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Abstract. We study the random variable B(c, n), which counts the number
of balls that must be thrown into n equally-sized bins in order to obtain c

collisions. The asymptotic expected value of B(1, n) is the well-known
√
nπ/2

appearing in the solution to the birthday problem; the limit distribution and
asymptotic moments of B(1, n) are also well known. We calculate the distri-

bution and moments of B(c, n) asymptotically as n goes to ∞ and c = O(n).

We have two main tools: an embedding of the collision process — realizing
the process as a deterministic function of the standard Poisson process — and

a central limit result by Rényi.
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1. Introduction

1.1. Scientific motivation. Imagine throwing balls into n equally-sized bins. One
collision occurs whenever a ball lands in a bin that already contains a ball, so that
a bin containing k balls contributes k − 1 to the total number of collisions. This
notion of collision is relevant for hash tables in computer science as in [Kn 3, §6.4]
and for cryptology as in [KuS]; it is the definition of collision from [Kn 2, §3.3.2I,
p. 69].

We study the random variable B(c, n), which counts the number of balls you
throw into n bins to produce c collisions. The classic birthday problem as described

2010 Mathematics Subject Classification. 60C05 (11Y16, 62E20).
Key words and phrases. birthday problem, collisions, Renyi, urn problem, size bias, chi

distribution.

1



2 R. ARRATIA, S. GARIBALDI, AND J. KILIAN

in [F, p. 33], [Mo, Problem 31], and [St] asks for the median of B(1, 365). We define
B(0, n) = 0. We have:

(1) c+ 1 ≤ B(c, n) ≤ c+ n for c = 1, 2, . . ..

For n = 1, this forces B(c, 1) = c + 1, which makes sense, since with a single bin,
the first ball does not make a collision but all subsequent balls do.

The variable B(1, n) appears in the standard birthday problem for a year with
n days, so it has already been well studied. Indeed,

(2) B(1, n)/
√
n⇒ L, and EB(1, n) ∼

√
n EL =

√
π

2
n ,

where the limit distribution of L is attributed to Lord Rayleigh, with P(L > t) =

exp(−t2/2) for t > 0, and EL =
√
π/2, see [D, Example 3.2.5]. On the other hand,

for cn →∞ with cn = o(n1/4) Kuhn and Struick [KuS, p. 221] show that

EB(cn, n) ∼
√

2 cn n ,

which matches (2) apart from the coefficient of cn n inside the square root chang-
ing from π/2 to 2. Indeed, the impetus for this paper was the desire to explain
how π/2 changes to 2, and the title of our initial writeup was “From π/2 to 2:
π/2, 9π/16, 75π/128, 1225π/2048, . . . , 2”. See subsection 5.2 for more details.

1.2. Quick survey of the contents. We consider B(c, n), the number of balls
that must be thrown into n bins, in order to get a specified number c of collisions.
To investigate this, we consider in Section 3 an embedding of the collision process
into a standard Poisson process; the embedding may be of interest in its own right,
and we give a variety of almost sure uniform error bounds, culminating in Theorem
8. Even the simplest process convergence, Theorem 3, which holds for all outcomes
ω ∈ Ω, implies a process distributional limit, Corollary 4, which in turn gives the
limit one-dimensional distributional limit: Corollary 5, which states that for fixed
c, B(c, n)/

√
n ⇒

√
2Tc, the chi distribution with 2c degrees of freedom. (That is,

2Tc is chi-square with 2c degrees of freedom. The chi distribution, although not
as famous as the chi-squared distribution, appears naturally also in the tridiago-
nalization of random symmetric matrices, see [T, p. 79]. The chi distribution can
be viewed as a generalized gamma distribution as in [JKB, pp. 388, 417].) The
convergence result in Corollary 5, combined with a uniform integrability estimate
in Section 4, gives the asymptotic mean and variance of B(c, n) for fixed c, with
details given in Section 5.2, in particular (37), (38), and (40).

We are mainly interested in the case where cn = o(n), because that is the case
relevant for applications as in [KuS]. However, in analyzing the variance of B(c, n),
for c ≈ na with 1/2 ≤ a < 1, our embedding is not an appropriate tool, and we were
forced to work with duality and Rényi’s central limit theorem for the number of
empty boxes. This duality also easily handles the “central region”, corresponding
to cn/n → α0 ∈ (0,∞), hence we include such results in sections 6–8, such as
Theorem 14 and Corollary 18. Note that the results in the last three sections
concern a centered distribution B(c, n)−β(c, n). Our penultimate result, Corollary
18, determines the moments of the centered distribution and the variance of B(c, n)
over a large range of choices for c. This, combined with the results of Section 5.2
extend the result from [KuS] to a much larger regime.

Our main results are new, despite the substantial existing literature on other
occupancy problems, such as [JK], [KoSC], [H 86], [H 95], [GnHP], etc., and other
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work on B such as [CaP]. (Although Theorem 8 could be recovered over a smaller
regime by using Poisson approximation as in [ArGG] or [BHJ], cf. Remark 6 below.)

regime convergence uniform integrability moments
fixed c Theorem 5 Lemma 10 Corollaries 11, 13

c = O(nα), α < 1 Theorem 8 Lemma 10 Corollary 12
c→∞, c/n→ α0 ∈ [0,∞) Theorem 14 Lemma 17 Corollaries 12, 18, 19

Table 1. Summary of results concerning B(c, n) as n→∞. The
first two lines deal with the uncentered B(c, n) and the last line
with a centered version, B(c, n)− β(c, n).

2. The classical occupancy process

The classical occupancy problem is specified in terms of a fixed number of balls,
and a fixed number of equally likely bins. We choose the notation b balls and n bins,
although the notation n balls and N bins, used for example by Rényi, is tempting,
as it corresponds to the tradition, in statistics, of a sample of size n taken from a
population of size N . The classical occupancy problem starts with independent and
identically distributed X1, X2, . . ., with P(Xt = i) = 1/n for i = 1 to n and t ≥ 1,
so that all nb possible values for (X1, . . . , Xb) are equally likely, and considers the
distributions of N0 = N0(b, n), the number of empty bins; I = I(b, n), the number
of occupied bins; and more generally, for each k = 0, 1, 2, . . ., the distribution of
Nk = Nk(b, n), the number of bins with exactly k balls. Even at the level of
describing the distribution of an individual Nk(b, n), there is much to be said, see
for example [KoSC, R, W, E, Mi, BG, BGI].

As a summary of the notation:

(3) Nk(b, n) =

n∑
i=1

1

(
k =

b∑
t=1

1(Xt = i)

)
is the number of bins containing exactly k balls, when b balls have been tossed into
n bins. As a check:∑

k≥0

Nk(b, n) = n and
∑
k≥0

kNk(b, n) = b.

The number of occupied bins, when b balls have been tossed into n bins, is

(4) I(b, n) := n−N0(b, n) =
∑
k≥1

Nk(b, n),

and the number of collisions obtained is

(5) C(b, n) := b− I(b, n) =
∑
k≥1

(k − 1)Nk(b, n).

