
DEGREE 5 INVARIANT OF E8

SKIP GARIBALDI AND NIKITA SEMENOV

Abstract. We give a formula for the recently-discovered degree 5 co-
homological invariant of some groups of type E8 and use this formula
to give a precise interpretation of Serre’s “funny-looking statement” in
terms of embeddings finite subgroups in the split E8.

1. Introduction

LetG be a split simple linear algebraic group over a field k of characteristic
0. One of the main goals of the theory of linear algebraic groups over
arbitrary fields is to compute the Galois cohomology set H1(k,G).

One of the main tools was suggested by J-P. Serre in the 1990s, namely
the Rost invariant

rG : H1(∗, G)→ H3(∗,Q/Z(2))

discovered by M. Rost and explained in Merkurjev’s portion of the book
[GMS]. It is a morphism of functors from the category of fields over k to
the category of pointed sets.

Mimicking the situation in topology one can consider the kernel of the
Rost invariant and try to define a cohomological invariant on it. In the
theory of quadratic forms this procedure leads to the invariants defined on
the powers of the fundamental ideal In.

In the present paper we consider the most complicated and yet unsettled
case when G has Cartan-Killing type E8. In the first part of the paper we
recall the recently-discovered invariant u defined on the kernel of the Rost
invariant for groups of type E8 and find an explicit formula of u(G) for
groups G obtained by a Tits construction. This formula leads to several
suprising results—an answer to a question of Serre about Killing forms (Re-
mark 3.14), cohomological invariants of Spin16 (Section 4), the kernel of the
Rost invariant for some nonsplit groups of type E7 (Section 5), and finite
subgroups of algebraic groups (Section 6).

It turns out that under some additional conditions cohomological invari-
ants provide an obstruction for certain finite groups to be subgroups of
algebraic groups. This is connected with Serre’s “funny-looking statement”
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from [GR, p. 209]:

“Let K be a field of characteristic 0, and G a group of type E8 over K.
Suppose that SL2(32) can be embedded in G(K). Then PGL2(31)
can be embedded in G(K). Nice!”

More precisely, Serre proved that PGL2(31) can be embedded in G(K) iff G
“is compact”, i.e., isomorphic to the scalar extension of the anisotropic E8

over Q, and that SL2(32) embeds in G(K) iff G is compact and cos(2π/11)
is in K. This led him to the question: How to tell, e.g., if the split E8 is
compact in this sense? We show:

1.1. Theorem. PGL2(31) embeds in E8(K) if and only if −1 is a sum of
16 squares in K. The group SL2(32) embeds in E8(K) if and only if −1 is
a sum of 16 squares in K and cos(2π/11) is in K.

2. Preliminaries

Let k denote a field of characteristic 0. We write E8 for the split simple
algebraic group with Killing-Cartan type E8. The Galois cohomology set
H1(k,E8) classifies simple algebraic groups of type E8 over k.

We put

H1(k,E8)0 := {η ∈ H1(k,E8) | rE8(η) has odd order}.

In [Sem 08, Corollary 8.7], the second author defined a morphism of functors:

u : H1(∗, E8)0 → H5(∗,Z/2Z).

This is the degree 5 invariant from the title.
Let now G be a group of type E8. It corresponds with a canonical element

of H1(k,E8), so it makes sense to speak of “the Rost invariant of G”; we
denote it by r(G). Suppose now that r(G) has odd order, so G belongs to
H1(k,E8)0. The second author also proved in [Sem 08]:

(2.1) u(G) = 0 if and only if there is an odd-degree extension of k
that splits G.

For example, the compact group G of type E8 over R has Rost invariant
zero and u(G) = (−1)5.

As an obvious corollary, we have:

(2.2) If k has cohomological dimension ≤ 2, then every k-group of
type E8 is split by an odd-degree extension of k.

(This is the p = 2 case of [Gi 01, p. 302, Th. 4(2)].) Serre’s “Conjecture II”
for groups of type E8 is that in fact every group of type E8 over such a field
is split.
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3. Tits’s construction of groups of type E8

3.1. In [T]—or see [J]—Jacques Tits gave an explicit construction that
takes an octonion k-algebra and an Albert k-algebra as inputs, where k is
any field of characteristic 6= 2, 3, and gives as output a Lie algebra of type E8.
(Really, Tits’s construction is more general and gives other kinds of groups
as well. The variety of possibilities is summarized in Freudenthal’s magic
square as in [Inv, p. 540]. However, the flavor in all cases is the same, and
this case is the most interesting; see also Section 5.) As his construction is
obviously functorial in k and compatible with automorphisms of the inputs,
one finds an injective homomorphism G2 ×F4 → E8 where we have written
the Killing-Cartan type for the corresponding split group. Applying Galois
cohomology, we have a morphism of functors

(3.2) H1(∗, G2)×H1(∗, F4)→ H1(∗, E8).

