonal Lie algebra o(nC) in the
sense of 47.4 and know from Prop. 47.8 that o(nC) is spanned as a k-module
by the elementary orthogonal transformations S a,b, a, b ∈ C as defined in 47.7.

51.18 A four-group grading of Der(J). If G is a finite abelian group, and
A a non-associative algebra over k, a G-grading of A is a decomposition A =
⊕γ∈GAγ into submodules Aγ ⊆ A such that AγAδ ⊆ Aγ+δ for all γ, δ ∈ G; in
this case, we also say that A is graded by G. In 48.19, we considered the case
where A was graded by Z/3Z. Now we will consider an algebra graded by the
Klein four-group V � Z/2Z × Z/2Z. It is convenient to write the elements of
V as {0, 1, 2, 3} with the identity element 0 := (0, 0) and remaining elements
1 := (1, 0), 2 := (0, 1) and 3 := (1, 1).

51.19 Proposition. With the notation and assumptions of 51.17, the Lie alge-
bra g := Der(J) is graded byV:

g = g0 ⊕ g1 ⊕ g2 ⊕ g3, (1)
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where the graded components gi, 0 ≤ i ≤ 3, are defined by

g0 := {D ∈ g | Deii = 0, i = 1, 2, 3},

gi := {Deii,cl[i j] | cl ∈ C} (i = 1, 2, 3).

g0 is a subalgebra of g and the gi, i = 1, 2, 3, are g0-modules isomorphic to C
as a k-modules. Moreover

g1 ⊕ g2 ⊕ g3 ⊆ StanDer(J).

Proof Given a = (a1, a2, a3) ∈ C3, we put S a :=
∑

Deii,al[i j] ∈
∑

i≥1 gi ⊆

StanDer(J). For any cyclic permutation (mnp) of (123), Lemma 51.14 implies

S aemm =
∑

Deii,al[i j]emm = −ap[mn] + an[pm]. (2)

On the other hand, any D ∈ Der(J) satisfies Demm = D(e2
mm) = emm ◦ (Demm)

by (50.3.7), hence Demm ∈ J1(emm) = C[mn] ⊕C[pm], so Demm can be written
as

Demm = amp[mn] + amn[pm] (3)

for some amp, amn ∈ C. From

0 = D1J =
∑

m

Demm =
∑

m

amp[mn] +
∑

m

amn[pm] =
∑

m

(amp + anp)[mn]

we deduce amp + anp = 0. Put a := (a1, a2, a3) with ap := −amp = anp. Then
(2), (3) imply S aemm = amp[mn]+ amn[pm] = Demm. Thus D− S a ∈ g0, and we
have shown

∑
i≥0 gi = Der(J). By (2), the sum is direct, and (1) holds.

If D ∈ g0 it follows from (50.1.3) that D maps J jl = C[ jl] to itself. By
(50.1.4), the gi’s are g0 modules. Also, since Deii,e j j = 0,

[Dei,a[i j],Dei,c[i j]] = DDei ,a[i j]ei,c[i j] + Dei,Dei ,a[i j]c[i j]

= D−a[i j], c[i j] + Dei,tC (ac̄)(ei−e j)

= D−a[i j], c[i j] + Dei,−tC (ac̄)e j

= −Da[i j], c[i j],

so [gl, gl] ⊆ g0, for all l ∈ {1, 2, 3}.
By the Peirce rules Deii,cl[i j]ell = {eii cl[i j] ell} − {cl[i j] eii ell} = 0 and gi

annihilates ell. Moreover Deii,cl[i j]b j[li] = {eii cl[i j] b j[li]} − {cl[i j] eii b j[li]} =
−{b j[li] eii cl[i j]} = −b jcl[ jl] ((37.7.4)). Hence by (50.1.8) [Deii,cl[i j],Dell,b j[li]] =
−Dell,b jcl[ jl] and [gi, gl] ⊆ g j. The same holds for cyclic permutations of the
indices. Therefore the product of two distinct summands of g with positive
indices lands in the third, and g has been endowed with aV-grading. □
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51.20 Lemma. With the conventions of 51.17, the following conditions are
equivalent, for all u ∈ C.

(i) Lu ∈ o(nC).
(ii) Ru ∈ o(nC).
(iii) tC(u) = 0.

Proof Since composition algebras are norm-associative (Prop. 17.2), they
satisfy (16.12.1), (16.12.2), and we conclude nC(x, ux) = nC(x, xu) = tC(u)nC(x).
The assertion follows. □

The straightforward verification of the next lemma is left to the reader.

51.21 Lemma. For E ∈ Endk(C) define Ē ∈ Endk(C) by

Ēx := Ex̄ (x ∈ C). (1)

Then, for E, E1, E2 ∈ Endk(C) and u ∈ C, we have

¯̄E = E, E1E2 = Ē1Ē2, (2)

L̄u = Rū, R̄u = Lū, (3)

E ∈ o(nC) ⇐⇒ Ē ∈ o(nC) (4)

□

51.22 Lemma. With the conventions of 51.17, let D ∈ g0 relative to the V-
grading of g = Der(J). For i = 1, 2, 3, there are k-linear maps Di : C → C such
that

D
(∑

(ξieii + ui[ jl])
)

:=
∑

(Diui)[ jl] (1)

for all ξi ∈ k, ui ∈ C, i = 1, 2, 3.

Proof Since Deii = 0 for all i, it suffices to show that D stabilizes the C[ jl],
so let x ∈ C[ jl]. By Prop. 37.8 and the Peirce rules,

C[ jl] = J1(e j j) ∩ J1(ell) = {y ∈ J | e j j ◦ y = y = ell ◦ y}.

This and (50.3.6) imply Dx = D(e j j ◦ x) = (De j j) ◦ x + e j j ◦ (Dx) = e j j ◦ (Dx)
and, similarly, Dx = ell ◦ (Dx). Thus Dx ∈ C[ jl]. □

We ask for the converse of the preceding lemma: What conditions on three
linear maps Di : C → C are to be imposed that are necessary and sufficient for
the map D defined by (51.22.1) to belong to g0, equivalently, to be a derivation
of J? The answer is given by the following theorem.

51.23 Theorem. With the conventions of 51.17, consider three linear maps
Di : C → C, i = 1, 2, 3. Then the following conditions are equivalent.
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(i) D : C → C defined by

D
(∑

(ξieii + ui[ jl])
)

:=
∑

(Diui)[ jl] (1)

for all ξi ∈ k, ui ∈ C, i = 1, 2, 3, is a derivation of J.
(ii) Di ∈ o(nC) for all i = 1, 2, 3 and∑

nC(u jul,Diui) = 0 (2)

for all ui ∈ C, i = 1, 2, 3.
(iii) Di ∈ o(nC) for all i = 1, 2, 3 and there exists i = 1, 2, 3 such that

Di(uv) = uD̄ jv + (D̄lu)v (u, v ∈ C). (3)

(iv) Di ∈ o(nC) and (3) holds for all i = 1, 2, 3.

Proof Letting

x =
∑

(ξieii + ui[ jl]) ∈ J, ξi ∈ k, ui ∈ C, i = 1, 2, 3,

we use (36.4.4) and (36.4.7) to compute

TJ(x♯,Dx) =
∑

nC(−ξiui + u jul,Diui). (4)

By Lemma 51.16, therefore, (i) holds if and only if this expression vanishes
for all ξi, ui in all scalar extensions. Fixing i and setting ξi = 1, ξ j = ξl = 0,
u j = ul = 0, we conclude Di ∈ o(nC), and (4) collapses to (2). This shows that
(i) and (ii) are equivalent. Since (2) is stable under cyclic permutations of the
indices, (iii) and (iv) are equivalent once we have shown that (ii) and (iii) are.
To this end, we may assume Di ∈ o(nC) for all i = 1, 2, 3. For any such i, we
consider the expression

nC(u jul,Diui) + nC(ului,D ju j) + nC(uiu j,Dlul) (5)

and compute the individual summands by using the identities of Prop. 16.12
as follows.

nC(u jul,Diui) = −nC
(
Di(ūlū j), ui

)
,

nC(ului,D ju j) = nC(ūiūl,D ju j) = nC
(
ūi, (D ju j)ul

)
= nC(ūlD ju j, ui),

nC(uiu j,Dlul) = nC(ū jūi,Dlul) = nC
(
ūi, u j(Dlul)

)
= nC(Dlulū j, ui).

Replacing u j, ul by ū j, ūl, consulting Lemma 51.21, adding up and using regu-
larity of nC , we conclude that (3) holds if and only if (5) vanishes. This com-
pletes the proof. □
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51.24 Corollary. If conditions (i)−(iv) of Thm. 51.23 hold, then

D̄i(uv) = (D ju)v + u(Dlv)

for all u, v ∈ C and all i = 1, 2, 3.

Proof Use the definition of D̄i as in (51.21.1) and apply (51.23.3). □

51.25 Lemma. With the conventions of 51.17, the k-module o(nC) is finitely
generated projective of rank 28. Moreover, if 2 is invertible in k, then o(nC) is
generated as a Lie algebra by the linear maps Lu, Ru for u ∈ C0.

Proof The first sentence holds if C is split by Example 47.13 for l = 4. The
general case reduces to the split one by Lemma 47.5 and Exc. 26.12 (b)(i),
because being projective of a certain rank descends from a faithfully flat ex-
tension (25.5(i)).

For the remainder of the proof, we recall that the elementary orthogonal
transformations S u,v span o(nC) as a k-module (Prop. 47.8). In view of Lemma
51.20, it therefore suffices to verify the identity

[Lu + Ru, Lv + Rv] = 2S u,v (u, v ∈ C0). (1)

Indeed, for x ∈ C we apply the identities of 16.5 and Prop. 16.12 to conclude,
since u and v have trace zero,

[Lu + Ru, Lv + Rv]x = u(vx) − v(ux) + u(xv) − (ux)v

+ (vx)u − v(xu) + (xv)u − (xu)v

= tC(vx)u − nC(vx, u)1C − tC(ux)v + nC(ux, v)1C

+ tC(xv)u − nC(xv, u)1C − tC(xu)v + nC(xu, v)1C

= −2nC(v, x)u + 2nC(u, x)v + nC(x, vu − uv + uv − vu),

and (1) holds. □

51.26 Proposition. With the assumptions and notation of Thm. 51.23, let i =
1, 2, 3. Then the i-th projection

πi : g0 −→ o(nC), D 7−→ Di,

is a homomorphism of Lie algebras with kernel

Ker(πi) = {D ∈ g0 | ∃α ∈ k : D j = α1C , Dl = −α1C , 2α = 0}. (1)

Moreover, πi is

(a) injective if and only if k has no 2-torsion,

(b) bijective if 2 is invertible in k.
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Proof πi is clearly a Lie algebra homomorphism. If D belongs to the right-
hand side of (1), then (51.23.3) for v = 1C shows that Diu = αu−αu = 0, hence
Di = 0. Conversely, let D ∈ Ker(πi). Then Di = 0, and Cor. 51.24 implies

(D ju)v + u(Dlv) = 0 (u, v ∈ C). (2)

Setting a := D j1C , b := Dl1C , we obtain La = −Dl ∈ o(nC) for u = 1C ,
Rb = −D j ∈ o(nC) for v = 1C , and a + b = 0 for u = v = 1C . Hence a ∈ C0 by
Lemma 51.20, and (2) implies (ua)v − u(av) = 0, Thus, a ∈ Nuc(C) = k1C (by
Exc. 19.32 (b)). We therefore have a = α1C for some α ∈ k, and taking traces
gives 2α = 0, so D belongs to the right-hand side of (1).

(a) follow immediately from (1).
(b) Since 2 ∈ k× and πi(g0) is a Lie subalgebra of o(nC), it suffices to show,

by Lemma 51.25, that it contains La,Ra, a ∈ C0. From linearized left (resp.
right) alternativity one concludes that

(Di,D j,Dl) :=
(
(La,−(La+Ra),Ra)

)
and (Di,D j,Dl) :=

(
Ra,−(La+Ra), La

)
both satisfy (51.23.3), so by Thm. 51.23, La,Ra belong to the image of πi. □

51.27 Corollary (Principle of local triality). If 2 is invertible in k, then for
every E ∈ o(nC), there exist unique E1, E2 ∈ o(nC) such that

E(uv) = (E1u)v + u(E2v) (u, v ∈ C).

Moreover, the assignments E 7→ E1 and E 7→ E2 define automorphisms of
o(nC). □

51.28 Proposition. With the notation and assumptions of 51.17, let i = 1, 2, 3
and a, b ∈ C. Then the standard derivation Da[ jl],b[ jl] belongs to g0 and

πi(Da[ jl],b[ jl]) = −2S a,b

in the sense of Prop. 51.26.

Proof Put D := Da[ jl],b[ jl]. Since a[ jl], b[ jl] belong to J1(e j j)∩J1(ell), Lemma
51.15 implies De j j = Dell = 0, and D1J = 0 also yields Deii = 0. This proves
D ∈ g0. Put Di;= πi(D) ∈ o(nC). For all c ∈ C, linearizing (37.7.5) and (17.4.2)
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implies

(Dic)[ jl] = Da[ jl],b[ jl]c[ jl] = {a[ jl]b[ jl]c[ jl]} − {b[ jl]a[[ jl]c[ jl]}

= Ua[ jl],c[ jl]b[ jl] − Ub[ jl],c[ jl]a[ jl]

=
(
(a(b̄c) + c(b̄a) − b(āc) − c(āb)

)
[ jl]

=
(
nC(a, b)c + nC(c, b)a − nC(a, c)b − nC(b, a)c

− nC(c, a)b + nC(b, c)a
)
[ jl]

= 2(nC(c, b)a − nC(c, a)b)[ jl] = (−2S a,bc)[ jl].

The assertion follows. □

51.29 Corollary. Let J be an Albert algebra over k. If 2 ∈ k×, then

(a) Der(J) is finitely generated projective of rank 52 as a k-module.
(b) Der(J) = StanDer(J).

Proof Since Der(J) and StanDer(J) commute with flat base change (Prop. 50.4,
50.8), and the property of a module to be finitely generated projective of rank
n is stable under faithfully flat descent, Cor. 39.32 allows us to assume J =
Her3(C) for some octonion algebra C over k. Then, by Prop. 51.19,

Der(J) = g0 ⊕ g1 ⊕ g2 ⊕ g3, g1 ⊕ g2 ⊕ g3 ⊆ StanDer(J), (1)

and each gi, i > 0, is isomorphic to C as a k-module, hence finitely generated
projective of rank 8. By Prop. 51.26 (b), g0 is isomorphic to o(nC), which by
Lemma 51.25 is finitely generated projective of rank 28 as a k-module. Hence
(1) implies that Der(J) is a finitely generated projective k-module of rank 52,
proving (a). Then g0 � o(nC) is spanned by elementary orthogonal transforma-
tions S a,b, a, b ∈ C (Prop. 47.8). By Prop. 51.28, πi(Da[ jl],b[ jl]) = −2S a,b so the
standard derivations Da[ jl],b[ jl] span g0 yielding (b). □

51.30 Derivation algebra of an Albert algebra over a field. The derivation
algebra Der(J) of an Albert algebra J over a field F has been studied in many
places. For example, using the language of Albert algebras, as we have done
here, see [52], [138], and [2]. An alternative is to use the language of group
schemes, as we do in the next chapter, for which see [121], [123], and [233,
§1]. In summary, one finds:

51.31 Proposition. The derivation algebra Der(J) of an Albert algebra J over
a field F is a simple Lie algebra if and only if char(F) , 2. If char F = 2, it has
a unique proper nonzero ideal VJ , which has dimension 26. □
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The case where char(F) , 2 can be deduced from a combination of Propo-
sitions 51.19 and 51.26. We will see in the next chapter (Thm. 53.4 and 53.16)
that Der(J) is the Lie algebra of a simple group scheme of type F4.

We remark that one could deduce Cor. 51.29(b), about algebras over a ring,
from Prop. 51.31, about algebras over a field.

Alternative proof of Cor. 51.29(b) It suffices to consider the case where J =
Her3(Zor(k)). To see this, pick a faithfully flat R ∈ k-alg that splits J. Since both
kinds of derivation algebras are compatible with flat base change (Propositions
50.4 and 50.8), the split case and faithful flatness of R will imply equality over
k.

Suppose k , 0, for otherwise there is nothing to prove. Picking distinct basis
vectors a, b ∈ C, the elementary orthogonal transformation S a,b is not zero, and
therefore by Prop. 51.28 the derivation Da[ jl],b[ jl] ∈ StanDer(J) is not zero.

Suppose k is a local ring (e.g., a field), and write m for its maximal ideal.
Since StanDer(J) is an ideal in Der(J), so is StanDer(J)k(m) in Der(J)k(m). Since
StanDer(J)k(m) is not the zero ideal (by the previous paragraph) and Der(J)k(m)

is a simple algebra (Prop. 51.31), we have StanDer(J)k(m) = Der(J)k(m). Now
Der(J) is a finitely generated k-module (Cor. 51.29(a)), so by Nakayama’s
Lemma we conclude that StanDer(J) = Der(J).

For general k, the inclusion StanDer(J) ↪→ Der(J) becomes an isomorphism
after localizing at each maximal ideal of k by the preceding paragraph. So the
inclusion itself is an isomorphism. □

Exercises
51.32. Let J be a split Albert algebra over a field k of characteristic 2. Use the Peirce
decomposition to prove that Vx = 0 for x ∈ J if and only if x ∈ k1J .

51.33. Let J be a reduced Albert algebra over k. Therefore J = ⊕Ji j. Let J0 := J11 +
J22 + J33. Prove that J = J0 + J1 + J2 + J3, where Ji := J[ jl] is aV-grading of J in the
sense that given any “product” involving 2 or 3 elements from these subspaces it lands
in the subspace indexed by the sum of the indices.
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IX

Group schemes

We now illuminate the connection between what has been proved for com-
position algebras, for Freudenthal algebras, and for Lie algebras with group
schemes over the ring k. One highlight of this chapter is Theorem 57.4, which
gives the classification of Albert algebras over Z by leveraging nonabelian H1

and corresponding results for group schemes.

52 Background on group schemes

In this chapter, we will refer to results in the literature, especially concern-
ing groups schemes over fields as in the books by Milne [195] or Waterhouse
[293], as well as semisimple group schemes over rings as in SGA3 [101], [114]
and [54]. In this section, we collect some of the results we will use. Some read-
ers will prefer to skip past this section and use it as a reference.

52.1 Lie algebras of k-group schemes over a field. For the material in this
subsection, we refer especially to [195, Ch. 10] or [100, Exp. II].

Suppose for the moment that k is a field and G is a k-group scheme. The dual
numbers k[ε]/(ε2) have a natural map to k, namely the map sending ε to zero.
The kernel of the homomorphism of ordinary groups G(k[ε]/(ε2)) → G(k) is
the Lie algebra of G, denoted Lie(G). (We will only use this in the case where
k is a field, although one could alternatively assume that G is smooth, see [100,
§II.4.11] for more discussion.)

Suppose for the moment that G is a closed sub-functor of GLn for some n,
i.e., G(R) is the collection of matrices in Matn(R) satisfying a list of polynomi-
als with coefficients in k. The elements of Lie(G) are of the form 1n + εy for
some y ∈ Matn(R) such that

0 = fk[ε](1n + εy) = f (1n) + ε(D f )(1n, y)

for each of the polynomials f defining G, in the notation of (12.15.5). Since 1n

belongs to G(k), f (1n) = 0, so the condition reduces to

(D f )(1n, y) = 0,

which is linear in y, so Lie(G) is a k-module. Here are some specific examples.

565
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(These G are evidently k-group functors. We refer ahead to Exercise 54.23 for
the statement that they are k-group schemes.) We briefly focus on identifying
Lie(G) as a k-module, ignoring for the moment its Lie product.

(a) Suppose A is a finite-dimensional non-associative k-algebra. Then Aut(A)
has R-points the elements of GL(AR) that preserve the multiplication on A and
Lie(Aut(A)) consists of x = 1A + εy for y ∈ Endk-mod(A) such that x preserves
the multiplication on k[ε]. We find, for a, a′ ∈ Ak[ε]:

x(aa′) − (xa)(xa′) = ε
[
y(aa′) − (ya)a′ − a(ya′)

]
.