The classic occupancy process goes a little further: the number n of bins is
fixed, and balls are tossed in succession, so that the count of occupied bins, I(b, n),
is determined by the locations X1, X2, . . . , Xb of the first b balls, and the en-
tire process (I(0, n), I(1, n), I(2, n), . . . , I(b, n), . . .) is determined by the locations
X1, X2, . . . of the balls in {1, 2, . . . , n}. Thanks to equally likely bins, the process
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(I(0, n), I(1, n), I(2, n), . . . , I(b, n), . . .) also has the structure of a birth process,
with

P(I(t+ 1, n) = i | I(t, n) = i) =
i

n
and

P(I(t+ 1, n) = i+ 1 | I(t, n) = i) =
n− i
n

.

This idea, exploited by Rényi [R], may be considered as the foundation of our
embedding, given in Section 3.

The collisions process can also be viewed as a birth process, with, for b ≥ c,

P(C(b+ 1, n) = c+ 1 | C(b, n) = c) =
b− c
n

and

P(C(b+ 1, n) = c | C(b, n) = c) =
n− (b− c)

n
.

Finally, given the collision counting process, (C(0, n), C(1, n), C(2, n), . . .), the
number of balls needed to get c collisions is defined by duality : for c = 0, 1, 2, . . .,

(6) B(c, n) := inf{b : C(b, n) ≥ c},

where, of course, the infimum of the empty set is taken to be ∞.

3. The embedding

3.1. Motivation and informal description. Let Y denote the standard, rate 1
Poisson process. It has the property that Y (t) is a Poisson random variable with
expectation t. Define Tc to be the time of the c-th arrival in Y .

Let f(p) be the amount of time one must run the process Y so that, with
probability p, there is at least one arrival; by standard Poisson process calculations,
for 0 ≤ p < 1, 1− p = e−f(p). We extend this to f : [0, 1]→ [0,∞] given by

f(p) := − log(1− p) = p+ p2/2 + p3/3 + · · · for 0 ≤ p < 1

and f(1) :=∞. Clearly f is strictly increasing, and maps its domain onto its range.
For fixed positive integer n, we now define a coupling of the random variables

B(c, n) and Tc for nonnegative integer c. To sampleB(1, n), B(2, n), . . . , B(cmax, n),
we define state variables i, t and c, all of which are initially set to 0. For intuition,
i denotes the number of occupied bins, t denotes the amount of time Y has run
for, and c denotes the number of collisions. Our sampling algorithm repeats the
following sequence of steps until c = cmax.

(a) Run Y for up to f(i/n) units of time, stopping immediately if there is an
arrival; let a be the first arrival time if there is one.

(b) If there is no arrival, add f(i/n) to t and increment i by 1; we call this a
“miss” step; it corresponds to a ball being thrown without causing a colli-
sion. If there is an arrival, increment c, add a to t and put (B(c, n), Tc) =
(c+ i, t); we call this a “hit” step.

(c) Return to step (a).

Note that conditioned on the arrivals (T1, T2, ...), the sampling process described
above is deterministic.

Also, the sequence (B(1, n), B(2, n), . . .) obtained from the sampling algorithm
described above has the same distribution as the sequence of the same name defined
in terms of throwing balls into bins. Indeed, if you throw a ball into 1 of n bins, i
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of which are occupied, the probability of that throw causing a collision is i/n, the
same as the probability of an arrival in step (a).

3.2. Formal description. To minimize notation, we will take the sample space
to be the set of strictly increasing sequences of strictly positive real numbers, since
such a sequence corresponds to the sequence of arrival times in the standard Poisson
process:

(7) Ω = {ω = (t1, t2, . . .) ∈ R∞ : 0 < t1 < t2 < · · · }.
Of course, in this setup, the random variable Tc is just the c-th coordinate, so for
ω = (t1, t2, . . .), Tc(ω) = tc.

Definition 1 (Formal specification of the embedding). For any n = 1, 2, . . . and
ω ∈ Ω, we define B(c, n)(ω) and J(c, n)(ω) for c = 0, 1, 2, . . . recursively, via

B(0, n) := 0, J(0, n) := 0,

and for c ≥ 1,

(8) B(c, n)(ω) := B(c− 1, n)(ω)

+ inf

j :

 ∑
J(c−1,n)(ω)≤i<J(c−1,n)(ω)+j

f(i/n)

 ≥ (Tc(ω)− Tc−1(ω))


and

J(c, n)(ω) := B(c, n)(ω)− c.

(We think of J(c, n) := B(c, n) − c as the number of occupied bins, when the
number of balls tossed is just enough to have formed c collisions.)

We want to separate which properties of our coupling are deterministic from
which are distributional. Hence to serve as the range for the coupling, with the
notation Z+ = {0, 1, 2, . . .} for the nonnegative integers, we define

(9) B =
{

(b0, b1, b2, . . .) ∈ ZZ+

+ : 0 = b0 < b1 < b2 < · · ·
}
.

Theorem 2. With Ω given by (7) and B given by (9), for every value n = 1, 2, . . .,
the recursion in Definition 1 defines a map Cn with domain Ω and range B:

Cn : Ω → B
ω 7→ (B(0, n)(ω), B(1, n)(ω), B(2, n)(ω), . . .).(10)

When Ω is extended to (Ω,F ,P) so that ω = (t1, t2, . . .) is distributed as the
sequence of arrival times in the standard Poisson process, the resulting sequence
(B(0, n), B(1, n), B(2, n), . . .) is distributed as the sequence for the classical occu-
pancy model, with B(c, n) being the number of balls that are needed to get c colli-
sions, for c = 0, 1, 2, . . ., as defined in section 2.

Proof. To see that Cn maps Ω into B, we argue by induction on c. In (8), ω ∈ Ω
guarantees that tc − tc−1 ∈ (0,∞), hence any j in the set on the right side of (8)
is strictly positive. This set is nonempty, since f(n/n) = ∞, hence the infimum
of the set is a positive integer at most n. Thus, for every ω ∈ Ω, for c = 1, 2, . . .,
bc − bc−1 is a positive integer, so Cn(ω) ∈ B.

The distributional claim is proved as follows. In the classical occupancy model,
we defined C(b, n), the number of collisions after b balls have been tossed into
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n bins, via (5). In terms of the map Cn, here we define C(b, n) by duality:
C(b, n) := max{c : B(c, n) ≤ b}. Note that J(c, n) from Definition 1 corresponds to
I(C(B(c, n), n), n), the number of occupied bins after tossing the ball that causes
the c-th collision.

For b = 0, 1, 2, . . ., define the statement S(b) to be (The joint distribution of
(C(0, n), C(1, n), . . . , C(b, n)), resulting from the map Cn applied to (Ω,F ,P), is
identical to the joint distribution it would have in the classical occupancy model
with n bins.) In proving S(b) for all b, the last sentence of Section 3.1 provides the
justification for S(b) implies S(b+ 1). �

3.3. Preliminary analysis of the coupling. We have

(11) Tc+1 = Tc +
∑

i∈[I(B(c,n),n),I(B(c+1,n),n ))

f(i/n) +R(c+ 1)

where R, the random time involved in the last hit step, is limited by the fraction
of bins which were occupied just before the (c+ 1)-st collision:

0 < R(c+ 1) ≤ f
(
I(B(c+ 1, n)− 1, n)

n

)
.

Define an auxiliary function

a(i, n) :=
∑

0≤j<i

f(j/n).

Accumulating the hit or miss steps until B(c, n) balls have been tossed, with c hits
— equivalently, unwinding the recursion in (11) — gives

Tc = a(B(c, n)− c, n) +

c∑
x=1

R(x).