For a given field k, the three sets classify octonion k-algebras, Albert k-
algebras, and simple Lie algebras of type E8 respectively; by Galois descent
it is obvious that this map coincides with the construction described by Tits.

3.3. Here is an alternative derivation of (3.2) that avoids Tits’s paper [T]
but assumes that k has characteristic zero (as we will anyway assume in the
rest of the paper). The root system of E8 contains a maximal subsystem
of type E6 × A2 corresponding to a copy of (Esc

6 × SL3)/µ3 in the group
E8, where Esc

6 denotes the split simply connected group of type E6. The
subgroup of Esc

6 fixed by the obvious automorphism of the Dynkin diagram
(viewed as an automorphism of a pinning of Esc

6 ) is split of type F4, see
e.g. [Ga 09a, 9.12]. The centralizer of this F4 is a simple group of type G2

(because this is so over C; the F4 and G2 subgroups form a dual pair) and
is split because it contains a copy of SL3. This gives a subgroup G2 × F4 of
E8 over k and applying Galois cohomology gives a morphism as in (3.2).

But note that the two derivations of (3.2) give the same morphism. In-
deed, write φ, φ′ for the embeddings of G2 × F4 in the split E8 over k.
For k an algebraic closure of k, there exists some g ∈ E8(k) such that
g(imφ)g−1 = imφ′ because this is so over C [D]. Further, the composition
(φ′)−1 Int(g)φ is a k-automorphism of G2 × F4 (where Int(g) y := gyg−1),
hence is Int(x) for a unique x ∈ (G2 × F4)(k). That is, Int(g)φ = φ′ Int(x).
Replacing g with φ′(x)−1g, we may assume that Int(g)φ = φ′. For σ in the
absolute Galois group Gal(k/k) of k, we have:

(3.4) Int(g)φ = φ′ = σφ′ = Int(σg)φ

because φ and φ′ are k-defined, hence g−1 σg centralizes imφ, i.e., g−1 σg = 1
and g ∈ E8(k). It is now obvious that the morphisms (3.2) induced by φ
and φ′ are equal.

3.5. Remark. It follows quickly from the discussion in 3.3 that a group G0

of type E8 is obtained by Tits’s construction—meaning, is in the image of
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(3.2)—if and only if it contains a subgroup of type G2 × F4. The “only if”
direction is obvious by descent.

To see “if”, recall that G0 is an inner form of E8, i.e., it can be obtained by
twisting E8 by a 1-cocycle η : Gal(k/k)→ E8(k). The group G0 has the same
k-points as E8, but a different Galois action ∗, namely σ ∗ g = ησ(σ · g)η−1

σ

for g ∈ G0(F ). As G0 contains a subgroup of type G2 × F4 and all such
subgroups of E8 are conjugate over k, we may replace η by a cohomologous
cocycle and so assume that ησ normalizes G2 × F4 for every σ ∈ Gal(k/k).
But G2×F4 has only inner automorphisms and is its own centralizer in E8,
so ησ belongs to G2 × F4 for every σ, whence G0 is in the image of (3.2).

Our purpose is to compute the value of u on those groups of type E8 with
Rost invariant of odd order (so that it makes sense to speak of u) and arising
from Tits’s construction. We do this in Theorem 3.10.

3.6. Following [Inv], we write f3(−) for the even component of the Rost
invariant of an Albert algebra or an octonion algebra (equivalently, a group
of type F4 or G2). We write g3(−) for the odd component of the Rost
invariant of an Albert algebra; such algebras also have an invariant f5 taking
values in H5(k,Z/2Z). An Albert algebra A has g3(A) = 0 and f5(A) = 0
iff A has a nonzero nilpotent, iff the group Aut(A) is isotropic.

Suppose now that G ∈ H1(k,E8) is the image of an octonion algebra O
and an Albert algebra A. It follows from a twisting argument as in the proof
of Lemma 5.8 in [GQ]—and was pointed out by Rost as early as 1999—that

r(G) = rG2(O) + rF4(A).