Taking a, a′ ∈ A, we conclude that, if x is in Lie(Aut(A)), then y is in Der(A)
as defined in 48.1. Conversely, if y is in Der(A), then y naturally acts as a
derivation on AR, and the displayed equation is satisfied for a, a′ ∈ Ak[ε]; we
have already observed this in Example 48.2. We conclude that Lie(Aut(A)) is
identified with Der(A).

(b) Suppose J is a finite-dimensional para-quadratic k-algebra. Computations
similar to the previous example (and already implicit in the proof of Lemma
51.16) show that x = 1J + εy for y ∈ Endk-mod(J) is an automorphism of Jk[ε]

if and only if

y1J = 0 and yUab = Uayb + Ua,yab ∀a, b ∈ J.

That is, the map x 7→ y identifies Lie(Aut(J)) with Der(J) as defined in 50.3.

(c) The k-group scheme GLn has R-points the invertible x ∈ Matn(R). The Lie
algebra of GLn consists of matrices of the form x = 1n + εy for y ∈ Matn(k)
such that x is invertible. However, x always has an inverse, namely 1n − εy,
and we conclude that Lie(GLn) is identified with Matn(k), denoted by gln(k)
in Example 47.2(3). Similarly, for a finite dimensional vector space V , the Lie
algebra of GL(V) is identified with Endk-mod(V).

(d) The k-group scheme SLn has R-points those x ∈ Matn(R) such that det x =
1. (It is a k-group functor because the determinant of a product is the product
of the determinants, and it is a closed subfunctor of GLn, so it is a k-group
scheme.) The Lie algebra of SLn consists of x = 1n + εy for y ∈ Matn(k) such
that det x = 1. Expanding out the formula for the determinant in terms of the
entries of x, we find that det x = 1 + ε tr y, so Lie(SLn) is naturally identified
with the set of trace zero matrices, denoted by sln(k) in Exc. 47.18. Similarly,
for a finite-dimensional vector space V , the Lie algebra of SL(V) is identified
with the trace zero elements of Endk-mod(V).

(e) Suppose that G is the closed subfunctor of GLn fixing some element v ∈
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kn. Then Lie(G) consists of those x = 1n + εy for y ∈ Matn(k) such that 0 =
xv − v = εyv. This identifies Lie(G) with the annihilator of v in Matn(k).

(f) Let Q := (V, q) be a quadratic space over k. Then the orthogonal group
O(Q) defined in 24.26, i.e., the subgroup of GL(V) stabilizing q, has Lie alge-
bra consisting of x = 1V + εy for y ∈ Endk-mod(V) such that for all v ∈ V:

0 = q(xv) − q(v) = q(v + εyv) − q(v) = εq(v, yv),

i.e., such that q(v, yv) = 0. This Lie algebra was called o(V, q) in 47.4.

In fact, Lie is a left-exact functor from the category of k-group schemes to
k-mod.

Recall that there is a natural conjugation action of G on itself, namely

Int : G→ Aut(G) via Intg(x) = gxg−1. (1)

This gives an action of G on Lie(G), which is called the adjoint action and is
denoted

Ad: G→ GL(Lie(G)) via Adg(x) = gxg−1. (2)

Applying the functor Lie to this map, we find a k-linear map which is also
called the adjoint action and is denoted

ad: g→ gl(g).

Define a product [−,−] : g × g → g via [x, y] := adx(y); it makes g a Lie
algebra as defined in 47.1. It is a fact that the bracket defined in this way on
gln agrees with the bracket in Matn(k)(−). From this one can deduce that the
bracket just defined in terms of group schemes agrees with the familiar bracket
from Chapter VIII in the examples above.

52.2 Tori. A split (k-)torus is a k-group scheme that is isomorphic to a product
Gr

m of r copies of Gm for some r ≥ 0. The number r is the rank of the torus and
the rank 0 torus is the trivial group scheme. A (k-)torus is a k-group scheme
T such that there is a faithfully flat k-algebra R such that TR is a split R-torus,
i.e., TR � Gr

m for some r ≥ 0 [62, Def. IX.1.3]. If k is a field that is separably
closed, then every k-torus is a split torus.

Let T be a k-torus. The morphisms of k-group schemes T → Gm are called
characters. The collection of all characters of T is typically denoted T∗, rather
than the more systematic notation Hom(T,Gm). Because Gm is an abelian
group, so is T∗. Explicitly, (Gr

m)∗ is isomorphic to Zr by identifying the vector
(n1, . . . , nr) ∈ Zr with the character (t1, . . . , tr) 7→

∏
tni
i .
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In case k is a field and V is a k-vector space and ρ : T → GL(V) is a mor-
phism of k-group schemes, for χ ∈ T∗ we set

Vχ := {v ∈ V | ρ(t)v = χ(t)v ∀ t ∈ T(R) ∀R ∈ k-alg}.

It is a subspace of V . (It is a generalization of the notion of eigenspace for a
diagonal matrix to the case of a collection of pairwise commuting diagonaliz-
able matrices [29, VII.5.9, Prop. 19].) If Vχ , 0, we say that χ is a weight of V
and Vχ is a weight space. If T is a split k-torus, then

V = ⊕χ∈T∗Vχ. (1)

It is known as the weight space decomposition of V .

52.3 Example. Let c1, . . . , cr be a complete orthogonal system of idempotents
in a unital associative k-algebra A, cf. Exercise 32.22,. For R ∈ k-alg and
t1, . . . , tr ∈ R×, the element c :=

∑
tici is invertible in AR with inverse c−1 :=∑

t−1
i ci and for all a, a′ ∈ AR we have

(c(aa′))c−1 = (cac−1)(ca′c−1).

That is, the k-linear map ic : AR → AR via ic(a) := cac−1 is an R-algebra
automorphism of AR. (This does not work when A is an octonion algebra, see
Exc. 23.32.) Further, for t′1, . . . , t

′
r ∈ R× and c′ :=

∑
t′i ci, we have icic′ = icc′ , so

the map

(t1, . . . , tr) 7→ i∑ tici

defines a morphism of k-group schemes Gr
m → Aut(A). Note that for a in the

Peirce component Ai j, we have ic(a) = tit−1
j a. That is, in the weight space de-

composition of A with respect to Gr
m as in (52.2.1), Ai j is the weight space

Aχi−χ j where χi denotes the character χi(t1, . . . , tr) = ti. In summary, the Peirce
decomposition in Exercise 32.22 is the same as the weight space decomposi-
tion.

52.4 Semisimple group schemes over an algebraically closed field. For G
an affine K-group scheme for K an algebraically closed field, the radical of G,
denoted rad(G), is defined to be the largest smooth closed connected solvable
sub-group-scheme of G [101, XIX.1.2]. We say that G is semisimple if it is
smooth, connected, and rad(G) = 1 [101, XIX.1.8].

Let T be a maximal torus in G. That is, it is a torus, it is a closed sub-functor
of G, and it is not properly contained in any other torus that is also a closed
sub-functor of G. Since we have assumed that K is algebraically closed, T is
a split torus and, if T′ is another choice of maximal torus, then there is some
g ∈ G(K) such that gTg−1 = T′.
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We now apply the weight space decomposition to T acting on g := Lie(G)
via the adjoint representation (52.1.2). Because T is abelian, the map Int : T→
Aut(T) is trivial and for all t ∈ T(R), Ad(t) fixes all the elements of Lie(T) in
g. That is, the weight space g0 with weight zero contains Lie(T). The set R of
the non-zero χ ∈ T∗ such that gχ , 0, i.e., the non-zero weights of the adjoint
representation, are called the roots of G.

(This decomposition of Lie(G) into weight spaces under T is similar to
the decomposition into weight spaces under Lie(T) as mentioned in 47.9. If
char(K) = 0, the two are equivalent. However, when char(K) , 0, the two
decompositions may differ, in which case the decomposition under T is finer.)

Suppose that G is semisimple. Then (T∗ ⊗ R,R) is a root system in the
sense of 47.11 [195, Cor. 21.12]. Recall that the root system is a finite sum of
irreducible root systems. The type of G is the description of the root system as
a sum of irreducible root systems, named as in 47.12. We say that G is simple
if the root system is itself irreducible. The pair (T∗,R) is called a root datum,
cf. [195, Appendix C.d]; this is equivalent to the notion of a semisimple root
datum (“donnée radicielle semi-simple”) from [101, Def. XXI.1.1.7], see [195,
p. 615 and Prop. C.47].

Trivially, the roots generate a sublattice Q in T∗. There is also a notion of
weight in the context of root systems; this is a superlattice P of Q, and there
are inclusions

Q ⊆ T∗ ⊆ P. (1)

The extreme cases where one of the two containments is an equality have spe-
cial names: We say that G is adjoint if Q = T∗ (i.e., T∗ is as small as possible)
and G is simply connected if T∗ = P (i.e., T∗ is as large as possible). For a
given semisimple G, there are simple groups G̃ and Ḡ that are respectively
simply connected and adjoint, both of which are unique up to isomorphism,
together with morphisms

G̃→ G→ Ḡ.

The adjoint group Ḡ is the quotient, in the sense of group schemes, of G mod-
ulo its center. The irreducible root systems of types G2, F4, and E8 have P = Q,
so a simple group of that type is always both adjoint and simply connected;
whereas for G simple of one of the other types, the simply connected group G̃
and the adjoint group Ḡ are not isomorphic.

52.5 Semisimple group schemes over a ring k. In case G is an affine k-group
scheme for k merely a ring, G is said to be semisimple if it is smooth and GK

is semisimple for every algebraically closed field K ∈ k-alg [101, XIX.2.7].
When G is semisimple, we can speak of the root datum of the root system
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for GK ; when the (isomorphism class of the) root datum is the same for all
algebraically closed K ∈ k-alg, one says that it is the root datum of G (over
k). Similarly, if the type (i.e., the root system) of GK is the same for all alge-
braically closed K ∈ k-alg, we say that this is the type of G. The rank of G
is defined to be the rank of that root system, i.e., the dimension of a maximal
torus in GK for every algebraically closed field K ∈ k-alg.

52.6 Lemma. Suppose G is a k-group scheme. If there is a faithfully flat R ∈
k-alg such that GR is semisimple, then G is semisimple. If additionally GR

is simply connected (resp., adjoint; resp., of type Tn), then G is also simply
connected (resp., adjoint; resp., of type Tn).

Proof Since GR is smooth and R is faithfully flat, G is smooth as in 25.25(iii).
For each p ∈ Spec(k), there is a q ∈ Spec(R) such that q ∩ k = p. Then

the field k(p) embeds in the field R(q), so the algebraic closure k(p) includes
in the algebraic closure R(q). Because GR is simply connected (resp., adjoint,
resp. of type Tn) over R(q) and this property is unchanged by replacing one
algebraically closed field by a smaller one, the same holds over k(p). □

52.7 Split semisimple group schemes over a ring k. Suppose now that G is
semisimple and has a root datum as defined just before the lemma. We say that
G is split if it is “déployable” in the sense of [101, Def. XXII.1.13]. In the case
where k is a field, G is split if and only if it contains a split k-torus whose rank
equals the rank of G.

A split semisimple group scheme over a ring k is determined up to isomor-
phism by the isomorphism class of its root datum and the text of the final
paragraph of 52.4 holds, see [101, §XXIII.5]. The split semisimple k-group
scheme corresponding to a given root datum is obtained by base change from
the split semisimple Z-group scheme with that root datum. If G is a semisimple
k-group scheme over a principal ideal domain k such that GK is split for K the
fraction field of k, then G is split [54, Prop. 1.3].

We now describe some examples of split semisimple groups.

(i) Type A: In the k-group scheme SLn defined in 52.1(d), the diagonal ma-
trices in SLn make a rank n − 1 split torus via

(t1, t2, . . . , tn−1) 7→ diag(t1, t2, . . . , tn−1, (
n−1∏
i=1

ti)−1).

Such an element of SLn(k) acts on sln by conjugation. It fixes the diagonal
matrices in sln elementwise and acts on a matrix with a 1 in the (i, j) entry and
zeros elsewhere as tit−1

j where tn is understood to mean
∏n−1

i=1 t−1
i . Thus, the
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roots of this representation are εi−ε j for 1 ≤ i , j ≤ n, where εi(t1, . . . , tn−1) =
ti. The roots make up a copy of the root system An−1. It turns out that SLn is
simple and simply connected, see [42, §3.3].

The split adjoint simple group of type An−1, i.e., the quotient of SLn by its
center, is denoted PGLn. We mention that, if R ∈ k-alg has Pic R = 0, then
PGLn(R) = GLn(R)/R×.

What about groups of type An−1 that are not split? Let A be an Azumaya
k-algebra of degree n as defined in 42.6. We define SL1(A) to be the k-group
functor such that

SL1(A)(R) := {x ∈ AR | NrdAR (x) = 1}.

It is a k-group scheme because it is a closed subfunctor of the k-group scheme
GL1(A) as in Example 24.23. Note that NrdMatn(k) = det, so the k-group scheme
SL1(Matn(k)) is the same as SLn from the previous paragraph. Because AR �

Matn(R) for some faithfully flat R ∈ k-alg, we conclude by Lemma 52.6 that
SL1(A) is a simple and simply connected k-group scheme of type An−1.

(ii) Type C: For n ≥ 1, consider the split symplectic involution τ on Mat2n(k)
as defined in 10.10. The k-group scheme Aut(Mat2n(k), τ) whose R-points are
the R-algebra automorphisms of Mat2n(R) that preserve τ, is sometimes de-
noted PGSp2n; it is a split adjoint group of type Cn, compare [42, §7.1] or
[160, 25.11].

Let S be the 2n-by-2n matrix I or J from 10.10. The bilinear form s(x, y) :=
xTS y on kn is alternating and regular. Define Sp(s) to be the automorphism
group of s, i.e.,

Sp(s) := { f ∈ GLn(k) | s( f x, f y) = s(x, y)∀x, y ∈ kn},

equivalently,

Sp(s) = { f ∈ GLn(k) | f TS f = S }.

One obtains a k-group scheme Sp(s) by setting Sp(s)(R) := Sp(sR) for R ∈
k-alg. It is split, simply connected, and simple of type Cn with associated ad-
joint group PGSp2n, compare [42, §7.2]. Computations like the ones in 52.1
verify that the Lie algebra Lie(Sp(s)) is the one denoted sp(k2n, s) in Example
47.14.

(iii) Types B and D: See especially [157, §V.5], [54, Appendix C], or [42]
for details on the following. Let Q := (M, q) be a non-singular quadratic mod-
ule over k such that M is projective of constant rank n ≥ 1. We have used
O(Q) to denote the automorphism k-group scheme of Q. Except in the case
where n is even and 2 < k×, we define SO(QR) to be the kernel of the determi-
nant O(QR) → R× and define the special orthogonal group to be the functor
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SO(Q)(R) := SO(QR). We omit the definition of SO(Q) in the excluded case,
which will not be used below.

For example, let Qn := (kn, qn) denote the quadratic form

q2ℓ =

ℓ∑
i=1

x2i−1x2i and q2ℓ+1 = x2
0 +

ℓ∑
i=1

x2i−1x2i,

for n = 2ℓ or 2ℓ + 1, respectively. There is an fppf R ∈ k-alg such that QR �

(Qn)R; if n is even or 2 ∈ k×, then R may even be chosen to be an étale cover.
(See Exercise 26.12 for the n even case.)

Now, SO(Q) is smooth. If K ∈ k-alg is an algebraically closed field, then
SO(Q)K � SO(Qn)K . One can calculate the roots of SO(Qn) explicitly and find
that it is semisimple and adjoint of type Bℓ for n = 2ℓ + 1 ≥ 3. It is semisimple
of type Dℓ for n = 2ℓ ≥ 4, cf. Example 47.13, but neither adjoint nor simply
connected.

52.8 Isotropic semisimple groups schemes over a field k. Suppose k is a field
and G is a semisimple k-group scheme of rank r. We say that G is isotropic
if it contains a copy of Gs

m for some s > 0, and is anisotropic otherwise. As
an example, a quadratic space Q is isotropic if and only if the k-group scheme
SO(Q) is isotropic, see Exercises 52.10 and 54.24 or [25, §23.4]

One can make a more refined definition. Let s be the largest integer such
that G contains a copy of Gs

m. The case s = r is where G is split and the case
s = 0 is where G is anisotropic. In this way, we see that anisotropic groups and
split groups are opposite extremes.

We described split and anisotropic groups as opposite extremes. There is an
asymmetry in this comparison in that there is a unique split adjoint semisim-
ple k-group for each root system, but there can be zero or many anisotropic
adjoint k-groups with that root system. There are no anisotropic groups if k is
a separably closed field, because every maximal torus is split. If k = R, then
G(R) is compact if and only if G is anisotropic [25, §24.6], so there is a unique
anisotropic adjoint R-group with a given root system, cf. [33, §IX.3.3].

For another example, suppose k is a number field with n real embeddings.
Then there are 2n isomorphism classes of octonion k-algebras by Corollary
23.23. In Proposition 55.4 below, we will see that therefore there are 2n iso-
morphism classes of semisimple k-group schemes of type G2. Exactly one of
these is split. It is a special fact about groups of type G2 that those that are not
split are anisotropic [269, 17.4.2], therefore the remaining 2n − 1 of them are
all anisotropic.

52.9 Automorphisms of semisimple group schemes. For more details regard-
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ing the following material, see [101, Th. XXIV.1.3, §XXIV.3.6], [269, §16.3],
or [195, §23e].

For a k-group scheme G, write Aut(G) for the ordinary group of auto-
morphisms as a k-group scheme. Define a k-group functor Aut(G) by setting
Aut(G)(R) := Aut(GR) for R ∈ k-alg, the collection of automorphisms of GR

as an R-group scheme. If G is semisimple, then Aut(G) is itself a smooth k-
group scheme [101, Th. XXIV.1.3(i)]. Let Ḡ denote the adjoint group, which is
isomorphic to G modulo its center. Then Ḡ is contained in Aut(G) via the map
Int from (52.1.1), and the two groups are equal if G has a type whose Dynkin
diagram has no nontrivial automorphisms, such as A1, Bn, Cn, G2, or F4.

More generally, if G is semisimple, split, and simply connected (resp., ad-
joint), then Ḡ is a closed normal subgroup of Aut(G) and Aut(G)/Ḡ is isomor-
phic to the group of automorphisms of the Dynkin diagram of the root system
of G.

Exercises
52.10. Suppose Q is a quadratic module over a ring k and write h for the split hyper-
bolic plane. Exhibit a copy of Gm in O(h ⊥ Q).

53 Automorphism groups of composition algebras and
Freudenthal algebras

One motivation for studying octonion algebras and Albert algebras is that the
group scheme of automorphisms of such an algebra is interesting. In order to
put this claim in context, we discuss the automorphism groups of composition
algebras and Freudenthal algebras in general.

If a composition k-algebra C has rank 1, then C = k and Aut(C) is the trivial
k-group scheme 1.

If C has rank 2, then C is a quadratic étale k-algebra by 19.18, 19.19. The
non-trivial conjugation is an element of order 2 in Aut(C), and it turns out
that Aut(C) is the constant group scheme Z/2, see Exercise 19.33. (Or see
Exercises 24.29, 25.46 in case C is the split quadratic étale algebra k × k.)

We describe Aut(C) for C a composition algebra of rank 4 or 8 using the
notion of a semisimple group scheme from the preceding section. For the rank
8 case, see alternatively [54, Thm. B.14].

53.1 Theorem. Let C be a composition algebra over k of rank 4 or 8. Then
Aut(C) is a semisimple k-group scheme that is adjoint (i.e., its center is the
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trivial group scheme). The root system of Aut(C) is irreducible of type A1 if
rk C = 4 and type G2 if rk C = 8. If C is split, then Aut(C) is split.

Proof In case k is an algebraically closed field, all three claims hold. See
[270, Th. 2.3.5] for rank 8. For rank 4, C is Mat2(k) and the Skolem-Noether
Theorem as in [142, Cor. of Thm. 4.9] or [102, Thm. 2.4.2] says that all au-
tomorphisms of C are inner, i.e., Aut(C) is the group generally denoted by
PGL2, the split adjoint semisimple group of type A1 as in Example 52.7(i).