Write b = B(c, n) so that

i = I(B(c, n), n) = b− c
is the number of occupied bins when the c-th collision is observed, and use f(i/n)
as an upper bound on R(1), . . . , R(c). This yields, for all c, n ≥ 1,
(12)
a(i, n) ≤ Tc ≤ a(i, n) + c f(i/n), where b = B(c, n) and i = b− c = I(b, n).

The contribution from the first-order term of f(p) to a(i, n) is

a1(i, n) :=
∑

0≤j<i

j/n =
i(i− 1)

2n
≥ (i− 1)2

2n
,

and

(13)

∣∣∣∣a1(i, n)− i2

2n

∣∣∣∣ ≤ i

2n
.

If i < n/2, then for j < i, p := j/n ∈ [0, 1/2) has f(p) ≤ p+ p2. Hence

(14) for i < n/2, f(i/n) ≤ 2i/n

and, for i < n/2,

(15) 0 ≤ a(i, n)− a1(i/n) =
∑

0≤j<i

(f(j/n)− j/n) ≤
∑

0≤j<i

(j/n)2 ≤ i3/(3n2).
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A combination of (12) with (13), (14), and (15) is

(16) if i := B(c, n)− c < n/2, then

∣∣∣∣ (B(c, n)− c)2

2n
− Tc

∣∣∣∣ ≤ i

2n
+

i3

3n2
+

2ci

n
.

3.4. Theorems giving distributional and sure convergence. To elucidate the
structure of the embedding, we note that the basic convergence, given by (17) below,
holds for all ω; it requires only knowing, for each c = 1, 2, . . ., that Tc(ω) ∈ (0,∞).
It is a standard pattern in probability theory, that distributional convergence for
an infinite-dimensional process, as in (21), is equivalent to the convergence of the
finite dimensional distributions, akin to the distributional version of (17). But
it is remarkable that even one-dimensional convergence, as in (20), implies joint
convergence (17) and (21), with a dependent process limit — the reason is that we
are dealing with an embedding, and can argue that there are no exceptional values
ω; alternately, we could have argued about a.s. convergence, and noted that, with
a discrete time setup, the countable union of null sets is again a null set.

Theorem 3. Under the coupling given by Theorem 2,

(17)

(
B(1, n)√

2n
,
B(2, n)√

2n
, . . .

)
→ (

√
T1,
√
T2, . . .)

for all ω ∈ Ω, as n→∞.

Proof. To prove (17), we note first that the usual topology on RN is the compact-
open topology, so convergence is equivalent to having, for each fixed c, convergence
under the projection into Rc using the first c coordinates. Thus, we prove that for
fixed c, for every ω ∈ Ω, as n→∞,

(18)

(
B(1, n)√

2n
,
B(2, n)√

2n
, . . . ,

B(c, n)√
2n

)
→ (

√
T1,
√
T2, . . . ,

√
Tc).

Write i = B(c, n) − c; this is random, varying with ω. Using the first half of
(12), a1(i, n) ≤ a(i, n) ≤ Tc so

(i− 1)2 ≤ 2nTc.

Hence i = B(c, n)−c = O(
√
n) as n→∞, for every ω ∈ Ω — the implicit constants

in the big Oh depend on Tc(ω). For sufficiently large n (again, depending on ω),
i < n/2, so the upper bound in (16) applies, and

(19)

∣∣∣∣ (B(c, n)− c)2

2n
− Tc

∣∣∣∣ ≤ i

2n
+

i3

3n2
+

2ci

n
= O(n−1/2),

using i = O(
√
n) and c = O(1) to get the final conclusion in (19). Since Tc(ω) > 0,

(19) implies (B(c, n)− c) ∼
√

2nTc. Since c is fixed, this implies

(20)
B(c, n)√

2n
→
√
Tc.

Finally, (20) implies (18); we could have shortened the proof, since (20) also implies
(17) directly, but as discussed before stating this theorem, we want to highlight the
unusual nature of the implication: one-dimensional convergence implies convergence
of the infinite-dimensional joint distributions. �

As an immediate corollary to the second statement of Theorem 2, combined
with Theorem 3, we get process distributional convergence, as stated formally by
Corollary 4.
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Corollary 4. In the classical occupancy problem, tossing balls into n equally likely
bins, as specified in section 2, as n→∞,

(21)

(
B(1, n)√

2n
,
B(2, n)√

2n
, . . .

)
⇒ (

√
T1,
√
T2, . . .),

where Tc is the time of the c-th arrival in a standard Poisson process. �

Remark. The joint distributional limit (21) in Corollary 4 of course gives the limit
distribution under arbitrary continuous functionals on RN, and there are many
natural examples where the scaling by

√
2n can be removed; for example, as n→∞

P(B(3, n)−B(2, n) > B(1, n))→ P(
√
T3 −

√
T2 >

√
T1)

and

P(B(1, n)B(5, n) > B2(3, n))→ P(
√
T1T5 > T3).

A result even weaker than Corollary 4 answers the basic question for collisions:
What is the approximate distribution of the number B(c, n) of balls that need to
be tossed, to get c collisions, when there are n equally likely bins?

Corollary 5. In the classical occupancy problem, tossing balls into n equally likely
bins, as specified in section 2, for each fixed c = 1, 2, . . ., as n→∞,

(22)
B(c, n)√

n
⇒
√

2Tc,

where Tc is the time of the c-th arrival in a standard Poisson process.

The distribution of 2Tc is identical to the distribution of the sum of the squares
of 2c standard normal random variables, and is well known as the chi-squared
distribution with 2c degrees of freedom, or the gamma distribution with shape
parameter c and scale parameter 2. Hence,

√
2Tc is has the distribution of a chi

random variable with 2c degrees of freedom.

Remark 6. One could count collisions in an alternative way: the number of collisions
is the sum, over 1 ≤ i < j ≤ b, of the indicator that balls i and j land in the same
bin, with the overall effect that a bin containing k balls contributes

(
k
2

)
to the total

number of collisions, and the expected number of collisions is
(
b
2

)
/n. This method

of counting lends itself to Poisson approximation; see for example [ArGG, p. 408],
and as long as b = o(n2/3), the difference between the two methods of counting
may be considered as an error term, leading to an alternate proof of Corollary 4.

3.5. Theorem giving almost sure asymptotics. The next theorem should be
paraphrased as “Almost surely, if c → ∞ with c = o(n), then B(c, n) ∼

√
2cn.”

The slightly sloppy paraphrase, “If c → ∞ with c = o(n), then B(c, n) ∼
√

2cn
a.s.” is a weaker statement, since different sequences c1, c2, . . . might have different
null sets, and it is not easy to name a countable collection of sequences which cover
all the sequences having cn →∞ and cn/n→ 0.

Theorem 7. Under the coupling given by Theorem 2, the event G = {limc→∞ Tc/c = 1}
has probability 1. For all ω ∈ G, for any sequence c1, c2, . . . of positive integers such
that cn →∞ and cn/n→ 0, we have

(23)
B(cn, n)√

2cnn
→ 1.
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Proof. P(G) = 1 by the strong law of large numbers. Write c for cn and i =
(B(c, n)− c). For ω ∈ G, the relation

(i− 1)2 ≤ 2nTc

with Tc ∼ c = o(n) implies that i2 = O(nc) = o(n2), hence i = o(n). Hence for
sufficiently large n (depending on the choice of ω ∈ G), (16) applies, giving:

(24)

∣∣∣∣ (B(c, n)− c)2

2n
− Tc

∣∣∣∣ ≤ i

2n
+

i3

3n2
+

2ci

n
= o(c).

