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Quadratic forms q(x1, . . . , xn) over a field k are the classical examples of nonlin-
ear scalar-valued functions on a vector space V = kn, and they lie at the foundation
of nineteenth-century analytic geometry. Motivated by problems such as finding the
axes of a conic, geometers studied quadratic forms under symmetries of V . Given
two quadratic forms q, q′ on V , how may we tell if q and q′ are equivalent over k,
that is, if q′ = q ◦ T for T ∈ GLn(k)?

The discriminant is a place to start. The discriminant disc(q) of a quadratic
form over k (which we always assume is of characteristic not 2) is the square class
of the determinant of the symmetric matrix A such that q(x) = xtAx, x ∈ V :

disc(q) = det(A) mod k∗2 ∈ k∗/k∗2 ∪ {0}.

(Here k∗ denotes the multiplicative group of the field k.) Applying the trans-
formation q 7→ q ◦ T induces a transformation A 7→ T tAT , and we deduce that
disc(q′) = disc(q) from det(T tAT ) = det(A) det(T )2.

Bourbaki observes that it was the visibility of this sort of behavior of the deter-
minant under linear transformations, thanks to Gauss [4, 301–302], that gave “la
première impulsion à la théorie générale des invariants” [2, 163–164]. The basic
question of invariant theory—going back to the nineteenth century as well—is to
determine which polynomial functions f : V m → k are left unchanged by composi-
tion with elements of a given group G of linear transformations on V . (See Weyl’s
landmark monograph [14].) Given a quadratic form q with symmetric matrix A,
the determinant det(A) is a polynomial function of the quadratic form (and of A)
unchanged by composition with elements from SLn(k). Then, working modulo
squares, the discriminant disc(q) is an invariant unchanged by composition with
elements of GLn(k)—an invariant of equivalence classes of quadratic forms.1

A collection of additional invariants of quadratic forms emerged from what we
now consider classical quadratic form theory, from the early to mid-twentieth cen-
tury. Over certain fields, these invariants are enough to classify nondegenerate
quadratic forms up to equivalence. Let q be a nondegenerate quadratic form, that
is, with nonzero discriminant. The rank of q is the dimension of its underlying
vector space. Due to Sylvester, the signature of q is, for k ⊂ R, the pair (r, s)
where r is the dimension of the maximal subspace P on which q|P ≥ 0 and s is the
dimension of the maximal subspace N on which q|N ≤ 0; we have that r + s = n.
The Witt index of q is the dimension of a maximal subspace on which the quadratic
form is zero. For instance, the Witt index of q(x1, x2) = x1x2 is 1.
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1The quadratic form q(x1, x2, . . . , xn) = x2

1 +x2
2 + · · ·+x2

n, considered as a function on V = kn,
is an invariant of On. By definition, each quadratic form q is an invariant of the subgroup O(q)
of GL(V ) consisting of elements that leave q fixed. We must distinguish, then, between invariants
of quadratic forms and quadratic forms as invariants.
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The most interesting of the classical invariants, however, is the Hasse-Witt in-
variant for quadratic forms. It is easiest to define when q is a diagonal form

q(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n,

and since every equivalence class of quadratic forms over k contains such a diagonal
form, this is not a significant restriction. The Hasse-Witt invariant hw(q) of q is a
certain class in the Brauer group of central simple algebras over k:

hw(q) = [⊗i<j(ai, aj)] ∈ Br(k).

Here (ai, aj) denotes the generalized quaternion algebra over k, generated as a k-
algebra by z and w such that z2 = ai, w2 = aj and wz = −zw. This invariant,
relatively easy to calculate, is nevertheless surprisingly powerful in classifying non-
degenerate quadratic forms. For instance, over the rational numbers Q, two such
forms q and q′ are equivalent if and only if they have the same rank, discriminant,
Hasse-Witt invariant, and signature. In general, these four invariants classify all
quadratic forms over k if and only if every quadratic form x2

1 + ax2
2 + bx2

3 + abx2
4

with a, b ∈ k∗ represents every totally positive element of k (that is, every sum
of squares) [3, Classification Thm. 3]. See [11, Ch. IV] for a treatment of these
invariants of quadratic forms.