For general k, we know that Aut(C) is smooth by Corollary 26.10, verifying
that it is semisimple. We checked in the preceding paragraph that Aut(C)K is
adjoint of the type claimed for every algebraically closed field K ∈ k-alg, so
Aut(C) has the claimed root datum as a semisimple k-group scheme.

Finally, suppose C is split as a composition algebra. Then C � (CZ)k for CZ
the split composition algebra over Z of the same rank and Aut(C) � Aut(CZ)k.
We want to show that Aut(C) is split, for which it suffices to prove that the
algebra Aut(CZ)Q � Aut((CZ)Q) is split. That is, it suffices to prove the claim in
the case where k = Q, where the claims were verified already by the references
in the first paragraph of the proof. □

53.2 Automorphism groups of Freudenthal algebras. We now treat the au-
tomorphism group of a Freudenthal algebra J in a manner similar to what we
have just done for composition algebras. For J of rank 1, J = k and Aut(J) is
the trivial group scheme.

For J the split Freudenthal algebra of rank 3, every automorphism of J
as merely a Jordan algebra is an automorphism as a cubic Jordan algebra
(Cor. 38.18). Therefore, the k-group scheme of automorphisms of the cubic
Jordan algebra J is the same as that of the associative étale k-algebra k × k × k
(Exc. 29.24), i.e., is the constant group scheme corresponding to the symmetric
group on three letters.

53.3 Relationship with J-structures. To address Freudenthal algebras of larger
rank, we lean on Springer’s book [268]. That book focuses on J-structures,
which are triples (V, j, e), where V is a finite-dimensional vector space over an
algebraically closed field K, j is a rational map from V to V of degree −1 (i.e.,
a ratio f /g where f : V → V is a homogeneous polynomial law of degree d
and g : V → K is a homogeneous polynomial law of degree d + 1), and e is
an element of V . These must satisfy certain properties, which we elide here,
but amount to Thm. 31.27. For J a Freudenthal algebra over K of dimension
> 3, J is split, and 7.9 and 7.10(ii) in ibid. verify for those algebras that the
triple J := (J, j, 1J) where j(x) := x−1 is a J-structure. For convenience of
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cross-reference, we remark that Springer refers to the J-structure arising from
J as S3, M3, A3, or E3 when J has rank 6, 9, 15, or 27 respectively.

This gives an important connection between various group schemes associ-
ated with J and J . Springer notes (ibid., 1.1) that the collection

{(g, g′) ∈ GL(J) × GL(J) | g j = jg′}

is a group, which we will provisionally denote by G̃. He defines a group G
to be the image of the map G̃ → GL(J) obtained by projecting on the first
factor. In fact, the kernel of this projection is trivial (ibid., 1.2), so the projec-
tion is an isomorphism with G. Our structure group Str(J) naturally includes
in G̃ via η 7→ (η♯−1, η), by Thm. 31.22 (b). It is the group of similarities of NJ

(Lemma 40.4), so the inclusion Str(J) ↪→ G̃ is an equality by 12.3 of ibid. Sim-
ilarly, the automorphism group Aut(J), which is the stabilizer of 1J in Str(J)
(Thm. 31.22 (c)), equals the automorphism group of J denoted by H and de-
fined on p. 50 of ibid. by Prop. 4.6.

We consider these isomorphisms not just as maps between (ordinary) groups,
but as homomorphisms of group schemes. Specifically, define Str(J) to be the
group scheme such that Str(J)(R) = Str(JR) for each R ∈ K-alg and define G̃,
G, and H in an analogous way from G̃ , G, and H. For each R ∈ k-alg, each
element of Str(JR) is an element of GL(JR) that is an element of G(R), so the
homomorphism of group schemes Str(J) → G is naturally a monomorphism.
Since Str(J)(K) = Str(J) = G = G(K), if G is smooth then the natural inclu-
sion Str(J)→ G is an equality by [195, Prop. 5.47]. The same argument shows
that, if H is smooth, then it is isomorphic to Aut(J). In this way, Springer’s re-
sults describing H, in the cases where that group scheme is smooth, translate
to a description of Aut(J) in the case where k is an algebraically closed field.

53.4 Theorem. Let J be a Freudenthal algebra of rank 15 or 27 over a ring k.
Then Aut(J) is a semisimple k-group scheme that is adjoint (i.e., its center is
the trivial group scheme). Its root system has type C3 if J has rank 15 and type
F4 if J has rank 27. If J is the split Freudenthal algebra, then the group Aut(J)
is split as a semisimple group.

Proof The proof follows the same outline as Theorem 53.1. For the case
where k is algebraically closed field, Springer shows in [268, 14.19, 14.24]
that the group H for the corresponding J-structure is smooth and of the type
claimed, which completes the proof of the first claim in that case as explained
in 53.3. (For the case where k is an algebraically closed field of characteris-
tic different from 2 and 3 and J has rank 27, we could instead refer to [270,
Th. 7.2.1].)

For the fact that Aut(J) is smooth for arbitrary k, we refer to 39.33.
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Finally, suppose J is split; we wish to prove that Aut(J) is split. As in the
proof of Theorem 53.1, we may assume that k = Q. If J has rank 15, then
the proof of 14.19 in Springer’s book shows that the automorphisms of J are
exactly the automorphisms of the algebra Mat6(k) with the split symplectic in-
volution, which is the split adjoint group PGSp6 as noted in Example 52.7(ii).
For J of rank 27, [138, §6] (written for Lie algebras), [85, Satz 4.11] (written
for R), and 53.16 below exhibit a weight space decomposition of Der(J) and a
corresponding split maximal Q-torus in Aut(J). □

53.5 Freudenthal algebras of rank 6. In order to describe Freudenthal alge-
bras of rank 6, we introduce some notation under the assumption that k is a field
of characteristic different from 2. For Γ = diag(γ1, . . . , γn) ∈ GLn(k), we write
O(Γ) for the orthogonal group scheme of the quadratic from ⟨Γ⟩quad as defined
in 11.7. The determinant gives a morphism of group schemes O(Γ)→ µ2, and
we define SO(Γ) to be the kernel, i.e.,

SO(Γ)(R) = {g ∈ O(Γ)(R) | det g = 1}

for R ∈ k-alg. The groups O(Γ) and SO(Γ) are smooth by the references in
Remark 25.22.

Note that µ2 naturally embeds in O(Γ) as the scalar matrices. When n is odd
this is a one-sided inverse for the determinant map, providing an isomorphism
O(Γ) � SO(Γ) × µ2.

We use the shorthand notations O(n) and SO(n) for O(Γ) and SO(Γ) in the
special case where Γ is the identity matrix. Then O(n)(R) and SO(n)(R) are the
groups commonly denoted by O(n) and SO(n).

53.6 Proposition. Suppose that k is a field and let J be a split Freudenthal
algebra over k as defined in 39.20.

(i) If J has rank 6 and 2 ∈ k×, then Aut(J) � SO(3).
(ii) Suppose J has rank 9 and view J as Mat3(k)(+). Then every automor-

phism of J arises from an automorphism or anti-automorphism of the
associative algebra Mat3(k), i.e., Aut(J) � PGL3 ⋊ Z/2.

Proof We define a group scheme Y and a homomorphism ϕ : Y → Aut(J).
For J of rank 6, take Y := O(3). For y ∈ O(3)(R), define ϕy ∈ Aut(J)(R) via
ϕh(x) = yxy−1. For J of rank 9, take Y := GL3 ⋊ Z/2 where the semi-direct
product acts via (1, 1)(g, 0) = ((g−1)T, 0)(1, 1) for g ∈ GL3. Define

ϕ(g,0)(x) = gxg−1 and ϕ(1,1)(x) = xT.

When K ∈ k-alg is an algebraically closed field, ϕ(Y(K)) = Aut(J)(K)
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by 14.17 and 14.16 in [268], respectively, compare also [136, Ch. VI, Th. 8,
Th. 12] or [133, Th. 9]. (Note that in the case of rank 6, [268] has a typo that
conflates the group we denote here by Y and its image in Aut(J).) As Aut(J)
is smooth (39.33) and K is a field, we deduce that Aut(J) is the image of ϕ
as a group scheme. That is, by the usual homomorphism theorem [195, 5.74],
Aut(J) is the quotient of the group scheme Y by the group scheme Ker ϕ.

For J of rank 9, the kernel of ϕ is the scalar matrices in GL3, a subgroup
isomorphic to Gm, therefore Aut(J) = (GL3/Gm) ⋊ Z/2 = PGL3 ⋊ Z/2.

For J of rank 6, the kernel of ϕ is the intersection of O(3) and the scalar
matrices, i.e., µ2. We find that Aut(J) � O(3)/µ2 � SO(3). □

53.7 Lemma. Suppose k is a field of characteristic different from 2. Then for
each diagonal Γ ∈ GL3(k), the group SO(Γ) is isomorphic to the automorphism
group of the rank 6 Freudenthal algebra Her3(k,Γ).

Proof For each R ∈ k-alg, Her3(k,Γ) ⊗ R is the collection of elements of
Mat3(R) fixed by x 7→ x∗ := Γ−1xTΓ. If g ∈ GL3(R) satisfies gTΓg = Γ— i.e.,
g ∈ O(Γ)(R) — then

(gxg−1)∗ = Γ−1(gT)−1xTgTΓ = gΓ−1xTΓg−1 = gx∗g−1.

That is, the ordinary group O(Γ)(R) acts on Her3(k,Γ) with kernel µ2(R) as in
the proof of 53.6, i.e., SO(Γ)(R) is contained in Aut(Her3(k,Γ))(R) and we find
that SO(Γ) is a closed sub-group-scheme of Aut(Her3(k,Γ)).

Now, Aut(Her3(k,Γ)) is smooth and connected and for F an algebraic clo-
sure of k we have SO(Γ)(F) = Aut(Her3(F,Γ)) as in the proof of Proposition
53.6, so we conclude that the inclusion of k-group schemes is an equality. □

In the preceding material on Freudenthal algebras of rank 6, we restricted to
the case where k is a field. We now relax that hypothesis.

53.8 Corollary. If k is a ring and 2 ∈ k×, then the automorphism group of
Her3(k, diag(−1, 1,−1)) is the split adjoint group of type A1.

Proof Suppose first that k = Q. The quadratic form ⟨−1, 1,−1⟩quad is isotropic
(Exc. 11.31), so the group scheme G := SO(diag(−1, 1,−1)) is isotropic by
Exc. 52.10. Since the group scheme is semisimple of type A1, it is in fact split,
as claimed.

For the algebra J := Her3(Z[1/2], diag(−1, 1,−1)), we have Aut(J)Q is split
of type A1. Since Z[1/2] is a principal ideal domain, it follows that Aut(J) is
split as a group scheme over Z[1/2] and therefore Aut(J)k � Aut(Jk) is a split
group scheme for every ring k with 2 ∈ k×. □
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53.9 Example. Combining the two preceding results shows that the notion of
the Freudenthal algebra J being split and the notion of the k-group scheme
Aut(J) being split need not agree for rank 6 Freudenthal algebras. Indeed,
when k = R, Her3(k, diag(1, 1, 1)) is the split Freudenthal algebra and it has
automorphism group SO(3), the compact or anisotropic adjoint group of type
A1, whereas Her3(k, diag(−1, 1,−1)) has automorphism group the split adjoint
group of type A1.

53.10 Corollary. Let J be a Freudenthal algebra of rank 6 over a ring k such
that 2 ∈ k×. Then Aut(J) is a semisimple k-group scheme that is adjoint (i.e.,
its center is the trivial group scheme) and has root system of type A1.

Proof Suppose first that J is split. The group Aut(J) is smooth by 39.33. For
every algebraically closed field K ∈ k-alg, Aut(J)K = Aut(JK) � SO(3) by
Proposition 53.6(i), which is semisimple and adjoint of type A1. This proves
the claim for J split.

If J is not split, then there is an fppf R ∈ k-alg such that JR is split by 39.32,
and Lemma 52.6 finishes the proof. □

53.11 Remark. For the results in this section, we have relied on Corollaries
26.10 and 39.33 to see that the the automorphism group is smooth in each
case. Alternatively, for Proposition 53.1 and Theorem 53.4, it would suffice to
verify that the automorphism group of the split algebra over every algebraically
closed field is smooth, to note that the split algebra is defined over Z, and then
to deduce that the automorphism group of the split algebra over Z is smooth
by [87, Prop. 6.1] or [15, Lemma B.1]. That was the approach taken in [95].

So far, we have proved results of the type “the automorphism group of this
kind of algebra looks like this”. In the next section, we will develop the ma-
chinery of cohomology and descent, which will allow us to prove a tighter
connection between algebras and their automorphism groups.

A root systems interlude

We now take a side trip to sketch the identification of root systems of type G2

and F4 for Aut(A) for A an octonion and Albert algebra, respectively. We do
so because this material may be difficult to locate elsewhere in the literature. It
is not used in the rest of the book.

53.12 An SL3 subgroup. Let C be a split octonion algebra, i.e., C � Zor(k).
We claim that the sub-group-scheme of Aut(C) fixing the diagonal matrices in
Zor(k) (equivalently, fixing the idempotent e :=

(
1 0
0 0

)
) is isomorphic to SL3.
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We need as a key point that for × the ordinary vector product and h ∈ GL3(k),
the identity

det(u ∧ v ∧ w) = wT(u × v)

for u, v,w ∈ k3 implies that

hu × hv = (det h)h−T(u × v), (1)

compare (21.10.2). From this and the multiplication rule (22.14.3), it follows
that, for h ∈ SL3(R) for some R ∈ k-alg, the map(

α1 v∗
v α2

)
7→

(
α1 h−Tv∗
hv α2

)
is an automorphism of Zor(R). For the opposite containment, suppose g ∈
Aut(C) fixes e. Then, because g is an automorphism,

g
(
α1 v∗
v α2

)
=

(
α1 h′v∗
hv α2

)
for some h, h′ ∈ GL3(R). Since ⟨h′v∗, hv⟩ = ⟨v∗, v⟩ for all v, v∗, it follows that
h′ = h−T. Leveraging again the fact that g is an automorphism, we obtain
h−T(u × v) = hu × hv, and (1) implies that det h = 1, completing the proof.

Note that applying the functor Lie to the inclusion SL3 ⊂ Aut(C) immedi-
ately implies Prop. 49.3. Conversely, the proofs of the two results are practi-
cally the same.

53.13 Remark. We can now show: Aut(C) is connected if k is a field. To see
this, recall that the notions of elementary and absolute idempotents agree in C
(Prop. 22.7), so the scheme X of absolute idempotents consists of e ∈ C such
that tC(e) = 1 and nC(e) = 0. In particular, it is isomorphic to a dense open
subscheme of the projective quadric nC = 0 in P(C) defined by the condition
tC , 0. Since the projective quadric is irreducible, so is the affine scheme
X. The stabilizer in Aut(C) of a point in X is isomorphic to SL3, which is
connected. By [269, Ex. 5.5.9(1)], this gives the claim.

53.14 Exhibiting the G2 root system. The proof of Thm. 53.1 that Aut(C) is
simple of type G2 for C an octonion algebra, which relies on [270], is some-
what indirect. It argues that Aut(C) is simple of dimension 14. (See Cor. 49.4
and Prop. 49.8 for similar statements about Lie algebras.) Let us now make
this identification more explicit by exhibiting a root datum of type G2 when C
is split. We have just identified a subgroup of Aut(C) isomorphic to SL3. Let
T denote the maximal torus in SL3 consisting of diagonal matrices. Because
Aut(C) also has rank 2, T is also a maximal torus in Aut(C). We depict the
simple root systems of type A2 and G2 in Figure 53a, where we follow the la-
beling for the simple roots of A2 from 47.12 but we adopt a special choice for
G2 in order to avoid notational conflict between the two systems.
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Figure 53a Root systems of type A2 and G2 in R2.

As a representation of SL3, Der(C) is a sum of the Lie algebra sl3 of SL3,
a copy of the natural representation k3, and its dual, as in Prop. 48.20. The
nonzero weights of sl3 with respect to T consist of the roots of SL3, namely

α1, α2, α1 + α2 (1)

and their negatives. The weights of T on k3 or its dual are

ω1 =
1
3 (2α1 + α2), 1

3 (−α1 + α2), −ω2 = −
1
3 (α1 + 2α2) (2)

and the other has an analogous list of weights where the subscripts 1 and 2 are
swapped, i.e., the negatives of the weights in (2).

Let us define

α := 1
3 (−α1 + α2) and β := α1.

With this notation, the weights in (1) are

β, β + 3α, 2β + 3α

and the weights in (2) are

α + β, α, −β − 2α.

The nonzero weights of T on Der(C) are these and their negatives. We know
by general theory [195, Cor. 21.12] that this collection of 12 weights is a root
system. We have found that α and β are simple roots of that root system. The
linear combinations of α and β that belong to the root system agree with those
depicted for G2 in Figure 53a so we have found the root system of type G2.
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Note that we have identified the roots of SL3 with the long roots of G2 in
Aut(C). This is an example of a general phenomenon: inside a split simple
group scheme over a field, the long roots generate a sub-root-system and a
corresponding semisimple subgroup.

Let’s follow a similar procedure for F4.

53.15 A Spin8 subgroup. In 53.12, we identified a copy of SL3 inside the
split group of type G2, which was itself an analogue for group schemes of an
inclusion of Lie algebras proved in Chap. VIII. We now follow a similar recipe
to exhibit inside the split group of type F4 a copy of the split simply connected
group scheme of type D4, commonly denoted Spin8. Let J := Her3(C) for C
the split octonion algebra over k.

Write H for the affine group scheme whose R-points, for each R ∈ k-alg,
consists of the elements of Aut(J)(R) = Aut(JR) that fix the three diagonal
idempotents eii. Every element h ∈ H(k) must preserve the multiple Peirce
decomposition as in Example 32.17, so we find that

h(
∑

eii + ui[ jl]) =
∑

eii + (hiui)[ jl],

where hi ∈ End(C). Because (hx)♯ = h(x♯), we conclude from the formula for
♯ in (36.4.4) that hi ∈ O(nC) for all i. Moreover, equating the [ jl] component
of (hx)♯ with that of h(x♯) shows that

hi(u jul) = (h ju j)(hlul).

That is, (hi, h j, hl) ∈ O(nC)3 is a related triple in the sense of [69, §1]. The
collection of such triples is isomorphic to Spin8, see Theorem 1.1 in ibid. This
argument can be run in reverse and in that manner we identify H with Spin8

and we identify the three rank 8 subspaces C[ jl] of J with three inequivalent
8-dimensional representations of Spin8.

This description of the inclusion Spin8 ⊂ Aut(J) relied on the notion of
triality on the level of groups. Applying the functor Lie then gives a notion of
triality for Lie algebras, which we have already seen in Cor. 51.27. Changing
to the setting of group schemes has allowed us to remove the hypothesis that 2
is invertible.

53.16 Exhibiting the F4 root system. The proof in 53.4 that Aut(J) is simple
of type F4 for J an Albert algebra, which relies on [268], is somewhat indi-
rect. It argues that the root system of Aut(J) is a subsystem of E6 fixed by an
automorphism. Let us now make the identification of the F4 root system more
explicit, following the same outline as we did in 53.14 for type G2.

We have just identified a subgroup of Aut(J) isomorphic to Spin8. Pick a
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maximal torus T in Spin8. The nonzero weights of T on the Lie algebra of
Spin8 are the roots of a root system of type D4; we follow the notation of
47.12 and write α1, . . . , α4 for a choice of simple roots as in the diagram

α1 α2

α3

α4

Since Aut(J) has rank 4, T is also a maximal torus in Aut(J). As a repre-
sentation of Spin8, Der(J) is a sum of the Lie algebra of Spin8 and the three
8-dimensional minuscule fundamental representations of Spin8. In order to
simplify the notation, we write simply abcd for the sum aα1+bα2+cα3+dα4,
where a, b, c, d ∈ Q. The roots of D4 are:

(i) four simple roots 1000, 0100, 0010, 0001;
(ii) three roots of height 2: 1100, 0110, 0101;
(iii) three roots of height 3: 0111, 1101, 1110;
(iv) one root of height 4: 1111;
(v) the highest root: 1211

and their negatives. The weights of the minuscule representation with highest
weight dual to the simple root 1000 can be found using the Weyl character
formula, and therefore easily by computer. They are

11 1
2

1
2 , 01 1

2
1
2 , 00 1

2
1
2 , 00(− 1

2 ) 1
2

and their negatives. (Since −1 is in the Weyl group of type D4, the lowest
weight of each irreducible representation is the negative of the highest.) The
weights of the other two minuscule representations are obtained by cyclically
permuting the 1st, 3rd, and 4th coordinate, corresponding to the nontrivial
automorphism of the Dynkin diagram. Our task is take this collection of 48
weights, which we know form a root system, and identify which root system it
is.