The equality is justified term-by-term, where the argument for the middle term is
that i3/n2 = (i2/(nc)) (i/n) c = O(1) o(1) c = o(c). Using ω ∈ G, (24) implies

that i2/(2n) ∼ c, equivalently i2 ∼ 2nc, equivalently B(c, n) − c ∼
√

2nc. Finally,

since c = o(
√

2nc), this implies that B(c, n) ∼
√

2nc. �

3.6. Theorem giving almost sure uniform convergence.

Theorem 8. Under the coupling given by Theorem 2, the event H = {Tc � c},
that the ratio Tc/c is bounded away from zero and infinity, has probability 1. For
all ω ∈ H, there is uniform convergence, as given by the following:

(25) sup
c=o(n1/3)

∣∣∣∣B2(c, n)

2n
− Tc

∣∣∣∣ → 0;

(26) sup
c=o(n1/2)

∣∣∣∣B(c, n)√
2n

−
√
Tc

∣∣∣∣ → 0;

for any C <∞ and α ∈ (0, 1/3),

(27) sup
c≤Cnα

∣∣∣∣B2(c, n)

2n
− Tc

∣∣∣∣ = O(n(3α−1)/2);

and for any C <∞ and α ∈ (0, 1),

(28) sup
c≤Cnα

∣∣∣∣B(c, n)√
2n

−
√
Tc

∣∣∣∣ = O(nα−(1/2)).

Proof. Observe that in (16), each ingredient in the upper bound, i = B(c, n)(ω)−
c = J(c, n)(ω), and c itself, is a nondecreasing function of c. So immediately, we
also have the stronger uniform statement if i := B(c, n)− c satisfies i < n/2, then

(29) sup
1≤c′≤c

∣∣∣∣ (B(c′, n)− c′)2

2n
− Tc′

∣∣∣∣ ≤ i

2n
+

i3

3n2
+

2ci

n
.

The exact meaning of (25) is: for any sequence c1, c2, . . ., such that cn/n
1/3 → 0,

(30) for all ω ∈ H, lim
n→∞

sup
1≤c′≤cn

∣∣∣∣B2(c′, n)

2n
− T ′c

∣∣∣∣ = 0.

We may assume that cn → ∞, for if sup cn < ∞, then (30) holds simply as a
corollary of (20) in Theorem 3.

Write c = cn and i = B(c, n)− c. Using the first half of (12), a1(i, n) ≤ a(i, n) ≤
Tc so

(i− 1)2 ≤ 2nTc,
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hence i = O(
√
nc) = o(n) as n → ∞, for every ω ∈ H. For sufficiently large n

(depending on ω), i < n/2, so the upper bound in (29) applies, and

(31)

∣∣∣∣ (B(c′, n)− c′)2

2n
− Tc′

∣∣∣∣ ≤ i

2n
+

i3

3n2
+

2ci

n
=: u = O(

√
c3/n) = o(1),

for 1 ≤ c′ ≤ c, noting that each of i3/n2 and ci/n just satisfies the O(
√
c3/n)

relation.
Once n is large enough that the upper bound u in (31) is less than 1, and large

enough so that Tc ≤ Uc for some constant U , we have, for all 1 ≤ c′ ≤ c = cn,

(B(c′, n)− c′)2

2n
≤ Tc + 1 ≤ Uc+ 1 =: t,

which implies that (B(c′, n) − c′)2 ≤ 2nt, hence B(c′, n) ≤
√

2nt + c′ ≤
√

2nt + c,
hence expanding (B(c′, n)− c′)2 and using the triangle inequality,∣∣∣∣ (B(c′, n))2

2n
− Tc′

∣∣∣∣ ≤ 2c′B(c′, n) + c′2

2n
+

∣∣∣∣ (B(c′, n)− c′)2

2n
− Tc′

∣∣∣∣
≤ 2c(

√
2nt+ c) + c2

2n
+ u = O(

√
c3/n)(32)

for 1 ≤ c′ ≤ c. This completes the proof of (25), and simultaneously proves (27).
We note that (34) below will provide an alternate proof of (25) and (27), without
making use of the uniformity in (29).

Next, we prove (26). Consider the random variables L := infc≥1 Tc/c, U :=
supc≥1 Tc/c, so that ω ∈ H is precisely that 0 < L(ω) ≤ U(ω) < ∞. For every c,
writing i = B(c, n) − c, the first half of (12), that a1(i, n) ≤ a(i, n) ≤ Tc, yields
(i− 1)2 ≤ 2nTc, so ω ∈ H yields the further (i− 1)2 ≤ 2nUc <∞, hence there is a
random K(ω) <∞ such that for all n, c ≥ 1, i := B(c, n)− c ≤ K

√
nc. Note that

this “big Oh” conclusion is weaker than the asymptotic in (23), but stronger in
that it requires no condition on the growth of c relative to n. Next, for any ε > 0,
imposing the growth condition c ≤ n1−ε, the relation i := B(c, n) − c ≤ K

√
nc

implies that there exists n0(ω) < ∞ such that for all n > n0, for all c ≤ n1−ε,
i := B(c, n)− c ≤ n/2, enabling (16), which we further bound using i ≤ K

√
nc:

(33)∣∣∣∣ (B(c, n)− c)2

2n
− Tc

∣∣∣∣ ≤ i

2n
+

i3

3n2
+

2ci

n
≤ 2K3(

√
c/n+

√
c3/n) ≤ 4K3

√
c3/n.

Next, similar to (32), we expand (B(c, n) − c)2 and apply the triangle inequality;
further using B(c, n) ≤ c+K

√
nc hence 2cB(c, n) + c2 ≤ 3c2 + 2Kc

√
nc yields: for

ω ∈ H, for n ≥ n0(ω), for all c ≤ n1−ε,
(34)∣∣∣∣ (B(c, n))2

2n
− Tc

∣∣∣∣ ≤ 4K3
√
c3/n+

3c2 + 2Kc
√
nc

2n
≤ 3c2

2n
+K ′

√
c3/n = O(

√
c3/n),

and we have made the random implied constant in the big Oh more or less explicit.
What is the effect of applying square root, to both B2(c, n)/(2n) and to Tc, in

(34)? Suppose that c = nα with α ∈ (0, 1); the random Tc is of order Tc � c =
nα, and suppose the amount of perturbation, d := B2(c, n)/(2n) − Tc, is of order

d �
√
c3/n = n(3α−1)/2. This situation has d/c = n(α−1)/2, which is o(1) provided

α < 1. Using d = o(c), we have
√
c+ d =

√
c
√

1 + d/c =
√
c(1+d/(2c)+O(d2/c2)),

leading to
√
c+ d−

√
c ∼
√
c d/(2c) = d/(2

√
c) � d/

√
c � n(3α−1)/2/nα/2 = nα−

1
2 .
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The combination of this calculation, with the uniform upper bound (34), together
with ω ∈ H, proves both (26) and (28). �

4. Uniform integrability in the uncentered case, c = O(n)

4.1. Uniform integrability. Lemma 9 gives the crucial estimate, and Proposition
10 establishes uniform integrability, as required in the proof of Corollary 11, to get
limit moments from the distributional convergence proved in Corollary 5.