At this point, a tantalizing idea arises: there may be additional invariants of
quadratic forms—and perhaps also of objects, like quadratic forms, which them-
selves are invariants of certain groups G ⊂ GLn—but where to look? One such
place is Galois cohomology, a dictionary by which we write standard objects in a
different language, and the grammar of this language aids in writing sentences that
turn out to express some new results. What’s more, our two invariants disc(q) and
hw(q) are very easily described in this way.

Galois cohomology adopts a formalism from topology, employing cohomology
groups and exact sequences connecting them.2 The main object is the cohomology
set H i(G,M), where G is the Galois group of a field extension and M is a discrete
space on which G acts. (For abelian M , i ≥ 0, but for nonabelian M , basic
definitions allow for only i = 0 and i = 1.) We say that we are considering the
cohomology of G with coefficients in M . As in topology, we have natural maps
between cohomology sets induced by maps of spaces M or of groups G. Of primary
importance here is the fact that for small i or cyclic M , these cohomology sets
represent very natural algebraic structures, such as the space of quadratic forms
over a field or the nth-power classes of the multiplicative group of a field.

Consider, for instance, the set H1(G,M) in the case where M is the automor-
phism group of a quadratic form. For example, let q be a quadratic form in n
variables with coefficients in a field k, G the Galois group of a Galois extension l/k,
and M = Aut(q) = Ol(q) the group of n×n matrices T over l which leave the qua-
dratic form q unchanged under composition with T . Then the set H1(G,M) is in
one-to-one correspondence with the set of all equivalence classes of quadratic forms
q′ in n variables over k, subject to the restriction that the forms q′ are equivalent
to q over l. Moreover, the set is pointed : there is a natural distinguished element
corresponding to the class of q itself.

2The definitive monograph is Serre’s [12], the successive editions of which present a history
of the subject. For an introductory overview of Galois cohomology in the number field case, see
Gouvêa’s book review [5], and for a historical consideration of group cohomology, see Mac Lane’s
essay [7].
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When l = ks, the separable closure of k, all nondegenerate quadratic forms in n
variables are equivalent over l, and in this case the set H1(G,M) represents every
equivalence class of nondegenerate quadratic forms over k. Moving in this way
from spaces defined over ks and fixed by a Galois group to spaces defined over an
extension of k is known as Galois descent ([13, §X.2], [6, §18]). In this situation, we
write Gk = Gal(ks/k), the absolute Galois group, in place of G. For simplicity we
may, for instance, take q(x) = x2

1 + · · ·+ x2
n and M = On(ks), the usual orthogonal

group over the separable closure.
We may consider other algebraic groups M as well. When M = µ2 = {±1} ∼=

O1(l), the elements of H1(G,M) are in one-to-one correspondence with nonzero
square classes of k which become equivalent to 1 over l: these are classes of nonzero
elements of k whose square roots lie in l. This set H1(G,M) is in fact a group:

H1(G,µ2(l)) = H1(G, {±1}) ∼= (k∗ ∩ l∗2)/k∗2.

In the special case l = ks, H1(G,µ2) is isomorphic to k∗/k∗2. More generally,
if G = Gk and M = µp ⊂ k∗, where µp is the set of pth roots of unity in ks,
then H1(Gk, µp) is isomorphic to k∗/k∗p, and this relationship is known simply as
Kummer theory.

In general, for M an algebraic group over k, we say that the elements of the
set H1(Gk,M) are M -torsors (over Gk). With this terminology, the µn-torsors for
subgroups µn of roots of unity in k∗ are cyclic covers of k of degree n, which by
Kummer theory are in one-to-one correspondence with nth-power classes of k∗, as
above. More complicated algebraic groups M produce still more interesting torsors.
For example, if M = Sn (the constant algebraic group, independent from the base
field), then the Sn-torsors are k-isomorphism classes of étale k-algebras of degree
n; PGLn-torsors are classes of central simple k-algebras of degree n; and if M is
a simple split group of type F4, the M -torsors are classes of simple exceptional
Jordan algebras of dimension 27.