Define

β1 := 0100, β2 := 0010, β3 := 00(− 1
2 ) 1

2 , β4 := 1
2 00(− 1

2 ).

Then each of the 48 weights we have exhibited can be expressed as an integral
linear combination of the βi, and for each weight the coefficients are all positive
or all negative. That is, the βi are a set of simple roots for the root system.
By inspecting the linear combinations so obtained or by examining the inner
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products of the βi, we conclude that it has type F4 as indicated in the diagram

β1 β2 β3 β4

54 Cohomology, twisted forms, and descent

In this technically demanding section, we define and prove basic results about
the cohomology tools we will use in the remainder of the chapter. The culmi-
nation of this work is the Descent Theorem 54.15, which we apply to great
effect in the next section.

54.1 Definition of cohomology. Given some R ∈ k-alg, we write di : ⊗n R →
⊗n+1R for 0 ≤ i ≤ n to be the map that inserts a 1 after the i-th place, i.e.,

di(r1 ⊗ · · · ⊗ ri ⊗ ri+1 ⊗ · · · ⊗ rn) = r1 ⊗ · · · ⊗ ri ⊗ 1 ⊗ ri+1 ⊗ · · · ⊗ rn.

(In analogy with the terminology for simplicial sets, one might call the maps
di face maps.) For each i, the map di is a homomorphism of k-algebras, so
for any k-group functor G we obtain a homomorphism of ordinary groups
di : G(⊗nR)→ G(⊗n+1R). We have seen this homomorphism before in (25.6.1)
and in Proposition 25.7.

Write Z1(R/k,G) for the collection of g ∈ G(R ⊗ R) such that

d1g = (d0g)(d2g) (1)

in G(R ⊗ R ⊗ R). Its elements are the R/k-1-cocycles with values in G. Two
1-cocycles g, g′ are said to be equivalent or cohomologous, written g ∼ g′, if
there is an element h ∈ G(R) such that

g′ = (d0h)g(d1h)−1

in G(R ⊗ R). Because d0 and d1 are group homomorphisms, this defines an
equivalence relation on Z1(R/k,G), and we define

H1(R/k,G) := Z1(R/k,G)/ ∼ .

We can see that every morphism α : G → G′ of k-group functors induces a
function H1(R/k,G) → H1(R/k,G′) (directly from the definition of H1), and
we find that H1(R/k,−) is a functor from the category of k-group schemes to
the category of sets.

54.2 Example: cocycles defined over k. Consider the case R = k. Then ⊗nk =
⊗n+1k = k and di = 1k. Therefore, the 1-cocycle condition (54.1.1) implies
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that any g ∈ Z1(k/k,G) satisfies g2 = g, i.e., g is the identity element in G. It
follows that H1(k/k,G) = 1.

Suppose now that R ∈ k-alg and g ∈ Z1(R/k,G) is the image of some g0 ∈

G(k), i.e., g = ϑ(g0). Then dig = diϑ(g0) = (ϑ ⊗ ϑ ⊗ ϑ)dig0 does not depend
on i, so dig is the identity element as in the previous paragraph. When R is
faithfully flat, the maps di : R ⊗ R → R ⊗ R ⊗ R are injections by Proposition
25.7. So g is also the identity and Z1(R/k,G) ∩ ϑ(G(k)) = {1G}.

54.3 Example: abelian G. Suppose now that G is abelian, meaning that the or-
dinary group G(R) is abelian for every R ∈ k-alg. Then for g, g′ ∈ Z1(R/k,G),
we have

d1(gg′) = (d1g)(d1g′) = (d0g)(d2g)(d0g′)(d2g′) = d0(gg′)d2(gg′),

so Z1(R/k,G) is itself an abelian group. Moreover, the group operation is com-
patible with the equivalence. For example, for h ∈ G(R) we have

g(d0h)g′(d1h)−1 = (d0h)gg′(d1h)−1.

In summary, if G is abelian, then H1(R/k,G) is an abelian group.

54.4 Example: Galois cohomology. Suppose k is a field, K is a field that is a
finite Galois extension of k, and G is a k-group functor. In that case, H1(K/k,G)
can be viewed as a Galois cohomology set, which may be more amenable to
concrete computation.

Specifically, put Γ for the group of k-automorphisms of K. We can view∏
Γ K as functions Γ→ K. The k-algebra homomorphism

w2 : K ⊗ K →
∏
Γ

K via w2(a ⊗ b)(γ) = γ(a)b

is an isomorphism because dimk K is finite [29, V.10.4, Cor.]. Using this iden-
tification, the homomorphisms d0, d1 : K → K ⊗ K satisfy

d0a = 1 ⊗ a = (γ 7→ a) and d1a = a ⊗ 1 = (γ 7→ γ(a)).

Therefore, for g ∈ G(K), dig ∈ G(K ⊗ K) is a function Γ→ G(K). It has

(d0g)(γ) = g and (d1g)(γ) = γ(g).

Tensoring with K, we identify K ⊗ K ⊗ K with functions Γ × Γ → K via
w3(a ⊗ b ⊗ c)(γ, δ) = γ(a)δ(b)c. We find that

d0(a ⊗ b) = 1 ⊗ a ⊗ b = ((γ, δ) 7→ δ(a)b),

d1(a ⊗ b) = a ⊗ 1 ⊗ b = ((γ, δ) 7→ γ(a)b), and

d2(a ⊗ b) = a ⊗ b ⊗ 1 = ((γ, δ) 7→ γ(a)δ(b)).
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Therefore, for g ∈ G(K ⊗ K), equivalently g : Γ→ G(K), the element dig : Γ×
Γ→ G(K) satisfies

(d0g)(γ, δ) = g(δ), (d1g)(γ, δ) = g(γ), and (d2g)(γ, δ) = δg(δ−1γ).

Putting this together, the 1-cocycle condition (54.1.1) amounts to g(γ) = g(δ) ·
δg(δ−1γ) for γ, δ ∈ Γ. Changing variables γ 7→ γδ and δ 7→ γ, we re-write the
condition as

g(γδ) = g(γ) · γg(δ) (1)

for γ, δ ∈ Γ. This formulation is the usual 1-cocycle condition from the coho-
mology of finite groups.

Another g′ ∈ Z1(K/k,G) is equivalent to g if there is an h ∈ G(K) such that
g′ = (d0h)g(d1h)−1, i.e., such that

g′(γ) = h · g(γ) · γ(h)−1.

This description of H1(K/k,G) as equivalence classes of functions Γ → G(K)
satisfying (1) is the usual definition of Galois cohomology of the ordinary
group G(K) with a Γ-action and is sometimes denoted H1(Γ,G(K)).

54.5 Twisted forms of modules. For a k-module M, the tensor product M⊗R⊗
R can be viewed as an (R⊗R)-module in two ways, either in the natural way or
through composing the natural way with a map θ defined via θ(m ⊗ r1 ⊗ r2) =
m⊗r2⊗r1. When R is faithfully flat, M is identified with the submodule M⊗1⊗1
of M ⊗ R ⊗ R and Proposition 25.7 says that

M = {y ∈ M ⊗ R | θ(y ⊗ 1) = y ⊗ 1}.

We say that a k-module M′ is an (R/k-)twisted form of another k-module M
if there is an isomorphism of R-modules f : M′R → MR. We will now relate
the collection EM(R/k) of R/k-twisted forms M′ of M, in case R is faithfully
flat over k, with cohomology of GL(M) as we have just defined. Consider the
diagram

M′ ⊗ R ⊗ R θ //

f⊗1R

��

M′ ⊗ R ⊗ R

f⊗1R

��
M ⊗ R ⊗ R θ // M ⊗ R ⊗ R,

where the θ on the top arrow is defined in a manner analogous to the one on
the bottom. The diagram need not commute. Indeed, starting from the lower
left corner and moving up, right, and down defines a map

ψ := ( f ⊗ 1R)θ( f ⊗ 1R)−1 (1)
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that need not equal the bottom θ. To say it differently, starting in the lower left
corner and traversing the square clockwise, one finds a function ϕ := θψ of
M ⊗ R ⊗ R that need not be the identity. Note that since the vertical arrows
f ⊗ 1R are (R ⊗ R)-linear and the horizontal arrows θ are (R ⊗ R)-semi-linear
with respect to switching the two factors, ϕ is again (R⊗R)-linear and belongs
to GL(MR⊗R).

54.6 Theorem. The map M′ 7→ ϕ defined above is a function EM(R/k) →
H1(R/k,GL(M)). If R is faithfully flat over k, then the map is a bijection and
EM(R/k) is a set.

Proof The crux is to verify that ϕ is a 1-cocycle. Define k-linear endomor-
phisms θe on M′ ⊗R⊗R⊗R for e = 0, 1, 2 instantiating the permutations (1 3),
(1 2 3), (1 2) respectively of the three factors of R, i.e., for r1, r2, r3 ∈ R and
m′ ∈ M′, the element m′ ⊗ r1 ⊗ r2 ⊗ r3 is sent to m′ ⊗ r3 ⊗ r2 ⊗ r1 by θ0, to
m′ ⊗ r3 ⊗ r1 ⊗ r2 by θ1, and to m′ ⊗ r2 ⊗ r1 ⊗ r3 by θ2. Note that θ1 = θ0θ2.

Define ψe := ( f ⊗1R ⊗1R)θe( f ⊗1R ⊗1R)−1. One finds that, if ψ(m⊗ r⊗a) =∑
mi ⊗ ri ⊗ ai, then

ψ0(m ⊗ r ⊗ u ⊗ a) =
∑

mi ⊗ ri ⊗ u ⊗ ai,

ψ1(m ⊗ r ⊗ u ⊗ a) =
∑

mi ⊗ ri ⊗ ai ⊗ u, (1)

ψ2(m ⊗ r ⊗ a ⊗ u) =
∑

mi ⊗ ri ⊗ ai ⊗ u.

(Note that the argument for ψ2 is different from the others, and ψ2 = ψ⊗1R.) To
see the equation involving ψ1, for example, note that the u entry in the tensor
product is not altered by ( f ⊗1R⊗1R)−1, is moved to the last entry by θ1, and is
unchanged by f ⊗ 1R ⊗ 1R. Ignoring that one term, one sees that the remaining
terms are mapped according to the formula (54.5.1).

Certainly

ψ0ψ2 = ( f ⊗ 1R ⊗ 1R)θ0θ2( f ⊗ 1R ⊗ 1R)−1 = ψ1.

One checks that ψe = θe(deϕ) for e = 1, 2 and ψ0 = θ1(d0ϕ)θ2. Thus,

(d0ϕ)(d2ϕ) = θ1ψ0θ2θ2ψ2 = θ1ψ1 = d1ϕ,

proving that ϕ is a 1-cocycle.
Now suppose that f ′ : M′ ⊗R→ M ⊗R is also an isomorphism. From it, we

deduce ψ′ := ( f ′ ⊗ 1R)θ( f ′ ⊗ 1R)−1. Since g := f ′ f −1 is an element of GL(MR),
g ⊗ 1 = d1g, and θ(d1g)θ = d0g, we have

ψ′ = (d1g)ψ(d1g)−1 (2)
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and

θψ′ = (d0g)θψ(d1g)−1 ∼ ϕ. (3)

That is, the equivalence class of ϕ depends only on M′ and not on the choice
of f . This proves that the map M′ 7→ ϕ is well defined.

Assume R is faithfully flat over k. Then f |M′⊗1R is a k-module isomorphism
between M′ and {y ∈ M ⊗ R | θϕ(y ⊗ 1) = y ⊗ 1}. That is, we can recover M′

up to k-isomorphism from M ⊗ R and the 1-cocycle ϕ. If ϕ′ ∼ ϕ, i.e., there is a
g ∈ GL(MR) such that (3) holds, hence (2) holds, and we find that d1g restricts
to a k-module isomorphism

{y ∈ M ⊗ R | ψ(y ⊗ 1) = y ⊗ 1}
∼
−→ {y′ ∈ M ⊗ R | ψ′(y′ ⊗ 1) = y′ ⊗ 1}.

That is, the k-isomorphism class of M′ depends only the equivalence class of
ϕ, proving that the map M′ 7→ ϕ is injective.

For surjectivity, consider a 1-cocycle ϕ. Define ψ := θϕ, an (R⊗R)-semilinear
endomorphism of M ⊗ R⊗ R. Define M′, a k-submodule of M ⊗ R to make the
sequence

0 // M′ // M ⊗ R
1M⊗d1
//

ψ(1M⊗d1)
// M ⊗ R ⊗ R (4)

exact; we will show that M′ 7→ ϕ. Define ψe := θe(deϕ) for e = 1, 2 and
ψ0 = θ1(d0ϕ)θ2 as above. Note that these definitions imply (1) and ψ0ψ2 = ψ1.

Tensor sequence (4) with R to obtain a diagram

0 // M′ ⊗ R

f
��

1M⊗d1
// M ⊗ R ⊗ R

ψ

��

1M⊗d1
//

ψ2(1M⊗d1)
// M ⊗ R ⊗ R ⊗ R

ψ0

��
0 // M ⊗ R

1M⊗d1
// M ⊗ R ⊗ R

1M⊗d1
//

1M⊗d2
// M ⊗ R ⊗ R ⊗ R

with exact rows. We check that the diagram commutes. Suppose µ ∈ M ⊗ R
and a ∈ R, and write ψ(µ ⊗ a) =

∑
µi ⊗ ai. For the box with the upper arrows,

we find

ψ0(1M ⊗ d1)(µ ⊗ a) = ψ0(µ ⊗ 1R ⊗ a) =
∑

µi ⊗ 1R ⊗ a = (1 ⊗ d1)ψ(µ ⊗ a).

For the box with the lower arrows, we find

ψ0ψ2(1M ⊗ d1)(µ ⊗ a) = ψ1(µ ⊗ 1R ⊗ a) = (1M ⊗ d2)ψ(µ ⊗ a),

verifying the commutativity. Therefore, the vertical arrow ψ induces a unique
vertical arrow f , which is an isomorphism. That is, the k-module M′ con-
structed from ϕ maps to ϕ, verifying surjectivity.
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For completeness, we note that for µ ∈ M′ ⊂ M ⊗ R, we have

f (µ ⊗ a) = ψ((1R ⊗ a)(µ ⊗ 1R)) = (a ⊗ 1R)(µ ⊗ 1R) = aµ ⊗ 1R.

That is, the R-module isomorphism f : M′ ⊗ R → M ⊗ R is the obvious map
arising from the fact that M′ is a k-submodule of M ⊗ R.

Finally, we note that GL(M)(R⊗R) = GL(MR⊗R) is a set, so Z1(R/k,GL(M))
is a set, whence so is H1(R/k,GL(M)). □

54.7 Tensor systems. The same proof and statement immediately generalize to
the case where M has some additional structure1, which we now make precise.
We describe various types of algebraic objects that have appeared in this text
as a k-module M together with some k-linear maps between modules deduced
from M, and we denote the total package by A and call such a thing a tensor
system over k. We consider the following specific cases.

(a) A is a k-module; in this case A = M and there are no additional linear
maps.

(b) A is a non-associative k-algebra, as in Example 24.25. Such an algebra
is determined by its multiplication, which is a linear map M⊗M → M.

(c) A is a unital non-associative k-algebra, as in 8.1. In addition to the
information in (b), A has an additional linear map k → M defined by
λ 7→ λ1A, specifying 1A.

This data is also sufficient to specify an element A ∈ k-alg. The ad-
ditional axioms that A must satisfy to be an object of k-alg — namely,
that the multiplication is commutative and associative — are not ex-
plicit in this setting.

(d) A is a k-group scheme G. In this case, we take M = k[G]. To specify
the k-algebra structure on M, equivalently the scheme structure on A,
we include the two linear maps from (c). To specify that G is a k-
group functor, we add three linear maps M → k, M → M, and M →
M ⊗ M encoding the identity element, inversion, and multiplication in
G as in Remark 24.18. (These three maps are usually called the counit,
antipode, and comultiplication of k[G].)

(e) A is a G-torsor X for a k-group scheme G. In this case we take M =
k[X]. To specify the k-algebra structure on M, we use the two linear
maps from (c). To specify the group action of G × X → X, we add a
third linear map M → k[G] ⊗ M.

1 Grothendieck described the situation in [110, p. 316] thusly: “On peut évidemment varier ad
libitum le théorème... en introduisant des structures supplémentaires diverses sur les faisceaux
(ou systèmes de faisceaux) quasi-cohérents envisagés.”
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The next few examples will only be considered in the case where the under-
lying k-module M is projective of finite constant rank, in which case S d(M∗)
is naturally identified with the degree-d homogeneous forms in Pol(M, k), see
Exc. 25.36.

(f) A is a quadratic space, as in Example 24.26. It is determined by a quad-
ratic form q on its underlying k-module M. Viewing q as an element of
S 2(M∗), we may specify it via a k-linear map k → S 2(M∗) defined by
λ 7→ λq.

(g) A is a conic algebra. In this case, there are three linear maps, the two
from (c) encoding that it is a unital non-associative algebra and the one
from (f) encoding the quadratic form. Note that the tensors for a conic
algebra satisfy certain axioms, namely (16.1.1), which are not explicit
in this setting.

(h) A is a para-quadratic algebra. There are two linear maps, one specifying
the identity 1A ∈ M and the other specifying the quadratic map U,
which we encode as a k-linear map k → S 2(M∗) ⊗ Endk(M). As in the
previous item, the axiom (28.1.2) that U1A = 1A is not explicit in this
setting.

(i) A is a cubic Jordan algebra. In this case there are three linear maps, the
two from (h) as well as a k-linear map k → S 3(M∗) encoding the cubic
form N. Again, for a cubic Jordan algebra, there are relations among
the tensors that are not explicit in this setting.

In summary, a tensor system A is a k-module M together with linear maps
αi : σi(M) → τi(M) for i in some index set I, where σi and τi are maps of the
form M 7→ k, M 7→ M ⊗M, M 7→ S d(M∗), or M 7→ M ⊗ B for some B ∈ k-alg
not depending on M. (This is the source of the name “tensor system”: in the
literature, one often finds the additional hypothesis that M, σi(M), and τi(M)
are finitely generated projective modules, in which case

Homk-mod(σi(M), τi(M)) = σi(M)∗ ⊗ τi(M) (1)

by [28, II.4.2, Cor.], so αi is an element of that module, i.e., a tensor.) We refer
to σi, τi as recipes.

We treat tensor systems with different numbers of linear maps or different
recipes as distinct kinds of objects. Suppose A′ is another tensor system with
the same recipes as A but with a possibly different underlying k-module M′ and
linear maps α′i : σi(M′) → τi(M′). Each isomorphism of k-modules f : M′ →
M induces isomorphisms σi( f ) : σi(M′)→ σi(M) and similarly for τi. We say
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that f is an isomorphism A′
∼
−→ A if the diagram

σi(M′)
α′i //

αi( f )
��

τi(M′)

τi( f )
��

σi(M)
αi // τi(M)

(2)

commutes for all i.
We define Aut(A) to be the collection of isomorphisms A

∼
−→ A. It is a subset

of GL(M) and in particular is a set. We obtain a k-group functor Aut(A) by
setting Aut(A)(R) := Aut(AR) for R ∈ k-alg.

54.8 Remark. For an (ordinary) group H, we can define its opposite group Hop

to have the same underlying set as H but the opposite multiplication ◦ in the
sense that h1 ◦ h2 := h2h1 for h1, h2 ∈ H. The two groups are isomorphic, via
the map H → Hop given by h 7→ h−1. We can imitate this construction also
for a k-group functor H and again find an isomorphism of k-group functors
H
∼
−→ Hop.
In particular, in cases (d) and (e) above, Aut(A) consists of automorphisms

of the coordinate ring, whereas the automorphisms of the object viewed as a
scheme are Aut(A)op, compare Corollary 24.5. The previous paragraph sug-
gests that this is only a minor distinction.