Lemma 9. Fix 0 < K < ∞. For n = 1, 2, . . . , for all c with 1 ≤ c ≤ Kn, for all
t > max(8K, 44),

P(B(c, n)/
√

2cn >
√
t) ≤ ce−ct/8.

Proof. The restriction t ≥ 44 implies that t/8 ≥ log(2t)+1. The restriction 1 ≤ c ≤
Kn implies 2(c + 1)2/(nc) ≤ 2(2c)2/(nc) = 8c/n ≤ 8K, so combined with t ≥ 8K
we have 2(c+ 1)2/(nc) ≤ t, so (c+ 1)2 ≤ ntc/2.

Put b for the floor of
√

2nct, so:

P(B(c, n)/
√

2cn >
√
t) = P(B(c, n) > b).

Using (6), this equals P(C(b, n) ≤ c−1), where C(b, n) is the random variable denot-
ing the number of collisions obtained after throwing b balls. The event C(b, n) = y
entails partitioning the set of b balls into b−y blocks, i.e., disjoint nonempty subsets.
For y = 0, 1, . . . , c− 1, we have

P(C(b, n) = y) ≤
(
b

y

)
by

(n)b−y
nb

where the binomial coefficient is for choosing which y of the b balls were colliders
(i.e., landed in a non-empty bin), the by term overcounts which ball each of the
colliders collided with, (n)b−y describes the assignment of the b− y blocks to bins,
and there are nb possible throws.

We substitute
(
b
y

)
≤ by/y! and b2 ≤ nt2 to obtain:

P(C(b, n) = y) ≤ t2y

y!

(n)b−y
nb−y

.

The second fraction is bounded above by exp(−
(
b−y
2

)
/n). Note that by our hypoth-

esis on t, c+ 1 < t
√
n/2, hence

b− y − 1 = (b+ 1)− (y + 1)− 1 ≥ t
√
n− c− 1 ≥ t

√
n/2

and
(
b−y
2

)
≥ nt2/8. Omitting the 1/y! term gives

P(C(b, n) = y) ≤ t2y exp(−nt2/8) ≤ exp(−(t2/8− 2y log(t))).

As t2/8 − 2y log(t) ≥ t2/8 − 2c log(t) ≥ t2/16, it follows that P(C(b, n) < c) ≤
ce−t

2/16, proving the claim. �

Lemma 10. Fix K <∞. For k = 1, 2, . . ., the family{(
B(c, n)√

cn

)k
: n ≥ 1, c ≤ Kn

}
is uniformly integrable.
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Proof. The exponentially decaying uniform upper bound on the upper tail, given
by Lemma 9, implies that for each k = 1, 2, . . . , supn supc≤Kn E(B(c, n)/

√
cn)k+1 <

∞. This uniform boundedness of the (k + 1)-st moments implies uniform integra-
bility of the family of k-th powers. �

5. Moments in the uncentered case, c = o(n)

5.1. Corollaries of convergence together with uniform integrability.

Corollary 11. For each fixed c, and for k = 1, 2, . . .

(35) E[B(c, n)k] ∼ (2n)k/2
Γ(c+ k/2)

Γ(c)
as n→∞.

Proof. Combine the one-dimensional distribution convergence in Corollary 5, the
uniform integrability in Lemma 10, and the formula for the moments of a chi-
distributed random variable from [JKB, p. 421]. �

Corollary 12. For c = cn with cn →∞ and cn/n→ 0, and for k = 1, 2, . . .,

E[B(cn, n)k] ∼ (2ncn)k/2 as n→∞.

Proof. Combine the almost sure limit in Theorem 7 with the uniform integrability
in Lemma 10. �

5.2. Explicit asymptotics for the mean and variance of B(c, n), fixed c.
Define, for c = 1, 2, . . .,

(36) γ(c) :=
E[
√
Tc]√
c

=
Γ(c+ 1/2)√

cΓ(c)
,

so that (35), specialized to k = 1, may be paraphrased as

(37) EB(c, n) ∼ γ(c)
√

2nc for fixed c = 1, 2, . . .

It is an exercise using the material in [AAR, Chap. 1] to show that γ(c) is increasing.
Calculating explicitly γ(c) for a few values of c gives:

c 1 2 3 4 5 · · · ∞
γ(c)

√
π
4

√
9π
32

√
75π
256

√
1225π
4096

√
19845π
65536 · · · 1

where the limit γ(c)→ 1 is the k = 1 case of the well-known formula

lim
c→∞

Γ
(
c+ k

2

)
Γ(c)

√
c
k

= 1.

So γ(c) increases from about 0.886 to 1. And c need not be very big for γ(c) to be
close to 1; for c ≥ 13, γ(c) > 0.99.

Plugging numerators into Sloane’s [Slo] gives a hit on sequence A161736, “De-
nominators of the column sums of the BG2 matrix”, suggesting the formula

(38) γ(c) =
(2c)!

22c(c!)2
√
πc

for integer c, which is easily verified using Legendre’s duplication formula Γ(c +
1/2) = Γ(2c)

√
π21−2c/Γ(c). Now Stirling’s approximation can be applied to show

how γ(c) approaches 1 as c grows:

(39) γ(c) = 1− 1

8c
+

1

128c2
+

5

1024c3
− 21

32768c4
+O(1/c5).
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For fixed c, Corollary 11 also gives the asymptotic variance.

Corollary 13. For constant c,

(40) lim
n→∞

VarB(c, n)

n
= 2c(1− γ(c)2).

Proof. The implication is immediate, by taking k = 1 and k = 2 in (35). �

Calculating explicitly the expression in (40) for the first few values of c gives

c 1 2 3 4 5 · · · ∞

lim
n→∞

VarB(c, n)

n
0.4292 0.4567 0.4777 0.4835 0.4869 · · · 0.5

where the last column of the table means only that

(41) lim
c→∞

lim
n→∞

VarB(c, n)

n
=

1

2
.

Indeed, the limit of (VarB(c, n))/n has the series expansion

lim
n→∞

VarB(c, n)

n
=

1

2
− 1

16c
− 1

64c2
+

5

1024c3
+

23

4096c4
+ · · · .

6. Results for collisions, based on duality

In the remainder of the paper, we find the asymptotic variance of B(c, n) when
c = cn → ∞ with c/n → α0 ∈ [0,∞). Our method is to combine duality with
Rényi’s central limit result for the number of empty bins, to get a normal limit
for B(c, n) (this section), and to prove a concentration result to get uniform inte-
grability (section 7), so that the normal limit governs the asymptotic variance (see
section 8).

6.1. History: Weiss and Rényi. Weiss in 1958, [W], proved a central limit
theorem for N0(b, n) in the “central regime”, where b, n → ∞ with b � n, i.e.,
with ratio bounded away from zero and infinity. Weiss explicitly stated that N0

is asymptotically normal, and implicit in this, together with his proof, is that the
interpretation of asymptotic normality involves subtracting off the mean of N0 and
dividing by the standard deviation of N0, i.e., Weiss proved that

N0 − EN0√
VarN0

⇒ Z.

Renyi in 1962, [R], gave 3 proofs and went a little further. He gave a nice explicit
expression to approximate the mean and variance, and, in his Theorem 2, “the
third proof,” extended the result to the case b = o(n), b2/n→∞.