Moving to the second cohomology sets H2(G,M), we have interpretations for
certain M , and we can then make use of natural connecting homomorphisms. For
instance, when M = µ2 ⊂ k∗, the set H2(Gk, µ2) classifies central simple algebras
of exponent 2 over k. In other words, the set is the 2-torsion in the Brauer group
of k. With this interpretation we may simply express the Hasse-Witt invariant in
cohomological language: hw(q) = δ(q), where δ is the coboundary homomorphism

δ : H1(Gk, On) −→ H2(Gk, µ2)

associated to a certain exact sequence of algebraic groups over the separable closure

1 −→ {±1} −→ Õn −→ On −→ 1.

At this point, to simplify intuition, we move away from the general group coho-
mology notation H i(G,M). Instead, we use G to denote an algebraic group, not a
Galois group, and write Hi(k,G) for the ith cohomology set of the absolute Galois
group Gal(ks/k) with coefficients in a group G over k. This notation emphasizes
the natural functorial nature of Hi: the map

l 7−→ Hi(l, G)

is a functor from the category of field extensions of k to the category of pointed sets.
Moreover, instead of describing an invariant by referring to the equivalence classes
classified by H1(k,G) on which the invariant takes its values—as in “an invariant of
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quadratic forms”—we simply say that we are considering invariants of the algebraic
group G; hence the discriminant and Hasse-Witt invariants are “invariants of On”.

To make clear the difference between a polynomial invariant of On, such as a
quadratic form, and an invariant of equivalence classes classified by H1(k,On), such
as the discriminant, we will call the latter type a cohomological invariant. Indeed,
a cohomological invariant of a group G is defined to be a transformation of functors

H1( , G) −→ Hi( , M),

where M is a torsion discrete Gal(ks/k)-module, most often a small cyclic group
with trivial action. We write Invd(G,M) for the set of all cohomological invari-
ants of dimension d (that is, in Hd) of the algebraic group G with coefficients in
M . In this way we say that the discriminant and the Hasse-Witt invariant are
cohomological invariants of On with coefficients in Z/2Z of dimensions 1 and 2,
respectively.

Cohomological Invariants in Galois Cohomology is divided into two parts. The
first part is a foundation for theory of cohomological invariants. Drawing on results
from a series of lectures of Serre at the Collège de France, this presentation origi-
nated from Serre’s course at UCLA in 2001, and Garibaldi wrote these expanded
lecture notes. Readers may wish to have available an introduction to Galois co-
homology such as [6, Ch. VII] or [12], as well as Serre’s excellent overview of the
problems motivating this area [10]. This first part also contains, as appendices,
three letters—from M. Rost to Serre in 1991, from Serre to Garibaldi in 2002, and
from B. Totaro to Serre in 2002—that illuminate some of the history of cohomolog-
ical invariants as well as a geometric interpretation of the group of cohomological
invariants.

Chapter I defines the notion of cohomological invariant and explores G-torsors,
particularly versal G-torsors, which are suitably generic, specializing to G-torsors
over extensions of the base field. Chapters II and III introduce the standard tools
of Galois cohomology for local fields and function fields, respectively. Chapter IV
proves the Compatibility Theorem, due to Rost, that cohomological invariants com-
mute with base extension from the field k to discretely valued fields K with residue
k. This result is used to prove a detection theorem: two cohomological invariants
are identical if and only if they are identical on a versal torsor. After some results
on restriction and corestriction of invariants in Chapter V, Chapter VI presents
results on cohomological invariants of (Z/2Z)n, On, and SOn, first with coefficients
in Z/2Z (“mod 2 invariants”) and then with Z/2mZ coefficients. Chapter VI also
gives invariants mod 2 for F4 and discusses the case of hermitian forms.

Chapters VII–IX mainly consider the case of cohomological invariants of Sn,
that is, invariants of étale algebras of rank n, denoted Inv(Etn, ). Chapter VII
presents, as Theorem 24.9, Serre’s splitting principle. We say that an étale algebra
is multiquadratic if it is decomposable as a product of étale algebras of rank 1 or 2.
Then invariants of Sn with coefficients in any finite Gk-module M of order prime
to the characteristic of k are detected on multiquadratic étale algebras:

Theorem. If a ∈ Invk(Etn,M) satisfies a(E) = 0 for every multiquadratic étale
algebra E/l (over every extension l of k), then a = 0.