54.9 Example. Let G be a k-group scheme and take A to be the tensor system
from case (e), obtained by regarding G as a G-torsor. Then Aut(A) � G by
Exercise 25.45.

Let’s repeat the work done for modules in 54.5, this time for tensor systems.
We say that a tensor system A′ is an (R/k-)twisted form of A if there is an
isomorphism f : A′R → AR of tensor systems over R. We put EA(R/k) for the
collection of isomorphism classes of R/k-twisted forms of A.

Given an element of EA(R/k), we pick a representative A′ for it as well as
an R-isomorphism f : A′R → AR. As in 54.5, the element ϕ := θ( f ⊗ 1R)θ( f ⊗
1R)−1 is in GL(AR⊗R). But more is true. Since each αi is k-linear, αi ⊗ 1R ⊗ 1R

commutes with θ. This together with commutativity of (2) gives that ϕ belongs
to Aut(AR⊗R).

54.10 Theorem. For a tensor system A over k, the map A′ 7→ ϕ as just defined
is a function EA(R/k)→ H1(R/k,Aut(A)). If R is faithfully flat over k, the map
is a bijection and EA(R/k) is a set.

Proof Because ϕ is a 1-cocycle when viewed as an element of GL(MR⊗R), it
is also one when viewed as an element of Aut(AR⊗R). To verify that the class
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of ϕ does not depend on the choice of f , note that the element g produced in
the proof of 54.6 belongs to Aut(AR). This proves that the map is well defined.

As in the proof of 54.6, we note that given the 1-cocycle ϕ, the set M′′ :=
{y ∈ MR | θϕ(y ⊗ 1) = y ⊗ 1} is a k-submodule. To argue that the map is
an injection, we note that f |M′⊗1R is an isomorphism M′

∼
−→ M′′. Repeating

that argument from 54.6, the element g belongs to Aut(AR) and so d1g is an
isomorphism of tensor systems over k.

For surjectivity, we suppose we are given a 1-cocycle ϕ and consider the
fixed submodule M′′ of MR. For each recipe α : σ(M) → τ(M) of M, we
obtain

α′′R := τ( f )−1ασ( f ) : σ(M′′R )→ τ(M′′R ),

and we claim that α′′R comes from a unique α′′ ∈ Homk-mod(σ(M′′), τ(M′′)).
To see this, we compute

θ(α′′R ⊗ 1R)θ = θ(τ( f )−1 ⊗ 1R)(α ⊗ 1R)(σ( f ) ⊗ 1R)θ

= (τ( f )−1 ⊗ 1R)ψ(α ⊗ 1R)ψ(σ( f ) ⊗ 1R)

= (τ( f )−1 ⊗ 1R)(α ⊗ 1R)(σ( f ) ⊗ 1R) = α′′R ⊗ 1R,

which proves the claim by Exercise 25.44. □

54.11 Lemma. If R → S is a homomorphism of k-algebras and A is a tensor
system, then EA(R/k) is naturally contained in EA(S/k).

Proof For A a k-module,

A′ ⊗k S � A′ ⊗k (R ⊗R S ) � (A′ ⊗k R) ⊗R S , (1)

by 9.4. If A′ ⊗R � A⊗R, then applying (1) and running the same computation
in reverse, we find that A′ ⊗ S � A ⊗ S , proving the claim in this case. □

Each homomorphism of k-algebras R→ S gives a map

inf : H1(R/k,G)→ H1(S/k,G)

known as inflation, which a priori depends on the homomorphism R→ S . We
have:

54.12 Lemma. If R → S is a homomorphism of faithfully flat k-algebras and
A is a tensor system, then we have a commutative diagram of sets

EA(R/k) //

�

��

EA(S/k)

�

��
H1(R/k,Aut(A)) inf // H1(S/k,Aut(A))
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where the horizontal arrows are injective and do not depend on the choice of
homomorphism R→ S .

Proof Tracking the proof of Theorem 54.10, we find that the bottom arrow
is given by going up, right, and down, i.e., the diagram commutes. Because
the top arrow does not depend on the homomorphism R→ S , neither does the
bottom arrow. Injectivity of the top arrow (Lemma 54.11) gives injectivity of
the bottom arrow. □

54.13 A set-theoretic excursion. Except in the trivial case where k is the zero
ring, the category of k-algebras is not small, meaning that the collection of
k-algebras is not a set, see Exercise 54.22. Consider instead the full subcate-
gory C whose objects are finitely presented k-algebras. Each finitely presented
k-algebra R is isomorphic to k[t1, . . . , tn]/( f1, . . . , fr) for some n, r ∈ N and
f1, . . . , fr ∈ k[t1, . . . , tn]. One may view the tuple ( f1, . . . , fr) as determining
R up to isomorphism in C. In this way, we obtain every finitely presented k-
algebra from an element of the set⋃

n∈N

⋃
r∈N

k[t1, . . . , tn]r.

Certainly multiple elements of this set will lead to the same isomorphism class
of algebra. Using the Axiom of Choice, we may pick one element of the set
for each isomorphism class of finitely presented k-algebras, showing that the
collection of isomorphism classes of such algebras is a set. (The fancy lan-
guage for this is that C “has a small skeleton.”) One deduces from this that the
collection of isomorphism classes of fppf k-algebras (resp. étale k-algebras;
resp. étale covers of k) is also a set.

54.14 Twisted forms with no reference to R. Consider now a diagram of ob-
jects and arrows, where the objects are isomorphism classes of fppf k-algebras
and one includes an arrow R → S if there is a k-algebra homomorphism
R → S . Note that the collection of objects in the diagram is a set as explained
in 54.13. From this, we construct a new diagram by applying EA(−/k) to each
of the objects, for some tensor system A over k. Note that for each homomor-
phism R → S , there is an arrow EA(R/k) → EA(S/k) that does not depend on
the specific choice of R→ S , and so the collection {EA(R/k)} forms a directed
set (thanks to 54.13). We define

EA(k) := lim
−−→

R

EA(R/k) for fppf R ∈ k-alg,

which is a set [32, §III.7.6]. An element of EA(k) is called a twisted form of A.
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Similarly, in view of Lemma 54.12, we may define

H1(k,Aut(A)) := lim
−−→

R

H1(R/k,Aut(A)) for fppf R ∈ k-alg.

We call it the fppf or flat cohomology set of Aut(A). Combining Theorem 54.10
and Lemma 54.12 gives the result we have been aiming for.

54.15 Descent Theorem. For every tensor system A over k, the map EA(k)→
H1(k,Aut(A)) is a bijection and EA(k) is a set. □

54.16 Example. The twisted forms of kn are the rank n projective modules,
for n ∈ N, compare 25.5. The group scheme Aut(kn) is GLn. Therefore:

(a) The case n = 1 concerns line bundles. We have GL1 = Gm, and in this
case the Descent Theorem says that H1(k,Gm) = Pic(k).

(b) If k is such that every rank n projective k-module is free (e.g., if k is an
LG ring or a principal ideal domain), then by the Descent Theorem the set
H1(k,GLn) = 1.

54.17 Étale cohomology. Define

H1
ét(k,G) := lim

−−→
R

H1(R/k,G) for étale covers R ∈ k-alg.

It too is a set by the same reasoning as for the fppf cohomology set H1(k,G).
It is the étale 1-cohomology of G, as opposed to the flat 1-cohomology set
H1(k,G). Because every étale cover is faithfully flat, there is a natural inclusion
H1

ét(k,G) ⊆ H1(k,G). We state:

54.18 Proposition. For A a tensor system, the natural map H1
ét(k,Aut(A)) →

H1(k,Aut(A)) is injective. If Aut(A) is a smooth k-group scheme, then the map
is an isomorphism.

Proof Because étale covers are faithfully flat, the first claim is a consequence
of Lemma 54.12. For the second claim, we need only show surjectivity. Given
an element of H1(k,Aut(A)), by the Descent Theorem we may identify it with
a Aut(A)-torsor X over k in the flat topology. Since Aut(A) is smooth, X is also
a torsor in the étale topology as explained in 25.26. That is, there is an étale
cover R of k such that X(R) is nonempty, i.e., X ∈ H1(k,Aut(A)) is in the image
of H1

ét(R/k,Aut(A)) ⊆ H1
ét(k,Aut(A)). □

54.19 Cohomology over a field. In case G is a group scheme over a field F,
we can describe the sets H1(F,G) and H1

ét(F,G) in a way that can be more
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amenable to computation. Write F̄ and Fs for the algebraic and separable clo-
sures of F, respectively. There is a natural commutative diagram

H1(Fs/F,G) //

��

H1(F̄/F,G)

��
H1

ét(F,G) // H1(F,G)

(1)

where all the arrows come from the inflation map and are therefore injective by
Lemma 54.12. In fact, the vertical maps are isomorphisms. To see this, view
H1(F,G) as the collection of G-torsors over F in the flat topology. For such a
torsor X, X(F̄) is nonempty by the Nullstellensatz (Proposition 25.28), so X is
in the image of the right vertical arrow. The same argument using the separable
Nullstellensatz shows that the left vertical arrow is a bijection.

54.20 Proposition. Let G be a group scheme over a field F such that k[G] is
finitely generated. If G is smooth or F is perfect, then

H1(F,G) = H1
ét(F,G) = lim

−−→
K

H1(K/F,G)

where the limit runs over finite Galois extensions K of F.

Proof If G is smooth, then the bottom arrow in diagram (54.19.1) is a bijec-
tion (Prop. 54.18). If F is perfect, then Fs = F̄ and the top arrow is a bijec-
tion. In either case, we conclude that all arrows in the diagram are bijections
and we use them to identify the four sets, leading to H1(F,G) = H1

ét(F,G) =
H1(Fs/F,G).

The inflation maps H1(K/F,G)→ H1(Fs/F,G) give by Lemma 54.12 a nat-
ural inclusion lim

−−→K
H1(K/F,G) ⊆ H1(Fs/F,G). Now, each g ∈ Z1(Fs/F,G) is

an element of G(Fs ⊗ Fs) = Homk-alg(k[G], Fs ⊗ Fs). For each element x of
k[G], g(x) is a sum of finitely many terms y ⊗ y′ with y, y′ ∈ Fs, and it fol-
lows that g(k[G]) is contained in a finitely generated subfield L of Fs, which
is necessarily finite dimensional over F. Taking K to be the Galois closure of
L, we see that g belongs to the subset H1(K/F,G), proving the second claimed
equality. □

Most of the group schemes we study in this chapter are smooth, so the propo-
sition applies. This rephrases the problem of computing H1(F,G) into one of
studying the sets H1(K/F,G), which can be viewed as the Galois cohomol-
ogy sets from Example 54.4, where results from the literature are more readily
available.

54.21 Bibliographic notes. The definition of cohomology in 54.1 follows
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[110, p. 311], [103, III.3.6.1], and [293, 17.6]; it is a kind of Čech cohomology.
The proof of Theorem 54.6 is a re-organization of arguments in [293, Ch. 17];
for a different view see for example [110, p. 312], [158, p. 36, Th. 3.2], or
[290, Th. 4.23]. See [42, §2.1] for a different view on the notion of tensor sys-
tem from 54.7. Theorem 54.10, proved here for tensor systems, can be found
in the literature proved for k-algebras in [158, p. 38, Th. 3.4] or [290, Th. 4.29].

For other views on the material in this section, see [103] or [54, §3] (where
k is replaced by a base scheme), [158] (for k a ring as here), or [260] or [160,
29.1] (for k a field).

Exercises
54.22. For each of the collections

• isomorphism classes of k-modules (i.e., objects in k-mod)
• isomorphism classes of k-algebras (i.e., objects in k-alg)

prove that the following are equivalent:

(i) The collection is a set.
(ii) The collection is a singleton.
(iii) The ring k is the zero ring.

54.23. Suppose A is a tensor system whose underlying k-module M and each of the
σi(M) and τi(M) are finitely generated projective. Prove that Aut(A) is a closed sub-
functor of GL(M) (as defined in 24.15) and hence is a k-group scheme.

54.24. Suppose V is a finite-dimensional vector space over a field k and f : V → k is a
homogeneous polynomial law of degree d > 0. The group functor Aut( f ) such that

Aut( f )(R) = {g ∈ GL(V ⊗ R) | fR ◦ g = fR}

for all R ∈ k-alg is a closed sub-group-scheme of GL(V) by Exc. 54.23. Prove: If
Aut( f ) is isotropic, then there is a nonzero v ∈ V such that fk(v) = 0.

54.25. Lang’s Theorem. Let F be the finite field with q elements. It is the collection of
elements in its algebraic closure F̄ fixed by the Frobenius automorphism σ : x 7→ xq.
Lang’s Theorem [269, Thm. 4.4.17] says that, for every finitely generated and con-
nected group scheme G over F, every element of G(F̄) is of the form σ(g)g−1 for some
g ∈ G(F̄). Use this to prove that H1(F,G) = 0.
Remark. Sometimes this result is itself called “Lang’s Theorem”, see for example [293,
§18.8].

54.26. Suppose k is a finite ring and G is a smooth and connected k-group scheme.
Verify that H1(k,G) = 0.

(Hint: Compare Exercise 40.17.)

54.27. For any finite group Γ, the corresponding constant group scheme XΓ from 24.20
is defined over Z. The set XΓ(Z) � Γ has a canonical image in XΓ(K) for every K ∈
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Z-alg; call elements of this image constant elements. Let A be a tensor system over
k ∈ Z-alg and suppose there is a morphism of k-group functionrs f : Aut(A) → XΓ.
Prove: If, for every K ∈ k-alg, the image of f (K) : Aut(AK) → XΓ(K) contains all the
constant elements, then f (K) is surjective for every K ∈ k-alg.

55 Applications of the Descent Theorem

In this and the following sections, we apply the Descent Theorem 54.15 to
prove various classification results concerning the kinds of algebras studied
elsewhere in the book. As a first example, let us consider a Jordan k-algebra J.
We call J étale if there is a (finite) étale E ∈ k-alg such that J � E(+). We call J
split étale if it is E(+) where E is a product of finitely many copies of k. (These
definitions agree with the one in Ex. 34.17.) With this language, we now prove
the following generalization of the result of Exercise 39.42(b).

55.1 Proposition. (a) Let J be a Jordan k-algebra. If there is an fppf R ∈ k-alg
such that the Jordan R-algebra JR is étale, then J is étale.

(b) If E, E′ are finite étale k-algebras such that E(+) � E′(+) as Jordan alge-
bras, then E � E′.

Proof Suppose JR is étale, so it is finitely generated projective as an R-module,
and therefore J is finitely generated projective as a k-module, see 25.5.

Suppose k is connected, in which case J has constant rank, call it r. Put E for
a product of r copies of k, the split étale k-algebra. There is an fppf S ∈ R-alg
such that JS � (JR)S � (ES )(+); note that the composition k → R → S is
also fppf, see 25.3 and 25.15. Now, the natural map Aut(E)→ Aut(E(+)) is an
isomorphism of k-group schemes (Exercise 29.24), and the Descent Theorem
54.15 shows that the map L 7→ L(+) defines a bijection between twisted forms
of E (i.e., étale k-algebras by Exercise 25.47) and twisted forms of E(+), i.e.,
claim (b). As J is one of the latter, it is of the form L(+) for some étale L ∈ k-alg.

One reduces to the case where k is connected in the same manner as in the
proof of 26.9, 26.10, completing the proof. □

For every Freudenthal k-algebra J of rank 3, there is an fppf R ∈ k-alg such
that JR � (R × R × R)(+) by Cor. 39.32, so the proposition gives the following,
which we already knew from Exc. 39.42(b):

55.2 Corollary. The map E 7→ E(+) defines a bijection between the isomor-
phism classes of rank 3 (commutative, associative) étale k-algebras and the
isomorphism classes of rank 3 Freudenthal k-algebras. □
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For A a composition algebra of rank > 2 or Freudenthal algebra of rank > 3,
Aut(A) is either a semisimple group or closely related to one, and the following
result highlights a major theme.

55.3 Lemma. If G is a semisimple k-group scheme that is adjoint and whose
Dynkin diagram has no nontrivial automorphisms, then the conjugation map
G→ Aut(G) is an isomorphism and H1(k,G) = EG(k).

Proof The claim that G → Aut(G) is an isomorphism is part of 52.9. The
Descent Theorem gives the second claim. □

We immediately apply this to the case of composition algebras. Recall that,
if A is a quaternion or octonion algebra, then Aut(A) is an adjoint semisim-
ple group of type A1 or G2 respectively by Theorem 53.1. (Because all group
schemes of type G2 are adjoint, we may suppress the adjective in that case.)

55.4 Proposition. Let C0 be a composition algebra of rank r = 4 or 8 over k.
In the diagram

Isomorphism classes
of rank r composition
k-algebras

C 7→Aut(C) //

&&

Isomorphism classes of
adjoint semisimple k-
group schemes of type
A1 (r = 4) or G2 (r = 8)

xx
H1(k,Aut(C0))

all arrows are bijections that are functorial in k. In the top bijection, the
split composition algebra in the sense of 39.20 corresponds to the split group
scheme.

Proof Suppose C is a composition k-algebra of rank 4 or rank 8. Then Aut(C)
is a group of the required type, by Theorem 53.1, and Aut(C) is split if C is
split. The Dynkin diagrams of A1 and G2 have no nontrivial automorphisms,
so by Lemma 55.3 Aut(Aut(C)) = Aut(C). Applying the Descent Theorem
twice, we get bijections

EC(k)
∼
−→ H1(k,Aut(C)) = H1(k,Aut(Aut(C)))

∼
←− EAut(C)(k),

which is what was claimed. □

We now return to studying Freudenthal algebras. Recall that, if J is a Freud-
enthal algebra of rank 15 or 27, then Aut(J) is an adjoint semisimple group of
type C3 or F4 respectively by Theorem 53.4. (Because all group schemes of
type F4 are adjoint, we may suppress the adjective in that case.)
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55.5 Proposition. Let J0 be a Freudenthal k-algebra of rank r = 15 or 27. In
the diagram

Isomorphism classes
of rank r Freudenthal
k-algebras

J 7→Aut(J) //

%%

Isomorphism classes of
adjoint semisimple k-
group schemes of type
C3 (r = 15) or F4 (r =
27)

yy
H1(k,Aut(J0))

all arrows are bijections that are functorial in k. In the top bijection, the
split Freudenthal algebra in the sense of 39.20 corresponds to the split group
scheme.

Proof The proof proceeds in the same way as the proof of Proposition 55.4,
referring to Proposition 53.4 for the fact that Aut(J) is a group scheme of the
required type. The claim about split groups was already addressed in 53.4. □

55.6 Proposition. Suppose k is a ring, 2 is invertible in k, and J0 is a Freud-
enthal k-algebra of rank 6. In the diagram

Isomorphism classes
of rank 6 Freudenthal
k-algebras

J 7→Aut(J) //

&&

Isomorphism classes of
adjoint semisimple k-
group schemes of type
A1

xx
H1(k,Aut(J0))

all arrows are bijections that are functorial in k. In the top bijection, the alge-
bra Her3(k, diag(−1, 1,−1)) corresponds to the split group.

Proof The proof proceeds in the same way as the proof of Proposition 55.4,
referring to Corollary 53.10 for the fact that Aut(J) is a group scheme that is
adjoint semisimple of type A1. The claim about the split group is Corollary
53.8. □

We may use similar techniques to prove the following.

55.7 Proposition. Suppose A and A′ are both

(1) Albert algebras over a ring k; or
(2) octonion algebras over a ring k such that 2 ∈ k×.
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Then:

(a) Aut(A) � Aut(Der(A)).
(b) A � A′ if and only if Der(A) � Der(A′).

Proof We first claim that Aut(Der(A)) is a semisimple affine group scheme
of type F4 in case (1) or G2 in case (2). Like in the previous proofs, it suffices
to verify this in the case where A is split and k = Z for (1) or Z[1/2] for (2), in
which case it suffices to verify the claim when k is replaced by an algebraically
closed field. That case is verified in [272] and [123, esp. p. 456].