In particular, G belongs to H1(k,E8)0 if and only if f3(O) + f3(A) = 0 in
H3(k,Z/2Z), i.e., if and only if f3(O) = f3(A).

3.7. Definition. Define

t : H1(∗, F4)→ H1(∗, E8)0

by sending an Albert k-algebra A to the group of type E8 constructed from
A and the octonion algebra with norm form f3(A), via Tits’s construction
from 3.1. By the preceding paragraph, r(G) = g3(A) ∈ H3(k,Z/3Z), so G
does indeed belong to H1(k,E8)0.

3.8. Example. If A has a (nonzero) nilpotent element, then the group t(A)
is split. Indeed, g3(A) is zero so t(A) is in the kernel of the Rost invariant.
Also, t(A) is isotropic because it contains the isotropic subgroup Aut(A),
hence t(A) is split by, e.g., [Ga 09b, Prop. 12.1(1)].

3.9. Example. In case k = Q or R, there are exactly three Albert algebras
up to isomorphism. All have g3 = 0; they are distinguished by the values of
f3 and f5.
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f3(A) f5(A) t(A)
0 0 split by Example 3.8

(−1)3 0 split by Example 3.8
(−1)3 (−1)5 anisotropic by [J, p. 118]

It follows from Chernousov’s Hasse Principle for groups of type E8 [PR] that
for every number field K with a unique real place, the set H1(K,E8)0 has
two elements: the split group and the anisotropic group constructed as in
the last line of the table.

3.10. Theorem. For every Albert k-algebra A, we have:

u(t(A)) = f5(A) ∈ H5(k,Z/2Z).

Proof. The composition ut is an invariant H1(∗, F4)→ H5(∗,Z/2Z), hence
is given by

ut(A) = λ5 + λ2 · f3(A) + λ0 · f5(A)
for uniquely determined elements λi ∈ H i(Q,Z/2Z), see [GMS, p. 50].

We apply this formula to each of the three lines in the table from Example
3.9. Obviously u of the split E8 is zero, so the first line gives:

0 = u(split E8) = λ5 ∈ H5(Q,Z/2Z).

Applying this to the second line gives:

0 = u(split E8) = λ2 · (−1)3 ∈ H5(Q,Z/2Z).

For the last line, u of the compact E8 is (−1)5 by (2.1), see the end of
[Sem 08] for details. We find:

(−1)5 = u(compact E8) = λ0 · (−1)5,

so λ0 equals 1 in H0(Q,Z/2Z) = Z/2Z.
To show that λ2 = 0 we proceed as follows. Consider the purely tran-

scendental extension F = Q(x, y, z, a, b) and let H be the group of type
F4 with f3(H) = (x, y, z), f5(H) = f3(H) · (a, b) and g3(H) = 0. Then
ut(H) = f5(H) + f3(H) · λ2.

Let K be a generic splitting field for the symbol f5(H). Since HK is
isotropic, the resulting group t(H) of type E8 is isotropic over K, and,
since it has trivial Rost invariant, it splits over K [Ga 09b, Prop. 12.1].
Obviously, ut(H) is killed by K. Therefore f3(H) · λ2 is zero over K. If
f3(H) · λ2 is zero over F , then by taking residues we see that λ2 is zero
in H2(Q(a, b),Z/2Z), hence also in H2(Q,Z/2Z). Otherwise, f3(H) · λ2 is
equal to f5(H) by [OViVo, Theorem 2.1], and again completing and taking
residues with respect to the x-, y-, and z-adic valuations, we find that λ2 =
(a, b) ∈ H2(Q(a, b),Z/2Z). But this is impossible because λ2 is defined over
Q. This proves that λ2 = 0. �

3.11. Corollary. The invariant u is surjective on pure symbols. More pre-
cisely, for any field k of characteristic 0 and any pure symbol v ∈ H5(k,Z/2Z)
there exists a group of type E8 with zero Rost invariant and with u(G) = v.
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3.12. Remark. In [Sem 08, pf. of Cor. 8.7] the second author constructed a ν4-
variety Ỹ that splits u. Voevodsky has conjectured that if u ∈ Hn(k,Z/2Z)
and X is a νn−1-variety that splits u, then u is a pure symbol. Theorem 3.10
confirms this conjecture for the E8’s constructed as in Definition 3.7, equiv-
alently, that have odd-order Rost invariant and contain a subgroup of type
G2 × F4.