Recently F. Morel has announced a connection between a modified version of this
principle and the motivic Barratt-Priddy-Quillen theorem.
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After the splitting principle, Chapter VII proceeds to consider mod 2 and mod 2m

invariants of Sn. Chapter VIII broadens the notion of invariant to take values not
in cohomology sets but in Witt rings of quadratic forms, and after giving examples
of “Witt invariants” analogous to the cases of Chapter VI, treats the Sn case with
applications to cubic resolvents of quartics and sextic resolvents of sextics.

Chapter IX gives explicit conditions for quadratic forms of rank ≤ 7 to be trace
forms of étale algebras. It appears quite difficult to classify trace forms of étale
algebras over a general base field. However, when k contains a primitive fourth
root of unity, all trace forms of Galois étale algebras l/k are scaled Pfister forms
[9]. Chapter IX applies the conditions for rank ≤ 7 to Noether’s problem: whether
for a finite group G, a field k0, and an embedding G → GLn(k0), the subfield of
k0(x1, . . . , xn) fixed by G is a purely transcendental extension of k0. Along the way,
mod 2 cohomological invariants of 2-power cyclic groups and of double covers of A6

and A7 are introduced.
The second part of Cohomological Invariants is Merkurjev’s exposition of Rost

invariants of simply connected algebraic groups, with a section contributed by
Garibaldi. These invariants, of dimension 3, represent a startling advance in a
line of study begun with a suggestion of Serre that one seek a mod 3 invariant of
F4 and a mod 5 invariant of E8, both in dimension 3. Dimension 3 invariants had
previously been observed by Arason [1] for quadratic forms, and Merkurjev-Suslin
proved that a natural dimension 3 invariant for SLD, where D is a central simple
algebra, is injective on algebras D of prime degree [8]. The exposition completes
and expands the survey of Rost invariants contained in [6, §31B]—and certainly
uses more advanced material than that of the first part of the book, relying on
classifying varieties of algebraic groups, Chow groups, Rost’s cycle modules, and
K-cohomology groups.

Section 9 of Merkurjev’s exposition defines Rost invariants, which take coeffi-
cients in a large Gal(ks/k)-module,

Q/Z(2) =
∐
p

lim
−→

(µpm ⊗ µpm),

where µpm denotes the group of pm-th roots of unity in k∗s . For a particular abso-
lutely simple simply connected group G, however, the group Inv3(G,Q/Z(2))norm

of normalized (that is, trivial on the distinguished element of H1(k,G)) dimension
3 invariants is finite and is generated by the Rost invariant. In this case, the coef-
ficient module may be taken to be µnG ⊗ µnG , where nG is the order of the Rost
invariant.

The second part culminates in section 10, which establishes in Theorem 10.7 an
essential connection between the order nG of Inv3(G,Q/Z(2))norm and the Dynkin
indices nµ of representations µ of G:

Theorem. For every absolutely simple simply connected group G,

nG = gcd(nµ),

where µ ranges over all representations of G.

In sections 11–15 the orders nG are calculated for all such groups G of classical
type, and Garibaldi’s section 16 gives nG for G of exceptional type. Two appen-
dices complete the exposition, the first defining Hd+1(G,Q/Z(d)), and the second
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giving Dynkin indices of absolutely simple simply connected algebraic groups, en-
capsulating the results of sections 11–16.

The volume is well written and is a substantial addition to the literature. It
fashions a suitable foundation for a deep area of research still under development
and provides, for the first time, details of a far-reaching advance achieved by Rost,
to whom the volume is fittingly dedicated.
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mentée. Paris: Hermann, 1969. MR0243970 (39:5288)

3. R. Elman and T. Y. Lam. Classification theorems for quadratic forms over fields. Com-
ment. Math. Helv. 49 (1974), 373–381. MR0351997 (50:4485)

4. C. F. Gauss. Disquisitiones arithmeticae. Sectio quarta de congruentiis secundi gradus,
art. 268. Werke, vol. 1, 301–304. Hildesheim: Georg Olms Verlag, 1973. MR0837656
(87f:01105)
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