Now let us prove (a). Since Der(A) = Lie(Aut(A)) by 52.1, the adjoint rep-
resentation provides a natural homomorphism

Ad: Aut(A)→ Aut(Der(A)).

The kernel of this homomorphism is the (scheme-theoretic) center of Aut(A)
[101, Prop. XXII.5.7.14], which is trivial for our particular choices of A. It
follows that Ad is an isomorphism [101, Thm. XXIII.4.1], proving (a).

Claim (b) follows from (a) as in the proof of Prop. 55.4. □

The hypothesis “2 ∈ k×” in (2) cannot simply be dropped because (b) fails
for octonion algebras over a field of characteristic 2 by Prop. 49.9. The proof
breaks down in that case because Aut(Der(C)) has type C3 [123] and therefore
is of dimension 21 not 14.

We now combine very strong theorems about reductive group schemes with
Propositions 55.4 and 55.5 to obtain classification results for the algebras we
are interested in.

55.8 Corollary. Let k be

(i) a regular local ring containing a field, or
(ii) k0[t] for a field k0.

Write K for the field of fractions of k. If A and A′ are both

• composition k-algebras of rank 4 or rank 8, or
• Freudenthal k-algebras of rank 15 or rank 27

and AK � A′K , then A � A′.

Proof Take G := Aut(A). By Theorem 53.1 or 53.4, it is a simple k-group
scheme that is adjoint of type A1, G2, C3, or F4. Propositions 55.4 and 55.5,
combined with Lemma 55.3, show that the claim is equivalent to the statement
that the natural map H1(k,G) → H1(K,G) has trivial kernel. Because G is
smooth, by Proposition 54.18 this map is the same as H1

ét(k,G) → H1
ét(K,G),
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which is injective by the hypotheses on k by [79] and [206] in case (i) and by
[47, Lemma 3.5.4] in case (ii). □

In a similar vein, we can obtain classification results for composition alge-
bras and Jordan algebras over special fields including those from 23.12–23.23
and 46.15–46.21 by using arguments in terms of semisimple group schemes
and cohomology rather than dealing exclusively with algebras as was done in
earlier chapters. For example, the argument of Exc. 40.17 for finite fields could
be replaced by Exc. 54.26. For global fields, one could replace the role of the
Hasse-Minkowski Theorem and Cor. 46.19 in the proof of the classification
results 23.22 and 23.23 for octonions and 46.20 and 46.21 for Albert algebras
by an appeal instead to the Local-Global Principle for Galois cohomology of
simply connected semisimple groups over a global field that one can find in
Theorem 6.6 on p. 286 of [234] (for algebraic number fields) or in [113] and
[115].

55.9 Vista: fields of cohomological dimension ≤ 2. Several of the special
kinds of fields discussed in this book belong to a broader class of fields where
the classification results for Albert and octonion algebras still hold. Separa-
bly closed fields, finite fields, the C2 fields of 46.15(e), local fields, and the
global fields of Cor. 46.19 with no real embeddings are all examples of “fields
of (separable) cohomological dimension ≤ 2”. We omit the precise definition
and refer the reader to [98, esp. §4.5] or [262, Ch. II]. For such a field F, one
can prove that every octonion or Albert F-algebra A is split. Indeed, one ob-
serves that G := Aut(A) is of type G2 or F4 respectively, and its subgroup G′

corresponding to the long roots with respect to any maximal torus is simply
connected of type A2 or D4. Then one shows that H1(F,G′) = 1 and that this
implies H1(F,G) = 1, see for example [98, p. 94] or [234, §6.8]. (Alterna-
tively, the hypothesis on cohomological dimension implies that the cohomo-
logical invariants of degree ≥ 3 described in the next subsection all vanish,
which implies the claim.)

The remaining kinds of special fields we have considered, namely R and
number fields with a real embedding, are examples of “fields of virtual co-
homological dimension ≤ 2”. For such a field F, two octonion or Albert F-
algebras A, A′ are isomorphic if and only if AR � A′R for every real closed field
R containing F, see [20, §8, 9].

55.10 Vista: cohomological invariants. Given an F-group functor G, we get
a functor from the category of fields containing F (a full subcategory of F-alg)
and set defined by K 7→ H1(K,G), which we denote by H1(−,G). One can
also define abelian groups H3(K,Z/nZ(2)) for all n as in [94], which gives
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another functor K 7→ Hd(−,Z/nZ(d − 1)) for d ≥ 0. A morphism of functors
H1(−,G) → Hd(−,Z/nZ(d − 1)) is sometimes called a mod-n cohomological
invariant of degree d; it is normalized if it sends the trivial class to the zero
element. For G the automorphism group of the split Albert F-algebra, there
is a mod-6 cohomological invariant of degree 3. It was discovered by Markus
Rost [250] and is a specific case of a general construction known as the Rost
invariant, which is discussed in [94]. Because Hd(K,Z/nZ(d−1)) is an abelian
group of exponent dividing n for all K, the Rost invariant of this choice of G
is a sum of a mod-2 and mod-3 cohomological invariant, which can be viewed
as associating with each Albert K-algebra J elements f3(J) ∈ H3(K,Z/2Z(2))
and g3(J) ∈ H3(K,Z/3Z(2)). Concrete descriptions of f3(J) and g3(J) in terms
of Albert algebras can be found in [228], [229], and [231], and we have seen
f3(J) in another guise already in 41.25(iii).

One key property of g3(J), proved using Albert algebras, is that J is division
if and only if g3(J) , 0. From this we trivially deduce: If F is a field such that
H3(F,Z/3Z(2)) = 0, then every Albert F-algebra is reduced. Since the familiar
examples of fields F such as R and global fields have H3(F,Z/3Z(2)) = 0, this
viewpoint sheds light on the historical challenge — described in the introduc-
tion to §46 — that arose in trying to produce an example of an Albert division
algebra.

These cohomological invariants have been leveraged to prove various iso-
morphism criteria for Albert algebras, see for example [50] or [112, Prop. 4.3.5].

Exercises
55.11. Suppose J is a rank 3 Freudenthal algebra over an infinite field k. Verify that the
set { j ∈ J | k[ j] = J} is non-empty and Zariski-open in J.

55.12. Freudenthal algebras of rank 9 over a field. Let F be a field. Show that the maps
(A, τ) 7→ H(A, τ) and J 7→ Aut(J) define bijections between the isomorphism classes
of

(i) Azumaya algebras (A, τ) of degree 3 with unitary involution over F, as in 44.23,
(ii) rank 9 Freudenthal F-algebras J, and
(iii) adjoint semi-simple F-group schemes of type A2.

(Hint: Use Proposition 54.19 to connect the Descent Theorem with results for Galois
cohomology in [160, p. 346 and §29.D].)

55.13. Freudenthal algebras of rank 15 over a field. Let A be an Azumaya algebra
of degree d over a field F. An F-linear involution τ on A is symplectic if Symd(A, τ)
contains 1A and has dimension d(d− 1)/2. Recall from 29.8 that Symd(A, τ) is a Jordan
subalgebra of A(+) when τ is symplectic.

Show that the maps (A, τ) 7→ Symd(A, τ) and J 7→ Aut(J) define bijections of iso-
morphism classes between
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(i) Azumaya F-algebras with symplectic involution (A, τ) where A has degree 6;
(ii) rank 15 Freudenthal F-algebras J; and
(iii) adjoint semisimple F-group schemes of type C3.

Remark. The definition of symplectic involution given here agrees with the one in
[160], see especially Proposition 2.6 in that reference. Indeed, if char F , 2, the defini-
tion is that Sym(A, τ) has dimension d(d − 1)/2, and it is clear that 1A is in Sym(A, τ) =
Symd(A, τ). If char F = 2, then dimF Alt(A, τ) = d(d− 1)/2 and the definition is that 1A
is in Alt(A, τ), so it suffices to note that Alt(A, τ) = Symd(A, τ).

56 Examples of Albert algebras over Z

We now take a pause from group schemes to return to the setting of Albert
algebras as in Chapter VI. Our aim is to exhibit two Albert algebras over Z, Λ
and Λ0, and prove that they are not isomorphic (Thm. 56.6).

56.1 The cubic euclidean Jordan matrix algebras revisited. As in §5, we let
D be one of the four real composition division algebras R ⊂ C ⊂ H ⊂ O, which
by Thm. 5.10 gives rise to the cubic euclidean Jordan algebra J := Her3(D).
Being finite-dimensional as a real vector space, J carries the natural topology
with respect to which J× ⊆ J is an open subset. We denote by Pos(J) the
connected component of 1J in J×. and call it the positive cone of J because, by
characterization (iii) of Exc. 56.7 (b) below, it is a cone in the sense of being
stable under linear combinations with strictly positive real coefficients. Since
J× is locally connected, Pos(J) is not only closed but, in fact, also open in J×.
The closure of Pos(J) in J will be called the non-negative cone of J, denoted
by Pos(J).

Since the bilinearized norm of D gives rise to a positive definite inner prod-
uct (1.6), so does the bilinear trace of J (5a.3). Moreover, from (5.7.1) and
(33a.24) we derive the relations

T (x • y) =
1
2

T (x ◦ y) = T (x, y)

for all x, y ∈ J, and we conclude from (33a.33) that the linear trace of J is an
associative linear form relative to the bilinear Jordan product x • y:

T (x • y, z) = T (x, y • z) (x, y, z ∈ J). (1)

In order to carry out the transition from the euclidean Albert algebra over the
reals to the one over the integers, we fix a Cartan-Schouten basis E = (ui)0≤i≤7

of O in the sense of 2.1. We then write M := DiCo(O) for the corresponding
Z-structure of Dickson-Coxeter octonions (Thm. 4.5). It follows from Ex. 6.6



This material has been / will be published by Cambridge University Press as Albert Algebras over Commutative Rings by Skip Garibaldi, Holger
Petersson, and Michel Racine. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use
in derivative works.© Institute for Defense Analyses, Holger Petersson, and Michel Racine 2005–2024

56 Examples of Albert algebras over Z 603

that

Λ := Her3(M) ⊆ J := Her3(O) (2)

is a Z-structure of the euclidean Albert algebra Her3(O).

We proceed to the detailed study of some elements of Λ. The next few re-
sults, 56.2–56.5, re-interpret some clever computations from [71, §5] in the
language of Jordan algebras and isotopes as developed in this book.

56.2 Lemma. The algebra Λ contains exactly three elementary idempotents,
namely eii for 1 ≤ i ≤ 3.

Proof Let e be an elementary idempotent in Λ, written in the form

e =
∑(

αieii + wi[ jl]
)

(αi ∈ Z, wi ∈ M, 1 ≤ i ≤ 3).

Then e♯ = 0 and e has trace 1, which by (36.4.4) and (36.4.8) amounts to

α jαl = nO(wi), αiwi = w jwl, α1 + α2 + α3 = 1 (1 ≤ i ≤ 3). (1)

From Exc. 56.7 (c) we deduce e = e2 ∈ Pos(J), and Exc. 56.10 (b) implies
αi ≥ 0 for i = 1, 2, 3. Thus the αi, 1 ≤ i ≤ 3, are non-negative integers adding
up to 1, and hence there is a unique i = 1, 2, 3 such that αi = 1, α j = αl = 0.
Since nO is positive definite, (1) now implies w1 = w2 = w3 = 0, hence
e = eii. □

56.3 Proposition. With the notation of 4.4, the element

v :=
1
2
(
1O −

7∑
i=1

ui
)
= u1 − u2 − u4 − p − u1p − u2p + u4p (1)

belongs to M and satisfies the relations

nO(v) = 2, tO(v) = 1, v2 = v − 2 · 1O, tO(v3) = −5. (2)

Proof Since E is an orthonormal basis of O (Exc. 2.8), the first three equa-
tions of (2) follow immediately from the definition of v. In order to estab-
lish the fourth one, we compute v3 = v2 − 2v = v − 2 · 1O − 2v = −v − 2 ·
1O, and taking traces gives the assertion, hence completes the proof of (2).
Since (1O, u1, u2, u4,p, u1p, u2p, u4p) is an R-basis of O associated with M
(Thm. 4.5), it therefore suffices to establish the final equation of (1). To this
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end we apply (4.4.3)–(4.4.7) and compute

u1 − u2 − u4 − p − u1p − u2p + u4p =
1
2
(
2u1 − 2u2 − 2u4 − 1O − u1 − u2 − u3

+ 1O − u1 − u4 − u7

+ 1O − u2 + u4 − u5

− u1 + u2 + u4 − u6
)

=
1
2
(
1O − u1 − u2 − u3 − u4 − u5 − u6 − u7

)
= v.

This completes the proof. □

56.4 Proposition. With the notation of 56.1 and Prop. 56.3, the element

q :=
∑(

2eii − v[ jl]
)
∈ Λ = Her3(M)

has norm 1 and

p := q−1 = q♯ =
∑(

2eii − v̄[ jl]
)

(1)

belongs to Λ ∩ Pos(J).

Proof By Prop. 56.3 we have q ∈ M. Next we show NJ(q) = 1 and that q−1 =

q♯ has the form indicated in the final equation of the proposition. Consulting
(36.4.5) and (56.3.2), we compute

NJ(q) = 2 · 2 · 2 − 3 · 2nC(v) − tC(v3) = 8 − 12 + 5 = 1.

In order to compute p = q♯, we invoke (36.4.4) and (56.3.2) and obtain

q♯ =
∑((

2 · 2 − nO(v)
)
eii +

(
2v + v̄2)[ jl]

)
=

∑(
2eii +

(
2v + v̄ − 2 · 1O

)
[ jl]

)
=

∑(
2eii +

(
v + v + v̄ − 2(v + v̄)

)
[ jl]

)
=

∑(
2eii − v̄[ jl]

)
,

as claimed. Hence the proposition will follow once we have shown p ∈ Pos(J),
equivalently (Exc. 56.10 (a)), that all its minors are strictly positive. This is
obvious for the 1-minors and the 3-minor (since NJ(p) = NJ(q)−1 = 1), and
follows from (1) for the two-minors as well. □

Write Λ0 for the isotope Λ(p) of Λ for p as defined in the proposition. The
subscript 0 is inspired by the following result.

56.5 Lemma. The algebra Λ0 does not contain any elementary idempotents.
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Proof Assume that

e =
∑(

αieii + wi[ jl]
)

(αi ∈ Z, wi ∈ M, 1 ≤ i ≤ 3) (1)

is an elementary idempotent in Λ0. We must show that this assumption leads
to a contradiction. We do so in several steps.

1◦. Since e ∈ Λ0 is an elementary idempotent, 37.1 yields e(♯,p) = 0 and
T (p)(e) = 1, which by (33.11.2) and (33.11.5) is equivalent to e♯ = 0 and
T (p, e) = 1. Combining (1) with Exc. 39.39, Prop. 56.4 and (36.4.7), we there-
fore not only obtain

α jαl = nO(wi), (wiw j)wl = α1α2α31O = wi(w jwl) (i = 1, 2, 3) (2)

but also 1 =
∑

(2αi − nO(v̄,wi)), and (16.12.5) yields∑(
2αi − tO(vwi)

)
= 1. (3)

2◦. Since e = e(2,p) is a square in J(p) for J = Her3(O), we may combine
Exc. 56.7 (c) with Exc. 56.8 (b) to conclude e ∈ Pos(J(p)) = Pos(J). Thus
αi ≥ 0 for 1 ≤ i ≤ 3. On the other hand, Exc. 40.15(b) shows that

f (2,p) = f := p−1 − e = q − e =
∑(

(2 − αi)eii − (v + wi)[ jl]
)

(4)

has rank 2. By Exc. 56.7 (b), therefore, f ∈ Pos(J(p)) = Pos(J), so all minors
of f are non-negative (Exc. 56.10 (b)). Summing up, we obtain

0 ≤ αi ≤ 2, (2 − α j)(2 − αl) − nO(v + wi) ≥ 0 (1 ≤ i ≤ 3). (5)

Next we claim

|{i | 1 ≤ i ≤ 3, αi = 2}| ≤ 1. (6)

Otherwise, some i = 1, 2, 3 would have α j = αl = 2, and (5) would show
v+wm = 0 for all m = 1, 2, 3. But then f =

∑
m(2−αm)emm = (2−αi)eii would

have rank at most 1, a contradiction. Thus (6) holds.

3◦. We now treat the case α1α2α3 = 0. Then there exists i = 1, 2, 3 such that
α j = 0. In view of (2), this implies wl = wi = 0, and (3) reduces to

2αl + 2αi − tO(vw j) = 1. (7)

On the other hand, invoking (16.12.5), (56.3.2) and the Cauchy-Schwarz in-
equality, we obtain

|tO(vw j)| = |nO(v̄,w j)| ≤
√

nO(v, v)nO(w j,w j) = 2
√

2nO(w j),
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and (2) yields

|tO(vw j)| ≤ 2
√

2αlαi. (8)

Now, if αlαi = 0, then w j = 0 by (2), and (7) reduces to 2αl = 1 or 2αi = 1, a
contradiction. On the other hand, if αl = αi = 1, then |tO(vw j)| ≤ 2

√
2 < 3 by

(8) (since (2
√

2)2 = 4·2 = 8 < 9 = 32), and (7) yields 1 = 4−tO(vw j) > 4−3 =
1, again a contradiction. Finally, suppose αl = 1, αi = 2. Then |tO(vw j)| ≤ 4 by
(8), so (7) implies with 1 = 2+4−tO(vw j) ≥ 6−4 = 2 yet another contradiction.
By symmetry and in view of (6), this concludes the case α1α2α3 = 0.

4◦. Next we treat the case α1 = α2 = α3 = 1. Combining (2) with (5), we
conclude nO(wi) = 1 and 0 ≤ nO(v + wi) ≤ 1 for 1 ≤ i ≤ 3. But v has norm 2
by (56.3.2), which implies v + wi , 0, hence

nO(v + wi) = 1 (1 ≤ i ≤ 3). (9)

On the other hand, f , having rank 2 by 2◦, cannot be invertible in J, so (4) and
(9) yield

0 = NJ( f )

= (2 − α1)(2 − α2)(2 − α3) −
∑

(2 − αi)nO(v + wi)

− tO
(
(v + w1)(v + w2)(v + w3)

)
= 1 − 3 − tO

(
(v + w1)(v + w2)(v + w3)

)
= −tO

(
(v + w1)(v + w2)(v + w3)

)
− 2.

Thus w := (v + w1)((v + w2)(v + w3)) + 1O ∈ O satisfies

(v + w1)
(
(v + w2))(v + w3)

)
= −1O + w, w ∈ O0. (10)

Taking norms in (10) and observing (9), we conclude 1 = nO(−1O + w) =
1 + nO(w), hence w = 0. But this means

(v + w1)
(
(v + w2)(v + w3)

)
= −1O,

which combines with (4), (9) and Exc. 39.39 to show that f has rank 1, a
contradiction.

5◦. In view of (6), it remains to discuss the case αi = 2, α j = αl = 1 for
some i = 1, 2, 3. Then (4) collapses to

f = e j j + ell − (v + wi)[ jl] − (v + w j)[li] − (v + wl)[i j],

while (5) yields 1 − nO(v + wi) ≥ 0, v + w j = v + wl = 0. Thus, by (1),

f = e j j + ell − (v + wi)[ jl],

e = 2eii + e j j + ell + wi[ jl] − v[li] − v[i j]
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Here the assumption nO(v + wi) = 1 would imply f ♯ = 0, in contradiction to f
having rank 2. Hence v + wi = 0, and we conclude

e = 2eii + e j j + ell − v[ jl] − v[li] − v[i j].

But e has rank 1 which by (2) implies nO(v) = 1, in contradiction to (56.3.2).
This completes the proof. □

From this, we conclude that there are (at least) two non-isomorphic Z-forms
of Her3(O):

56.6 Theorem. For the Albert algebras Λ and Λ0 over Z,

Λ ⊗ F � Λ0 ⊗ F

for every field F, but

Λ � Λ0.

Proof The fact that Λ � Λ0 is an immediate consequence of Lemmas 56.2
and 56.5.