For motivation, suppose that b/n → λ, so that a fixed number λ serves as the
limit average number of balls per bin, e−λ is the limit probability that a given bin
is empty, and the number of empty bins is asymptotic to ne−λ. With

(42) d(x) := e−x
(
1− (1 + x)e−x

)
and σ2(b, n) := d(b/n),

Renyi observes that VarN0(b, n) = nσ2(b, n)(1 + O(b/n2)) — so nσ2 is not the
variance, but rather, a nice approximation of the variance. Likewise, ne−b/n is not
EN0, but rather, a nice approximation. We remark that for the case x→ 0,

d(x) = e−2x(ex − 1− x) ∼ x2/2.(43)
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A restatement of Rényi’s Theorem 2, using our notation, is: If b, n → ∞ with
b = O(n) and b2/n→∞, then

(44)
N0(b, n)− ne−b/n√

nσ(b, n)
⇒ Z.

More advanced versions of Renyi’s theorem, with concrete error bounds, are given
by [E, Mi, BG], but for our purpose, to get a central limit for the number of
collisions, using duality as in the proof of Theorem 14, Rényi’s (44) is ideal.

6.2. Unified normal limit, using duality. The treatment in this section is uni-
fied in the sense that it handles both the regime cn →∞ with cn = o(n), where the
number of balls per bin approaches zero, and the regime cn ∼ α0 n with α0 ∈ (0,∞),
where the number of balls per bin approaches a limit λ0 ∈ (0,∞).

We define the function w : [0,∞)→ [0,∞) via

(45) w(x) := e−x + x− 1.

It is easily checked that w is strictly increasing and onto, with w(0) = 0. Set

w−1(δ) := 1 + δ +W (−e−1−δ) = − log(−W (−e−1−δ)) for δ ≥ 0,

where W denotes the principal real-valued Lambert function, i.e., the concave in-
creasing solution of W (z)eW (z) = z mapping [−e−1,∞) onto [−1,∞) described in
[Cor+]. We find w(w−1(δ)) = δ, compare p. 332 of ibid.

Given c, n > 0, we define

(46) β(c, n) := nw−1(c/n).

Applying the series expansion of W (x) as x decreases to −e−1 given in [Cor+,
(4.22)] gives

(47) w−1(δ) =
√

2δ +
δ

3
+
δ3/2

9
√

2
+ · · · for small δ ≥ 0.

In particular, when cn is a function of n so that cn/n→ 0, we have

β(cn, n) =
√

2cnn+
cn
3

+
1

9
√

2

c
3/2
n√
n

+ · · ·

and β(cn, n) ∼
√

2cnn.
We define a continuous function g(x) on [0,∞) via

(48) g(0) :=
1√
2

and g(x) :=

√
d(x)

1− e−x
for x > 0,

where d(x) is as in (42).

Theorem 14. Suppose limn→∞ cn = ∞ and limn→∞ cn/n = α0 ∈ [0,∞). Then,
with β(c, n) defined by (46) to give the centering, with w as defined by (45),
λ0 := w−1(α0), and g as defined by (48) to give the scaling, we have the following
convergence in distribution to the standard normal random variable Z:

(49)
B(cn, n)− β(cn, n)

g(λ0)
√
n

⇒ Z.
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Proof. Let c = cn be given, with c → ∞ and c/n → α0 ∈ [0,∞). Write β =
β(c, n), λ = β/n so that (46) says that c/n = w(β/n), i.e., c = nw(λ), i.e.,

(50) c = n e−λ + nλ− n.

For fixed real y, let

(51) b = β + y
√
n, so b/n = λ+ y/

√
n.

In terms of the cumulative distribution function Φ for the standard normal, so that
P(Z > y) = P(Z < −y) =: Φ(−y), (49) is equivalent to showing that for each fixed
y, P(B(c, n) > b)→ P(g(λ0)Z > y) = Φ(−y/g(λ0)).

To enable us to use Rényi’s result (44), we need to check that b > 0 for suffi-
ciently large n, that b/n is bounded, and that b2/n→∞. As b/n = β/n+ y/

√
n =

w−1(cn/n)+y/
√
n and cn isO(n), b/n is bounded. Further, limn→∞

√
nw−1(cn/n) =

∞ — this is obvious if α0 6= 0 and follows from cn → ∞ and (47) if α0 = 0 —
hence limn→∞ b/

√
n =∞.

Recall, from (4) and (5), that C(b, n), the number of collisions obtained after
throwing b balls, and N0(b, n) for the number of empty bins remaining after throw-
ing b balls, are related by

C(b, n) = b− (n−N0(b, n)).

So by duality we have:

P(B(c, n) > b) = P(C(b, n) < c) = P(N0(b, n) < n− (nλ+ y
√
n) + c).

Applying (50), we find:

P(B(c, n) > b) = P(N0(b, n) < ne−λ − y
√
n)(52)

= P
(
N0(b, n)− ne−b/n < y

√
n(e−λ − 1) +O(1)

)
.(53)

We remark that
√
nσ(b, n) =

√
nd(b/n) → ∞. Indeed, as b/n is bounded and

d(x) is nonzero for positive x, it suffices to check this in the case where b/n → 0,
where it follows from (43). Therefore, dividing both sides of the inequality in (53)
gives

P(B(c, n) > b) = P
(
N0(b, n)− ne−b/n√

nσ(b, n)
<
y(e−λ − 1)

σ(b, n)

)
.

By (44), to complete the proof of the theorem it remains only to verify that

(54) σ(b, n)/(e−λ − 1)→ −g(λ0).

If α0 = 0 then λ0 = w−1(0) = 0. We have β(c, n) ∼
√

2cn hence c→∞ implies

b ∼ β. Using λ = β/n → 0 we get σ2(β, n) ∼ λ2/2 by (43), so σ(β, n) ∼ λ/
√

2 =
λg(λ0). It follows similarly, since b ∼ β, that σ(b, n) ∼ σ(β, n) ∼ λg(λ0). And of
course e−λ − 1 ∼ −λ; (54) follows.

If α0 > 0 then λ→ λ0 = w−1(α0) > 0, and σ2(b, n)→ d(λ0), a number, verifying
(54). This concludes the proof of the theorem. �
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7. Uniform integrability and concentration in the centered case

7.1. Overview: background on concentration inequalities. In order to con-
clude, from Theorem 14, that the variance of B(c, n) is asymptotic to n g(λ0)2, we
need uniform integrability. As in the proof of Theorem 14, fluctuations for B(c, n),
the number of balls that must be tossed to get c collisions, are related via duality
to fluctuations of

(55) C(b, n) = b− (n−N0(b, n)),

the number of collisions resulting from tossing b balls. Hence we investigate con-
centration bounds for N0(b, n), or directly equivalently, concentration bounds for
C(b, n).

The central region, with c and b both of order n, is relatively easy to handle.
In contrast, it took much effort to understand the region of main interest here:
c → ∞ with c = o(n), so that c = o(b) and b = o(n). The following three random
variables with exactly the same variance, but in the region of main interest, their
expectations have different order of growth. From large to small, they are:

N0(b, n) with EN0(b, n) ∼ n,
n−N0(b, n) with E(n−N0(b, n)) ∼ b, and

C(b, n) = b− (n−N0(b, n)) with EC(b, n) ∼ c.