For the other claim when F = Q, from Prop. 56.4 we know p ∈ Pos(J). By
Exc. 56.8 (b), therefore, Λ ⊗ R � Λ0 ⊗ R. Then it follows from Thm. 46.20
that Λ ⊗ Q � Λ0 ⊗ Q. When F is a finite field, both algebras are split by
Exc. 40.17. □

In contrast to this, there is only one Z-form of O, up to isomorphism, by
Exc. 23.39. Compare Theorem 57.4.

Exercises

The following set of exercises paves the way for our brief investigation of the euclidean
Albert algebra over the integers. These exercises are mainly concerned with properties
of the positive cone as defined in 56.1. For an in-depth analysis of this important concept
in the more general setting of arbitrary (finite-dimensional) euclidean Jordan algebras
over the reals, see Braun-Koecher [36, Chap. X].

Unless explicitly stated otherwise, notation and conventions fixed in 56.1 will remain
in force. In particular, D stands for one of the four division subalgebras R, C, H, O of
O, and J := Her3(D).

56.7. Characterizations of the positive and the non-negative cone. Let x ∈ J and prove:

(a) There exist an elementary frame (c1, c2, c3) in J and real numbers α1, α2, α3 satis-
fying

x =
3∑

i=1

αici. (1)
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(b) The following conditions are equivalent.
(i) There exist an elementary frame (c1, c2, c3) of J and positive real numbers

α1, α2, α3 such that (1) holds.
(ii) x = y2 for some y ∈ J×.
(iii) The left multiplication operator

Lx : J −→ J, y 7−→ x • y,

is positive definite relative to the bilinear trace of J:

T (x • z, z) > 0 (0 , z ∈ J). (2)

(iv) x ∈ Pos(J).
In this case, x is said to be positive, and we write x > 0.

(c) The following conditions are equivalent.
(i) There exist an elementary frame (c1, c2, c3) of J and non-negative real numbers

α1, α2, α3 such that (1) holds.
(ii) x = y2 for some y ∈ J.
(iii) The left multiplication operator

Lx : J −→ J, y 7−→ x • y,

is positive semi-definite relative to the bilinear trace of J:

T (x • z, z) ≥ 0 (z ∈ J). (3)

(iv) x ∈ Pos(J).
In this case, x is said to be non-negative, and we write x ≥ 0.

56.8. Properties of the positive and the non-negative cone. Prove:

(a) Up(Pos(J)) = Pos(J), Up(Pos(J)) = Pos(J) for all p ∈ J×.

(b) J(p) � J, p−1 ∈ Pos(J) and

Pos(J(p)) = Pos(J), Pos(J(p)) = Pos(J).

for all p ∈ Pos(J).

(c) For η ∈ Aut(J) ∪ Str0(J), where Str0(J) denotes the identity component of Str(J)
as a topological group, we have

η
(

Pos(J)
)
= Pos(J), η

(
Pos(J)

)
= Pos(J).

(d) Assume D′ ∈ {R,C,H,O} is a subalgebra of D and put J′ := Her3(D′) ⊆ J. Then

Pos(J′) = Pos(J) ∩ J′× = Pos(J) ∩ J′, Pos(J′) = Pos(J) ∩ J′.

56.9. Positive definite elements. Let n be a positive integer, D ∈ {R,C,H} (so D is
associative) and J := Hern(D) be the real Jordan algebra of n-by-n hermitian matrices
with entries in D as defined in 5.3, 5.7).

(a) Show for y ∈ GLn(D) that the R-linear bijection

Φy : J −→ J, x 7−→ Φy(x) := ȳTxy,

belongs to the structure group of J.
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(b) Write Trin(D) for the group of upper triangular n-by-n matrices with entries in D
and diagonal ones equal to 1D. Then prove that the assignment y 7→ Φy defines an
anti-homomorphism from Trin(D) to the group Str0(J) (in the sense of Exc. 56.8 (c)).

(c) Show for x ∈ J that the following conditions are equivalent.

(i) x is positive definite in the sense that ūTxu > 0 for all 0 , u ∈ Dn.
(ii) There exists y ∈ Trin(D) such that ȳTxy is a diagonal matrix with strictly posi-

tive diagonal entries.

Moreover, for n = 3 these conditions are also equivalent to

(iii) x ∈ Pos(J).

(Hint: For the implication (i)⇒ (ii), argue by induction on n and use the formula

(
1p −P−1R
0 1q

)T (
P R
R̄T Q

) (
1p −P−1R
0 1q

)
=

(
P 0
0 −R̄TP−1R + Q

)
(1)

for p, q ∈ Z, p > 0, q > 0, p + q = n, P = P̄T ∈ GLp(D), Q ∈ Matq(D), R ∈ Matpq(D).)

56.10. Minors and the positive cone. As before, let J := Her3(D) with D ∈ {R,C,H,O}
and write x ∈ J as

x =
∑

(ξieii + ui[ jl]) (ξi ∈ R, ui ∈ D, i = 1, 2, 3). (1)

The quantities

T (x, eii), T (x♯, eii), N(x) (1 ≤ i ≤ 3) (2)

are called the minors of x, while

T (x, e11), T (x♯, e33), N(x) (3)

are called its principal minors. (Why?)

(a) Show that the following conditions are equivalent.

(i) x ∈ Pos(J).
(ii) The minors of x are all positive.
(iii) The principal minors of x are positive.

(Hint: Reduce the implication (iii) ⇒ (i) to the case that D is associative by applying
Exc. 5.18.)

(b) Conclude from (a) that the following conditions are equivalent.

(i) x ∈ Pos(J).
(ii) The minors of x are all non-negative.
(iii) The principal minors of x are non-negative.

Remark. In Elkies-Gross [71, p. 668], the exceptional cone of the euclidean Albert
algebra J := Her3(O) is defined as the set of elements satisfying condition (b)(ii) above
and hence agrees with Pos(J), the closure of the positive cone of J.
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57 Classification over Z

In this section, we study octonion algebras and Albert algebras over Z, or more
generally over the ring of integers in a global field. Such a ring is a Dedekind
domain.

57.1 Lemma. Suppose k is a Dedekind domain with field of fractions K.

(a) Let A be an octonion or Albert k-algebra. Then A is split if and only if
AK is split.

(b) Let G be a semisimple k-group scheme of type G2, F4, or E8. Then G is
split if and only if GK is split.

Proof In both cases, the “only if” direction is obvious so we prove “if”. We
start with (b). Put G0 for the split form of G and suppose GK is split. The
natural map G → Aut(G) is an isomorphism, so by the Descent Theorem
54.15, there is an element γ ∈ H1(k,G0) corresponding to G. Moreover, since
k is Dedekind and G0 is simply connected, [114, Satz 3.3] says that γ = 0, i.e.,
G � G0.

We deduce (a) from (b) using the correspondence between on the one hand
Albert or octonion algebras and on the other hand groups of type F4 or G2 as
in Propositions 55.5 or 55.4, which say in particular that the algebra is split if
and only if its automorphism group is split. □

Regarding (b), recall from 52.7 that if k is a principal ideal domain, one can
weaken the hypothesis on G.

Part (a) of the lemma immediately gives the following.

57.2 Corollary. Suppose k is a Dedekind domain with field of fractions K. If
every Albert (resp., octonion) K-algebra is split, then the split Albert (resp.,
octonion) k-algebra is the only one. □

Note that the hypothesis holds, for example, if K is a global field with no real
embeddings, by Corollary 46.19 for Albert algebras and by Corollary 23.23 for
octonions. Having addressed this case, we now focus on the case where K is a
number field with at least one real embedding. We call a composition or Albert
algebra A over K definite if AKv has no nilpotents for every real place v of K
and K has at least one real place, and say that A is indefinite otherwise (e.g.,
if K has no real embeddings). Note that there is up to isomorphism only one
Albert or octonion K-algebra A that is definite.

57.3 Proposition. Suppose K is a number field and k is a localization of its
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ring of integers at finitely many primes. For every Albert (resp., octonion) K-
algebra A that is indefinite, there is an Albert (resp., composition) k-algebra B
such that BK � A and B is uniquely determined up to k-isomorphism.

Proof We may assume that K has at least one real embedding. Write G for
the automorphism group of the split Albert (resp., octonion) k-algebra. Write
H1

ind(k,G) ⊆ H1(k,G) for the isomorphism classes of k-algebras B such that BK

is indefinite. The reference [114] defines this symbol to mean the isomorphism
classes of groups of type F4 (resp. G2) that are isotropic at at least one real
place; the two definitions are equivalent by [43, p. 218]. Since G is simply
connected, [114, Satz 4.4.2] says that the natural map H1

ind(k,G)→ H1
ind(K,G)

is an isomorphism, which is what is claimed. □

Every Albert or octonion k-algebra B gives a K-algebra BK by base change,
and it only remains to describe those B such that BK is the definite K-algebra.
In the case of octonion algebras over the integers, this was already worked out
in Exercise 23.39; we give a different proof here.

57.4 Theorem. Over Z:

(a) There are exactly two isomorphism classes of octonion algebras: Zor(Z)
and DiCo(O).

(b) There are exactly four isomorphism classes of Albert algebras, namely
Her3(Zor(Z)), Her3(DiCo(O), ⟨1,−1, 1⟩), and the algebras Λ and Λ0 from §56.

(c) There are exactly two isotopy classes of Albert algebras: Her3(Zor(Z)) and
Her3(DiCo(O)).

Proof For (a) and (b), no pair of the listed algebras are isomorphic to another
one. For Λ and Λ0, this is Corollary 56.6. For any other pair, base change to Q
yields non-isomorphic Q-algebras. Therefore, it suffices to prove that there are
no others.

Suppose that B is an octonion or Albert Z-algebra. If B is indefinite, then it is
determined by BQ by Proposition 57.3. Since the indefinite octonion or Albert
Q-algebras are Zor(Q), Her3(Zor(Q)), and Her3(O, ⟨1,−1, 1⟩), B is isomorphic
to one of the algebras listed in the statement.

On the other hand, Gross’s mass formula shows that there is only one group
of type G2 and two groups of type F4 over Z whose base change to Q is
anisotropic [105, Prop. 5.3], and therefore by Prop. 55.4 and 55.5, only one
octonion Z-algebra and two Albert Z-algebras that are definite. This shows
that we have captured all the definite algebras as well, completing the proof of
(a) and (b).
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For (c), note that the three algebras in (b) that are not Her3(Zor(Z)) are all
isotopic, see Exercise 37.23, so the two algebras listed in (c) represent all of
the isotopy classes of Albert Z-algebras. After base change from Z to Q, these
two algebras have distinct co-ordinate algebras and therefore are not isotopic
by Theorem 41.8, consequently they are not isotopic as Z-algebras. □

This concludes our discussion of octonions and Albert algebras over Z. We
take this opportunity to prove a classification of Freudenthal algebras of rank
15 over Z, which is somewhat trickier.

57.5 Proposition. Up to isomorphism, the only quaternion Z-algebra is the
split one, Mat2(Z), and the only rank 15 Freudenthal Z-algebra is the split
one, Her3(Mat2(Z)).

Sketch of proof We write the details for rank 15 Freudenthal algebras; the
proof for quaternions is similar. Let G be a semisimple adjoint Z-group scheme
of type C3, so G = Aut(J) for a rank 15 Freudenthal Z-algebra by Proposition
55.5. We wish to prove that G is split.

This is equivalent, as stated in 52.7, to the claim that GQ is split as aQ-group
scheme. Now, because GQ comes from Z, the isomorphism class of GQ is
determined by that of GR and moreover the isomorphism class of GR lies in the
image of H1(R,Sp6) → H1(R,PGSp6), both by [54, Prop. 4.10]. (Recall that
there is an element of H1(k,PGSp6) corresponding to the isomorphism class of
Gk for all rings k by Lemma 55.3.) Yet H1(R,Sp6) = 1 because non-degenerate
skew-symmetric bilinear forms on R6 are isomorphic, so GR is split. □

57.6 Remark. The claim that every quaternion algebra over Z is split was al-
ready proved via other means in Thm. 23.25. It is a special case of the more
general statement that the Brauer group of Z is trivial, which is itself a corollary
of the statement that H2(Z,Gm) = 0 [109, p. 95].

58 Groups of type E6

In this section, we re-cast the ordinary group Inv(J) for an Albert algebra J as a
group scheme Inv(J), observe that it is simply connected of type E6, and prove
some basic facts about the correspondence between properties of the group
scheme and properties of J.

Let’s start with something slightly more general. Let J be a regular cubic
Jordan algebra over a ring k. We define group schemes Inv(J) and Str(J) by
setting

Inv(J)(R) := Inv(JR) and Str(J)(R) := Str(JR)
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for all R ∈ k-alg. Recall from Lemma 40.4 that Inv(J) is the kernel of a homo-
morphism µ : Str(J) → k×. Since the definition of µ is compatible with base
change, we find a homomorphism of group schemes Str(J) → Gm — which
we also denote by µ — with kernel Inv(J).

58.1 Lemma. If J is a regular Freudenthal algebra, then the sequence

0 // Inv(J) // Str(J)
µ // Gm // 0

of sheaves of groups is exact in the étale topology.

The statement that the sequence is exact means that for every R ∈ k-alg, the
sequence of groups

0→ Inv(JR)→ Str(JR)→ R×

is exact, and for every x ∈ R×, there is some étale cover S ∈ R-alg such that x
is the image of Str(JS )→ S ×.

Proof The only thing that is not yet proved is the surjectivity of µ. That is,
given R ∈ k-alg and m ∈ R×, we must show that there is an étale cover S of R
such that m is in µ(Str(JS )).

If J has rank 1, then J = k(+) and 3 ∈ k× because J is regular (Cor. 39.15).
Therefore, S := R[t]/(t3 − x) is a finite étale k-algebra (Exc. 25.40). Since
µ(t1JS ) = t3 = x in S , this case is complete.

If J has rank > 3, then since J is regular, there is an étale cover S of R such
that JS is split (Cor. 39.32). Example 40.3 shows that µ(JS ) = S ×. The same
argument also works when J has rank 3. □

We now focus our attention on Albert algebras.

58.2 Theorem. If J is an Albert algebra over a ring k, then Inv(J) is a semisim-
ple and simply connected group scheme of type E6. If J is the split Albert alge-
bra, then Inv(J) is split as a semisimple group scheme.

Proof First suppose that k = Z and J is split. Then for every algebraically
closed field F, the claim holds for Inv(JF) by [268, 11.20, 12.4]. (Or see [270,
Thm. 7.3.2] for the case where F is a field of characteristic , 2, 3.)

Note that Inv(J)F is connected and smooth as a group scheme over F, and
Inv(J) is finitely presented (because Z is noetherian and J is a finitely gener-
ated module), so it follows by [87, Prop. 6.1] or [15, Lemma B.1] that Inv(J)
is smooth as a scheme over the Dedekind domain Z. In summary, Inv(J) is
semisimple and simply connected of the specified type. Moreover, because
Inv(J)Q is split, Inv(J) is split as a group scheme over Z. This handles the
claim about split J.
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In the case of general k and J, let k′ ∈ k-alg be faithfully flat such that J ⊗ k′

is split. Then Inv(J)k′ is semisimple simply connected of the specified type.
Certainly, Inv(J) is also smooth. Moreover, for each field K ∈ k-alg, there is
a field K′ ∈ k′-alg such that K includes in K′ as in Exc. 9.26. Since Inv(J)K′

has the claimed type, so does Inv(J)K . Since this holds for every K, the claim
is verified. □

The above proof is essentially the same as the one in [14, §2.1]. A rather
different proof can be found in [54, Th. C.2].

The group schemes Inv(J) for other kinds of Freudenthal algebras J can be
described as part of a series, see for example the column labeled ν = 2 in Table
1 of [59]; [289]; or Table 2 and §§8–10 in [106].

58.3 Example. (References: [271, Tag 03PK], [42, §2.4.3], [157, §III.3]) Sup-
pose L is a line bundle and there is an isomorphism h : L⊗d → k for some d ≥ 1.
We call such a pair [L, h] a d-trivialized line bundle. (In the case d = 2 they are
sometimes called discriminant modules.) The group scheme µd of d-th roots
of unity, viewed as a closed subgroup of GL(L), is the automorphism group of
each [L, h], where µd acts by multiplication on L. The set H1(k, µd), which is
an abelian group by Example 54.3, classifies pairs [L, h] up to isomorphism.

If L = k, then every isomorphism h : L⊗d → k is of the form h(ℓ1⊗· · ·⊗ℓd) =
α
∏
ℓi for some α ∈ k×. We abbreviate this as [k, α] or simply α. If every d-

torsion element of Pic(k) is zero — e.g., if k is an LG ring (Prop. 11.24) or a
unique factorization domain [271, Tag 0BCH] — then every [L, h] is of this
form.

Suppose now that M and N are finitely generated projective k-modules. We
may identify (L∗)⊗d � S d(L∗) and, via h, (L∗)⊗d � k. Therefore leveraging
Exc. 25.36 we have:

Pold(M,N) � Pold(M,N ⊗ (L∗)⊗d)

� S d(M∗) ⊗ S d(L∗) ⊗ N � Pold(M ⊗ L,N).

Given an element f ∈ Pold(M,N), we write [L, h] · f for the corresponding
element of Pold(M ⊗ L,N). Note that in the special case L = k, where we have
written α ∈ k× instead of [L, h], the notation α · f is the same as multiplying
the polynomial law f by the scalar α.

We say that homogeneous degree d laws f and [L, h]· f for [L, h] ∈ H1(k, µd)
as in the preceding example are similar.

For f ∈ Pold(M,N), we define Aut( f ) to be the subgroup of GL(M) con-
sisting of elements g such that f ◦ g = f as polynomial laws. In case M and
N are finitely generated projective, so is Pold(M,N) (cf. Exc. 25.36), whence

https://stacks.math.columbia.edu/tag/03PK
https://stacks.math.columbia.edu/tag/0BCH
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the functor Aut( f ) from k-alg to groups defined by Aut( f )(T ) := Aut( fT ) is a
closed sub-group-scheme of GL(M).

58.4 Lemma. Let f and f ′ be homogeneous polynomial laws on finitely gen-
erated projective modules. If f and f ′ are similar, then their automorphism
groups are isomorphic.

Proof By hypothesis, f ∈ Pold(M,N) and f ′ ∈ Pold(M ⊗ L,N) for some
modules M and N; line bundle L; and d ≥ 0. The group scheme Aut( f ) is the
closed sub-group-scheme of GL(M) stabilizing the element f in S d(M∗) ⊗ N.
Now, any element of GL(M) acts on

S d((M ⊗ L)∗) ⊗ (N ⊗ L⊗d) � S d((M ⊗ L)∗ ⊗ N

by defining it to act as the identity on L. In this way, we find a homomorphism
Aut( f )→ Aut( f ′). Viewing M as (M⊗L)⊗L∗ and N as (N⊗L⊗d)⊗(L∗)⊗d, and
repeating this construction, we find an inverse mapping Aut( f ′)→ Aut( f ). □

One could replace the hypothesis “similar” by a weaker property known as
“projectively similar” in [17, §1.2] or “lax similar” in [19]. See [95, Lemma
3.6] for details.

58.5 Proposition. Let J and J′ be Albert k-algebras. Among the statements

(i) Inv(J) � Inv(J′).
(ii) There is a line bundle L and isomorphism h : L⊗3 → k such that NJ′ �

[L, h] · NJ for · as defined in Example 58.3.
(iii) J and J′ are isotopic.

we have the implications (i)⇔ (ii)⇐ (iii). If the only 3-torsion element of Pic k
is zero, then all three statements are equivalent.

Proof Suppose (i); we prove (ii). The conjugation action gives a homomor-
phism Inv(J)→ Aut(Inv(J)), which gives a map of pointed sets

H1(k, Inv(J))→ H1(k,Aut(Inv(J))), (1)

where the second set is in bijection with isomorphism classes of group schemes
over k that become isomorphic to Inv(J) after base change to an fppf k-algebra.
By hypothesis, the class of NJ′ ∈ H1(k, Inv(J)) is in the kernel of (1).

There is an exact sequence

1→ Inv(J)/µ3 → Aut(Inv(J))→ Z/2→ 1

of fppf sheaves as described in 52.9. From it, we obtain an exact sequence

Aut(Inv(J))(k)→ (Z/2)(k)→ H1(k, Inv(J)/µ3)→ H1(k,Aut(Inv(J))) (2)
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as proved in [103, III.3.2.2]. In the language of Exercise 54.27, Z/2 has one
nonidentity constant element, and it is the image of the map η 7→ η♯−1. (We
observed already in 31.20 that this map is an automorphism of Inv(J) whose
square is the identity, and Exc. 40.18 says that it is not an inner automorphism.)
In (2), Exercise 54.27 shows that the first map is surjective, so the third map
has zero kernel.

Consider next the exact sequence

1→ µ3 → Inv(J)→ Inv(J)/µ3 → 1,

which gives an exact sequence

H1(k, µ3)→ H1(k, Inv(J))→ H1(k, Inv(J)/µ3). (3)

Starting with NJ′ ∈ H1(k, Inv(J)), we can map it first to H1(k, Inv(J)/µ3) and
then to H1(k,Aut(Inv(J))) where we obtain zero. Because the third map in (2)
has zero kernel, the image of NJ′ is zero in H1(k, Inv(J)/µ3). It follows that
NJ′ is in the image of H1(k, µ3), which is the orbit of the zero class NJ under
the action of the group H1(k, µ3) [103, Prop. III.3.4.5], which is (ii).

(ii) implies (i) by Lemma 58.4.
Corollary 40.5 says that (iii) is equivalent to NJ′ � [k, α] · NJ for some

α ∈ k×. Thus the claim about the implications between (iii) and (ii). □

58.6 Corollary. Suppose every 3-torsion element of Pic k is zero. Then an
Albert k-algebra J is split if and only if Inv(J) is split.

Proof Combine Thm. 58.2 and Prop. 58.5 to see that Inv(J) is split if and
only if J is isotopic to the split Albert algebra, which by Cor. 40.12 holds if
and only if J is itself split. □

58.7 Classification of groups of type E6 over Z. Recall that there are two Al-
bert algebras over Z up to isotopy, namely Her3(C) for C = Zor(Z) or DiCo(O)
(Thm. 57.4(c)). One of these algebras is split and the other is not, so by the
corollary Inv(Her3(C)) is split for one choice of C and not the other. Thus we
have produced representatives of two distinct isomorphism classes of simply
connected simple affine group schemes of type E6 over Z.

On the other hand, general arguments as in [114] and [54, §4] combined
with the classification of real forms of E6 show that there are exactly two iso-
morphism classes of simply connected group schemes of type E6 over Z, see
[54, §7]. In conclusion, the groups Inv(Her3(C)) for our two choices of C are
a complete set of representatives for simply connected groups of type E6 over
Z.

58.8 Vista: twisted forms of the the cubic norm. Consider now the case of
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an Albert algebra J over a field F. Then, over an algebraic closure F̄ of F,
Inv(JF̄) has an open orbit in P(JF̄) consisting of the lines in JF̄ spanned by
elements with nonzero norm (Exc. 40.16). This fact leads to a surjection in flat
cohomology

H1(F,Aut(J)) × H1(F, µ3)→ H1(F, Inv(J)),

see [89, 9.12]. That is, every element of H1(F, Inv(J)) is the isomorphism class
of a cubic form λNJ′ for some λ ∈ F× and Albert F-algebra J′. See [266] for
a proof in the language of cubic forms under the additional hypothesis that
char F , 2, 3.

It follows from this that the groups in the image of

H1(F, Inv(J))→ H1(F,Aut(Inv(J))),

what Tits called in [282] the simply connected strongly inner forms E6, are
exactly the groups of the form Inv(J′) for an Albert F-algebra J′. Compare
[279, 6.4.2].

For a typical field F, there are simply connected semisimple groups of type
E6 that are not of the form Inv(J) for an Albert F-algebra J, i.e., are not
strongly inner forms. See for example [279, §6.4], [91], and [88] for views
on some additional groups of type E6.

Results for groups of type E7 — analogous to the results in this section for
type E6 — can be found in sections 16 and 17 of [95].
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Pages 88–188 of: Dix exposés sur la cohomologie des schémas. Adv. Stud. Pure
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of a unital algebra, 48
Chevalley-Warning theorem, 194, 501, 513
Chinese Remainder Theorem, 35
co-ordinate algebra, 357

octonionic, 357
co-ordinate pair, 357

octonionic, 357
complete orthogonal system of idempotents,

47
composition algebra, 147

over a finite ring, 426
over an LG ring, 160, 187, 191, 192, 200,

201
reduced, 178
regular, 147
Skolem-Noether theorem, 200
split, 174

of rank 1, 174
of rank 2, 174
of rank 4, 174
of rank 8, 174

splitting, 245
splitting datum, 241
splitting field, 199
standard split, 175
ternary hermitian construction, 170

conic algebra, 122
bilinear trace, 123
co-ordinates, 129
conic ideal, 131
conic nil ideal, 131
conjugation, 123
Dickson condition, 130
homomorphism, 123
multiplicative, 132
norm, 122
norm equivalence, 190
norm isometry, 190
norm similarity, 190
norm-associative, 127
semi-linear homomorphism, 128
trace, 123
unital norm equivalence, 190

cross product identity, 9
cubic étale algebra, 339

split, 339
cubic alternative algebra, 336

bilinear trace, 337, 446
cubic ideal, 456
cubic nil ideal, 456
homomorphism, 336

semi-linear, 446
linear trace, 336
norm, 336
pointed, 488

base change, 488
homomrphism, 488

quadratic trace, 336
separated cubic ideal, 456

cubic array, 317
adjoint, 317
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associated para-quadratic algebra, 320
base change or scalar extension, 317
base point, 317
base point identities, 317
bilinear trace, 318
cubic subarray, 319
homomorphism, 317
linear trace, 318
norm, 317
quadratic trace, 318
semi-linear homomorphism, 334

cubic associative algebra, 336
cubic euclidean Jordan matrix algebra, 34

non-negative cone, 602
positive cone, 602

minor, 609
principal minor, 609

cubic form, 88
cubic ideal, 341
cubic Jordan algebra, 328

absolute zero divisor, 380
adjoint, 329
as an abstract Jordan algebra, 383
balanced pair, 468

homomorphism, 468
bilinear trace, 329
co-ordinate system, 367
co-ordinated, 367
homomorphism, 328
linear trace, 328
nil radical, 342
norm, 328
quadratic trace, 329
semi-linear homomorphism, 335
strong co-ordinate system, 404

cubic Jordan matrix algebra, 359
diagonal co-ordinate system, 367
diagonal isomorphism, 378
diagonally isomorphic, 378

cubic map, 104
cubic nil ideal, 377
cubic norm pseudo-structure, 344
cubic norm structure, 319

adjoint identity, 319
associated Jordan algebra, 325
cubic norm substructure, 320

complemented, 346
complemented under isotopy, 354
generated by a subset, 320
orthogonal complement, 346
strong orthogonality, 347

gradient identity, 319
hermitian, 357
homomorphism, 319
isotope, 325
supported by a pointed quadratic module,

344
unit identity, 319

cyclic permutation of (123), 2

Dedekind domain, 189
derivation, 528
derivations of alternative algebras, 533

associator derivations, 534
commutator derivations, 534
inner derivation, 533

determinant
of an integral quadratic lattice, 18

diagonal frame, 366
Dickson condition, 130, 286, 393
discriminant

of a finite rank free quadratic module, 77
of an integral quadratic lattice, 18

division algebra, 48
Jordan, 288
para-quadratic, 260

dual module, 57
duality functor, 57

E8-lattice, 25
eikonal equation, 354
elementary frame, 365

associated with a co-ordinate system, 367
elementary idempotent

Clifford case, 277
conic case, 130
cubic Jordan case, 362
norm class, 432

equalizer, 227
étale Jordan algebra, 596
étale cohomology, 593
étale cover, 234, 236
étale element, 470
Euler’s differential equation, 94

faithfully flat descent, 239
Fano plane, 11
Faulkner’s lemma, 364
Ferrar’s lemma, 377
finite étale algebra, 154
first Tits construction, 453

classical, 453
external, 451
formal, 453
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internal, 449
flat cohomology, 593
flexible, 526
flexible algebra, 126, 258
flexible law, 108, 126
form, 88

isotropic, 103
represents zero, 103

fppf, 235
fppf cohomology, 593
Freudenthal algebra, 400

over a finite ring, 426
reduced, 427
regular reduced simple
Ω-co-ordinatization, 432
class group, 432
co-ordinate (coefficient) algebra, 432
co-ordinatization, 432
Pfister forms, 432
re-co-ordinatized, 432

splitting, 410
splitting datum, 405
standard split, 404
standard splitting datum, 408

Freudenthal algebras
over Z, 611

Freudenthal pair, 493
Frobenius’s theorem, 158
full support, 80

Gaussian integers, 19
Gaussian integers of H, 19
Gaussian integers of O, 19
gradings of algebras, 537

e-grading, 537
Grassmann identity, 2

hermitian form, 164
hermitian Grassmann identity, 169
hermitian inner product, 1
hermitian matrix, 356

twisted, 356
hermitian module, 164
hermitian space, 165

determinant relative to an orientation, 168
ternary, 168

hermitian space of rank n, 166
hermitian vector product, 168
Hoffmann’s S4 example, 199
Hoffmann’s Klein-four example, 203
homotope

of an alternative algebra, 116
of an associative algebra, 116

hyperbolic pair, 77
hyperbolic plane, 78

split, 78
hyperbolic space, 78

split, 78
hyperline, 442

idempotent, 45
absolutely primitive, 176
co-elementary, 377
elementary

conic algebra, 130
cubic Jordan algebra, 362

in a para-quadratic algebra, 260
primitive, 50, 176

idempotents
complete orthogonal system of, 47, 50
orthogonal, 45
orthogonal system of, 45

incidence geometry, 11
inflation, 591
integral, 79
integral element, 15
involution, 9, 29, 65

conjugate transpose, 29, 67
exchange involution, 66
split orthogonal, 67
split symplectic, 68
twisted conjugate transpose, 356

involutorial system, 466
admissible scalar, 468
associative, 468

admissible scalar, 468
base change, 467
base point, 489
core, 466
core split, 467

base change, 468
homomorphism, 467

homomorphism, 467
left isotope, 485
of the r-th kind, 466
opposite, 492
right isotope, 485
scalar extension, 467
unitary, 466

isotope
of a Jordan algebra, 289
of an alternative algebra, 118

isotopy involution, 461
isotropic

group scheme, 572
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J-structure, 574
Jacobi identity, 2, 518
Jacobson

co-ordinatization theorem, 373
categorical set-up, 381

radical, 79
Jordan algebra, 267

absolute zero divisor, 286
autotopy, 292
complete orthogonal system of idempotents

connected, 314
strongly connected, 314

cubic étale, 339
derivation algebra, 546
exceptional, 274
fundamental formula, 267
generically algebraic, 392
having no absolute zero divisors, 286
homotopy, 292
Hua identity, 296
inner structure group, 294
inverse of an invertible element, 287
invertible element, 287
isotope, 289
isotopy, 292
isotopy over LG rings, 422
Jordan circle product, 267
Jordan triple product, 267
linear at an element, 285
locally linear, 285
of a pointed quadratic module, 274
of Clifford type, 276

elementary idempotent, 277
of degree 3, 383
semi-simple, 396
separable, 393
special, 274
strong homotopy, 299
structure group, 293
structure Lie algebra, 546

Jordan division algebra, 288

k-functor, 204
base change or scalar extension, 220
direct product, 205

projection morphism, 205
of isomorphisms, 245
regular function, 208
structure morphism, 211
subfunctor, 205

k-group functor, 215
morphism, 215

subgroup functor, 215
k-group scheme, 216

additive group of k, 216
multiplicative group of k, 216
of a finitely generated projective module,

217
Kirmse’s identities, 133
Klein-four group, 557
Kleinfeld function, 114
Kleinfeld’s theorem, 112
Kummer element

in the sense of Thakur, 449
invertibility condition, 448
relative to a complemented cubic Jordan

subalgebra, 448
relative to a cubic étale subalgebra, 460
relative to a regular cubic Jordan

subalgebra, 449
stability condition, 448
strong orthogonality condition, 448

Lagrange identity, 133
Lang’s Theorem, 595
lattice, 16

integral quadratic, 16
unimodular, 18

Kirmse, 27
unital, 16

left alternative law, 108
left multiplication

extended, 121
left multiplication operator, 44
LG ring, 78–81, 84, 158

composition algebras over, 153, 160, 187,
191, 192, 200, 201

isotopy for Jordan algebras over, 422
quadratic spaces over, 80–81

Lie algebra, 518
abelian, 519
adjoint representation, 519
Cartan subalgebra, 522
inner derivation algebra, 548
Inner structure Lie algebra, 548
semisimple element, 522

Lie multiplication algebra, 531
Lie multiplication derivation algebra

derivation algebra, 532
line bundle, 57
linear form

associative, 45
linear invertibility, 299
linear Jordan algebra, 251
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exceptional, 252
fully linearized Jordan identity, 252
invertible element, 297
Jordan identity, 251
Jordan triple product, 255
of a pointed quadratic module, 254
special, 252
U-operator, 254

linearization, 5
Lipschitz quaternions, see Hurwitz

quaternions
local linearity, 285

matrix
of a bilinear form, 73
of a quadratic form, 74

matrix unit, 48
minimum polynomial, 15, 49
module

faithfully flat, 223
flat, 223
projective, 55

of constant rank, 56
of finite constant rank, 56
of locally even rank, 75
of rank r, 56

monogenic k-algebra, 240
monomials over a subset, 44
Moufang identities, 109

left Moufang identity, 109
middle Moufang identity, 109
right Moufang identity, 109

multi-indices, 87
multi-quadratic map, 82
multiplication algebra, 47

natural representation
derivation, 528

nil radical, 46
nilpotent element, 46

in a para-quadratic algebra, 264
of index 2, 458

norm
of a cubic euclidean Jordan matrix algebra,

31
norm class of an elementary idempotent, 432
norm equivalence theorem, 191
norm isometry, 419
norm similarity, 419
norm variety, 456
nucleus

of a unital algebra, 48
Nullstellensatz, 229

separable, 235

octonion algebra, 155
of (M, θ)-twisted Zorn vector matrices, 182
of Zorn vector matrices, 174

octonions
Dickson-Coxeter, 23
Graves-Cayley, 3

associator, 5, 9
automorphism group, 12
Cartan-Schouten basis, 10
conjugation, 4
inversion formula, 6
Moufang identities, 9
norm, 4
trace, 4

over algebraic number fields, 197
over Dedekind domains, 189
over finite algebraic extensions of Qp, 195
over finite fields, 194
over R, 194
over Z, 203, 611

one-generated k-algebra, 240
opposite

algebra, 65
group, 590

orientation, 167
orthogonal complement, 74
orthogonal group scheme, 220

para-quadratic algebra, 257
base change or scalar extension, 261
base point, 257
central, 263
centroid, 261
circle product, 257
evaluation, 264
extreme radical, 263
homomorphism, 257
ideal, 258
idempotent, 260
inner ideal, 258
multiplication algebra, 260
nil radical, 264
orthogonal idempotents, 260
orthogonal system of idempotents, 266
outer centroid, 266
outer ideal, 258
power-associative, 260
power-associative at an element, 259
powers, 259
subalgebra, 258
triple product, 257
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U-operator, 257
unital, 257
V-operator, 257
weak identity element, 257

Peirce component, 302
Peirce decomposition, 568

elementary
conic case, 159

multiple
alternative case, 313
elementary cubic Jordan case, 365
Jordan case, 309

singular
alternative case, 115
elementary cubic Jordan case, 363
Jordan case, 302

Peirce projection, 302
Peirce triple, 309
period, 4
permutation matrix, 69
Pfister (quadratic) form, 428
Pfister bilinear form, 428
Picard group, 58
pointed quadratic module, 76

bilinear trace, 76
conjugation, 76
homomorphism, 76
invertible element, 298
isotope, 298
norm, 76
Peirce-one extension, 388

admissible, 389
trace, 76

pointed quadratic space, 76
polynomial function, 85
polynomial law, 85

base change or scalar extension, 86
binary linearization, 92
constant, 102
differential calculus, 94
directional derivative, 95
faithfully flat descent, 238
homogeneous, 88
linearization or polarization, 90
locally finite family, 88
multi-homogeneous, 88
restriction of scalars, 98
Taylor expansion, 93
total derivatives, 93
total linearization, 91

polynomial map, 84

powers of an element
in a unital algebra, 47

pre-co-ordinate pair, 357
isotope, 379
octonionic, 357

pre-composition algebra, 144
primitive hermitian matrices, 29
primitive twisted hermitian matrices, 356
principal open set, 53
projective plane, 11, 443

Q-algebra, 15
quadratic algebra, 124, 158
quadratic étale algebra, 154

over Z, 203
quadratic form, 70

non-degenerate, 74
non-singular, 75
real, 3
regular, 75

splitting field, 429
weakly regular, 75

quadratic map, 70
base change or scalar extension, 72
bilinearization, 70
polar map, 70

quadratic module, 75
homomorphism, 75
hyperbolic pair, 77
isometry, 75
isotropic, 77
isotropic element, 77
totally isotropic submodule, 77
weird, 394

quadratic space, 75
quadratic-linear map, 82
quaternion algebra, 155

of L-twisted 2-by-2 matrices, 180
over Z, 612

quaternions
Hamiltonian, 6

conjugation, 7
norm, 7
trace, 7

Hurwitz, 20

radical, 568
of a (skew-)symmetric bilinear map, 71
of a quadratic map, 71

rank
of a torus, 567
of elements in cubic Jordan algebras, 426

rank decomposition, 63
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real algebra, 2
alternative, 5
homomorphism, 2
squaring, 3
structure constants, 2
unital, 2

real division algebra, 2
real Jordan algebra, 30

euclidean, 30
exceptional, 31
fully linearized Jordan identity, 35
Jordan identity, 30
Jordan triple product, 38
special, 31
U-operator, 38

real quadratic form
negative definite, 3
permitting composition, 5
positive definite, 3

real quadratic map, 3
bilinearization, 3
polar map, 3

real sedenions, 158, 201
reflection, 522
regular

cubic alternative algebra, 446
cubic array, 319
involutorial system of the second kind, 483

residually big, 497
restriction of scalars, 15
right alternative law, 108
right multiplication

extended, 121
right multiplication operator, 44
root datum, 569
root system, 522

basis, 523
irreducible, 523
isomorphism, 523

root system D4, 26
root system E8, 25
Rost invariant, 601
round form, 417

scalar polynomial law
form, 88

Schafer’s isotopy theorem, 120
second Tits construction, 480

external, 477
formal, 479
internal, 472

sedenions, 156, 158, 201

semi-linear polynomial square, 99
commutative, 99

semi-local ring, 79
semisimple

group scheme, 568, 569
separable Nullstellensatz, 235
sesquilinear form, 162

base change or scalar extension, 163
exterior power, 166
regular, 165

sesquilinear module, 163
homomorphism, 163
isometry, 163

sesquilinear space, 165
sextonions, 157
simple

para-quadratic algebra, 260
simply connected, 569
skew-symmetric bilinear form

regular, 74
smooth, 235
special orthogonal group, 571
split

Freudenthal algebra, 404
split algebraic element, 49
splitting field, 199
Springer form, 459
strictly valid identity, 319
structure group

of a Jordan algebra, 293
of an alternative algebra, 120

subalgebra, 2, 43
generated by a subset, 44
nuclear, 48
unital, 2, 47

generated by a subset, 47
subfunctor, 96
submodule

pure, 488
switch, 66
symmetric matrix product, 29
symmetric or skew-symmetric bilinear form

regular, 74
symmetric product, 252
symplectic Lie algebra, 526

ternary cyclicity convention, 355
torsor, 236
trace

of a conic algebra, 123
of a cubic euclidean Jordan matrix algebra,

31
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transitive action, 185, 295, 397, 426, 441, 458
twist of an involution, 67
twisted dual of a right module, 162

unimodular element, 58, 125
unital isotope, 119
unital structure group of an alternative algebra,

121

versor, 7

weight space decomposition, 568
Witt cancellation, 81

Yoneda Lemma, 207

Z-algebra, 15
Z-structure, 16

linear, 36
quadratic, 38, 277

Zariski-closed set, 53
Zariski-open set, 53
zero divisor, 48, 139
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