Consider applying Azuma’s inequality for martingales with bounded differences,
with random variables X1, . . . , Xb ∈ {1, 2, . . . , n} to say the destination bin for each
ball, and sigma-algebras Fi := σ(X1, . . . , Xi) to carry the information known when
the first i balls have been tossed, and Mi := E(N0(b, n)|Fi) for the martingale. It
is obvious that |Mi −Mi−1| ≤ 1 for i = 1 to b, so Azuma gives the bounds

P(N0(b, n)− EN0(b, n) ≥ t) ≤ exp(−t2/(2b)),(56)

P(N0(b, n)− EN0(b, n) ≤ −t) ≤ exp(−t2/(2b)).

For the central region, where c and b are both of order n, these bounds give us
enough concentration to prove the desired UI result. In contrast, for the region of
main interest to us, with c = o(n) and b ∼

√
2cn, the bounds (56) are inadequate.

For the region of main interest, we use a bounded size bias coupling whose existence
is provided in the next subsection.

7.2. Bounded size biased couplings for the number of collisions.

Proposition 15. Consider the occupancy model, generalized so that the locations
of the balls, X1, . . . , Xb ∈ {1, 2, . . . , n}, are still mutually independent, but not nec-
essarily uniformly distributed, nor even identically distributed. There is a coupling
of C(b, n) with its size biased version C ′(b, n) such that C ′(b, n)−C(b, n) ∈ {0, 1, 2}
for all outcomes. Furthermore, if each Xi is uniformly distributed on the boxes
1, . . . , n, then there is a coupling such that C ′(b, n) − C(b, n) ∈ {0, 1} for all out-
comes.

Proof. We will consistently use the following notation: 1 ≤ i < j ≤ b, 1 ≤ k ≤ n, so
that i and j refer to balls, and k to bins, and i is tossed before j. Note this entails
j ≥ 2.

Write Zik ≡ Zi,k = 1(Xi = k) for the indicator that ball i lands in box k. The
indicator that ball j lands in box k and accounts for a new collision — because at
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least one earlier ball had already landed in box k — is

Yjk = Zjk 1(Z1k + Z2k + · · ·+ Zj−1,k > 0)

and the indicator that ball j, when it lands, accounts for a new collision, is

Wj =

n∑
k=1

Yjk.

Hence the total number of collisions, when b balls are tossed into n boxes, can be
expressed as

(57) C(b, n) =

b∑
j=2

Wj

or

(58) C(b, n) =

b∑
j=2

n∑
k=1

Yjk

We recall some basics about size bias, as presented by [ArGK, equations (15)
and (12)]. First, for sums such as (57) or (58), the size bias distribution is naturally
expressed as a mixture, with weights proportional to the contribution that a single
term makes to the expected sum, of the sum for the process where the joint dis-
tribution of summands is biased in the direction of the chosen summand. Second,
when the summands are indicators, biasing in the direction of the chosen summand
is the same as conditioning on the event indicated by the chosen summand. Finally,
when the summands, such as those in (57) or (58), are derived from an underlying
process describing where every ball lands, such as X = (X1, X2, . . . , Xb), then bi-
asing the process of summands can be done by conditioning the entire underlying
process on the event indicated by the chosen summand. We will find, for each sum-
mand, a coupling of X with X′ = (X, conditional on the event indicated by that
summand), which will give a coupling of the original C(b, n) with the conditioned
version C ′(b, n) such that |C ′(b, n)− C(b, n)| is bounded.

Consider the sum in (58). Assume EYjk > 0. The event indicated by Yjk is
an intersection of two independent events, so conditioning on this is the same as
conditioning on ball j landing in box k, and at least one of balls 1, 2, . . . , j − 1
landing in box k. The sum S = Z1k + Z2k + · · · + Zj−1,k is a sum of independent
Bernoulli random variables, so by the sandwich principle [ArB, Cor. 7.1] there is
a coupling of S with S′ in which S′ − S ∈ {0, 1} for all outcomes ω, where S′ is
distributed as S conditioned to be nonzero.

This coupling of S with S′ lifts to a coupling of X with X′, in which Xi = X ′i
for all i > j, X ′j = k, and, either S′ − S = 0 and Xi = X ′i for i = 1 to j − 1, or
else S′ − S = 1 and Xi = X ′i for i = 1 to j − 1 with a single exception I, with
XI 6= k, and X ′I = k. (To see this, begin with the observation that we have given
values p1, . . . , pj−1 with pi = EZik = P(Xi = k), and there is a unique distribution
for a permutation (I1, . . . , Ij−1) of {1, 2, . . . , j − 1}, such that starting from the all
zero vector in {0, 1}j−1, and changing coordinates one at a time to one, according
to the indices I1, . . . , Ij−1, yields the process (Zik, Z2k, . . . , Zj−1,k) conditional on
successively S = 0, S = 1, . . . , S = j − 1. Indeed this is explicitly the distribution
of the size biased permutation of (p1, . . . , pj−1).) For a summary of the changes in
going from X and C(b, n) to X′ and C ′(b, n), ball j might move to box k, causing
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C to change by −1, 0, or 1 (i.e., maybe lose a collision in the box Xj where ball
j used to land, maybe gain a collision in box k) and there might also be one ball,
with random label I in the range 1 to j − 1, which moves to box k, causing an
additional change to C by 0 or 1. (Minus 1 is not a possibility, since ball I, upon
moving to box k, causes at least one additional collision.) The net result is that
our coupling has C ′(b, n) − C(b, n) ∈ {−1, 0, 1, 2}; we have a 2-bounded size bias
coupling. A general principle relating bounded couplings, monotone couplings, and
bounded monotone couplings, [ArB, Prop. 7.1], now implies that there exists a
coupling of C(b, n) with its size biased version C ′(b, n), for which 0 ≤ C ′ − C ≤ 2.
The conclusion C ′(b, n)−C(b, n) ∈ {0, 1, 2} follows since both C ′ and C are integer
valued.

Now consider the sum in (57), and assume that we are in the classical occupancy
problem, i.e., that each Xi is uniformly distributed on the boxes 1, . . . , n. The event
indicated by the summand Wj may be expressed as

Wj = 1(S > 0) where S :=

j−1∑
i=1

1(Xi = Xj).

Thanks to the uniform distributions of the X1, . . . , Xj , the distribution of S is
Binomial(j − 1, 1

n ). As in the previous paragraph, we couple S to S′, distributed
as S conditional on being strictly positive, by adding either 0 or 1, and this lifts
to a coupling of X with X′ in which either no ball moves, or else exactly one ball,
with random index I, moves from a box other than Xj , to box Xj , where it causes
one additional collision. We have C ′ − C ∈ {0, 1} for all outcomes, i.e., we have a
1-bounded monotone coupling. �

In the setting considered in this paper, the Xi’s are uniformly distributed on
1, . . . , n, so the proposition provides a 1-bounded monotone coupling of C ′ with
C. Combining this with the main result of [GhG] immediately gives, with µ :=
EC(b, n),

P(C(b, n)− µ ≤ −t) ≤ exp(−t2/(2µ)),(59)

P(C(b, n)− µ ≥ t) ≤ exp(−t2/(2µ+ t)).

for all t > 0 and all b, n. This strengthens the Azuma bounds from (56).

7.3. Uniform integrability for (B(c, n)− β(c, n))/
√
n.

Lemma 16. Assume, as in Theorem 14, that we are given positive integers c1, c2, . . .
with limn→∞ cn =∞ and limn→∞ cn/n = α0 ∈ [0,∞). With β(cn, n) given by (46),
there exists n0 <∞ and ε > 0 such that for all n ≥ n0 and for all y,

P(|B(c, n)− β(c, n)| ≥ y
√
n) ≤ exp(−min(y, y2)/104 ).

Proof. We check the bound for P(B(c, n)− β(c, n) ≥ y
√
n) with y ≥ 0; the case of

the other sign is comparatively easy and we omit the details. Start from (51) and
(52), and write out explicitly EN0 ≡ EN0(b, n) = n (1− 1

n )b. This yields

P(B(c, n) > b) = P(N0(b, n)− EN0 < −t) = P(C(b, n)− EC(b, n) < −t)

where

(60) t = n(1− 1

n
)b − ne−λ + y

√
n.
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The precise goal is to show that there exist n0, y0 such that for all n > n0, y > y0,
t2/EC(b, n) ≥ `(y) with `(y)/ log y → ∞ as y → ∞. That is, we want a lower
bound on t2/EC(b, n) that grows with y, and is uniform in c, n. The analysis is
similar to that in the proof of Theorem 14, but we want an inequality, carefully
processed to show uniformity.

Using − log(1− 1
n ) = 1

n + 1
2n2 + 1

3n3 + · · · ≤ 1
n + 1

n2 for n ≥ 2, and ez − 1 ≥ z for
all real z, we have, for n ≥ 2,

n(1− 1

n
)b − ne−b/n ≥ n

(
exp

(
−b
(
1/n+ 1/n2

))
− e−b/n

)
= n e−b/n(exp(−b/n2)− 1)

≥ −n e−b/n b

n2
≥ − b

n

Using ez − 1 ≥ z again, we have

n(e−b/n − e−λ) = ne−λ
(
exp(−y/

√
n)− 1

)
≥ −e−λy

√
n.

Adding these two bounds, together with the final term of t from (60), we have

t ≥ − b
n

+ (1− e−λ)y
√
n = −λ− y/

√
n+ (1− e−λ)y

√
n.

For the delicate case, which is c→∞, c/n→ α0 = 0, we have β2(c, n) ∼ 2cn hence
λ → 0. (The case α0 > 0 so that 1 − e−λ → 1 − e−λ0 > 0, hence t � y

√
n is

very easy in comparison, and can even be handled via Azuma-Hoeffding; we omit
further details.) With some choice n0 ≥ 16, for all n > n0, 1 − e−λ > λ/2, hence
t ≥ −λ − y/

√
n + 1

2λy
√
n, and hence for all y ≥ 1 we have t ≥ −y/

√
n + 1

4λy
√
n.

Finally, since nλ = β(c, n) → ∞, increasing n0 if needed, for all y ≥ 1, n ≥ n0, we
have t ≥ 1

5λy
√
n. Squared, t2 ≥ 1

25λ
2ny2, and since λ2n = β2(c, n)/n ∼ 2cn/n =

2c, increasing n0 if needed, for all y ≥ 1, n ≥ n0, we have t2 ≥ c
13y

2.
The upper bound (59) has the form: for t ≥ 0, P(C(b, n) − EC(b, n) ≤ −t) ≤

exp(−r) where r := t2/(2EC(b, n)). We are in good shape when EC(b, n) ≤ 4c,
which yields r ≥ y2/104. (Essentially, this is the main range, with y2 = O(c).)

For the remaining cases, where y is so large that EC(b, n) > 4c, we bypass (52)
and work directly with (51) and the duality. Write µ := EC(b, n). With y ≥ 0 and
b = β(c, n) + y

√
n such that µ > 4c, hence t := µ− c > 1

2µ,

P(B(c, n) > b) = P(C(b, n) < c) = P(C(b, n)− µ < c− µ)

≤ P(C(b, n)− µ < −1

2
µ) ≤ exp(−r) where r =

(µ/2)2

2µ
= µ/8.

Now in case y ≤ n2/5, using β ∼
√

2cn = o(n), so uniformly in y ≤ n2/5, b =

o(n) and 4c < µ ∼ b2/(2n) ∼ (
√

2c + y)2/2, hence µ > 4c and c → ∞ implies
infy y

2/µ ≥ 1/2 so for sufficiently large n,P(B(c, n) > b) ≤ exp(−y2/17). Also, in

case y ≥ n3/5, we have b > n6/5 and B(c, n) ≤ c+ n, hence, for sufficiently large n,
P(B(c, n) > b) = 0. To cover the missing range, if n2/5 ≤ y ≤ n3/5 we simply use
y′ =

√
y and P(B(c, n) ≥ β + y

√
n) ≤ P(B(c, n) ≥ β + y′

√
n). �

Lemma 17. Assume, as in Theorem 14, that we are given positive integers c1, c2, . . .
with limn→∞ cn =∞ and limn→∞ cn/n = α0 ∈ [0,∞). With β(cn, n) given by (46),
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there exists n0 <∞, such that for every k = 1, 2, . . ., the family{(
B(cn, n)− β(cn, n)√

n

)k
: n ≥ n0

}
is uniformly integrable.

Proof. As in the proof of Lemma 10, the uniform and super-polynomial decaying
upper bound from Lemma 16 implies uniform boundedness of the (k + 1)-st mo-
ments for the (B(cn, n) − β(cn, n))/

√
n), n ≥ n0, which in turn implies uniform

integrability of the family of k-th powers. �

8. Moments and variance in the centered case

Corollary 18. As in Theorem 14, suppose limn→∞ cn = ∞ and limn→∞ cn/n =
α0 ∈ [0,∞). Then, with w and g as defined by (45) and (48), and with λ0 =
w−1(α0),

VarB(cn, n) ∼ n g(λ0)2.

In particular, if cn →∞ with cn = o(n), then VarB(cn, n) ∼ n/2. Furthermore,

E[(B(cn, n)− β(cn, n))k] = o(nk/2) for k = 1, 3, 5, . . .
E[(B(cn, n)− β(cn, n))k] ∼ (k − 1)!! g(λ0)k nk/2 for k = 2, 4, 6, . . .

In the display, (k − 1)!! = (k − 1)(k − 3) · · · (5)(3)(1).

Proof. These claims follow from the distributional limit in Theorem 14, together
with the uniform integrability from Lemma 17, and the moments of the standard
normal. �

For the reader’s convenience, we re-formulate some of our results for c = o(n):

Corollary 19. If c = o(n), then

EB(cn, n) ∼ γ(c)
√

2cn and VarB(cn, n) ∼ 2c(1− γ(c)2)n

for γ as in (36).

Proof. Combine Corollary 18 with equations (37) and (40) from Corollary 13. �

The claim for the expectation in Corollaries 18 and 19 extends [KuS, Th. 1] from
the regime c = o(n1/4) to c = O(n). Furthermore, when c = o(n), we have:

lim
n→∞

√
VarB(c, n)

EB(c, n)
=

√
1− γ(c)2

γ(c)
=

1

2
√
c

+
1

32
√
c
3 −

9

1024
√
c
5 + · · ·

This justifies the following claim made in [KuS, p. 221]: “It turns out that the
variance, when compared to the expected [value], is relatively low, especially if the
number [c] ... is not too small.”
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