For G in the image of t, u(G) is a symbol in H5(k,Z/2Z), so it determines
a 5-Pfister quadratic forms qG such that e5(qG) = u(G). We have:

3.13. Corollary. For every field k of characteristic zero and every group
G ∈ H1(k,E8)0 in the image of t, we have:

〈60〉(KillG −KillE8) = 23 · qG ∈ I8(k),

where Kill− denotes the Killing form of − and E8 the split group.

Proof. Combine the formula for KillG given in [J, p. 117, (114)] or [Ga 09b,
13.2] with Theorem 3.10. �

3.14. Remark. The invariant u was constructed using motives. One might
hope to construct it using methods as in [GMS], in particular to deduce
u(G) from the Killing form of G (suggested by analogy with the way that
f5(A) is deduced from the trace form on an Albert algebra A on pages 49–51
of ibid.). But this is impossible. Indeed, fix a formally real field k0 and write
k for the function field of the 8-Pfister quadratic form 〈〈−1〉〉7 · 〈〈t1t2〉〉 over
k0(t1, t2) where t1 and t2 are indeterminates. Put Ai for the reduced Albert
algebra over k with

f3(Ai) = (−1)3 and f5(Ai) = (−1)4 · (ti), i = 1, 2.

PutGi := t(Ai); it is a group of type E8 over k0(t1, t2) and qGi = 〈〈−1〉〉4·〈〈ti〉〉
by Theorem 3.10. As k0 is formally real, qG1 and qG2 are distinct and
anisotropic over k0(t1, t2). For dimension reasons [Lam, X.4.10], 〈〈−1〉〉4 ·
〈〈t1t2〉〉 is anisotropic over k, hence qG1 and qG2 are not isomorphic over k
and in particular u(G1) 6= u(G2) in H5(k,Z/2Z). On the other hand, the
isomorphism class of 〈〈−1〉〉3qGi ' 〈〈−1〉〉7〈〈ti〉〉 over k does not depend on i,
so G1 and G2 have isomorphic Killing forms over k by Corollary 3.13.

4. Application to Spin16

Recall from [Inv, pp. 436, 437] that the Rost invariant of a class η ∈
H1(k,Spin16) is given by the formula

rSpin16
(η) = e3(qη) ∈ H3(k,Z/2Z)

where qη is the 16-dimensional quadratic form in I3k corresponding to the
image of η in H1(k,SO16) and e3 is the Arason invariant. It follows that η
belongs to the kernel of the Rost invariant if and only if qη belongs to I4k.

Write H1(∗,Spin16)0 for the kernel of the Rost invariant; we will deter-
mine the cohomological invariants H1(∗,Spin16)0 → H•(∗,Z/2Z). To avoid
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a long technical digression, we only outline the details of the argument. In
[Ga 09b, §11], the first author described a subgroup of HSpin16 isomorphic
to PGL×4

2 . The inverse image of this subgroup in Spin16 contains a direct
product V × V of two copies of the Klein four-group so that the image of a
quadruple

(a1, a2, a3, a4) ∈ H1(K,µ2)×4 = H1(K,V × V )

in H1(K,PGL2)×4 is the quadruple of quaternion algebras (a1, a2), (a1, a2),
(a3, a4), (a3, a4). Together with the center of Spin16—which is also isomor-
phic to V—we find a copy of V ×3 in Spin16 such that the induced map
H1(K,V ×3)→ H1(K,Spin16) has image H1(K,Spin16)0 for every K/k.

With this in hand, arguments similar to those in [Ga 09a, 18.1, 18.9]
give that the invariant u of H1(∗, E8)0 can be used to construct invariants
of H1(∗,Spin16)0 of degree 5 and 6, and that the collection of invariants
H1(∗,Spin16)0 → H•(∗,Z/2Z) is a rank 5 free H•(k,Z/2Z)-module with
basis consisting of invariants of degree 0, 4, 5, 5, 6.

From the preceding paragraph, we deduce that the essential 2-dimension
of H1(∗,Spin16)0 is at least 6. Standard arguments show that the essential
dimension is at most 6, so we deduce that the essential dimension and the
essential 2-dimension of H1(∗,Spin16)0 both equal 6. This should be con-
trasted with the essential dimension of the functor H1(∗,Spin16), which is
24, see [M 09, Th. 4.9] and [BRV, Th. 3.3(b)].

5. Application to E7

5.1. Example. Put G and Ḡ for the simply connected and adjoint real forms
of E7 with Tits index

(5.2)
r r r r r rrf f f f

i.e., non-split with a minimal parabolic subgroup that is “wesentlich” in
the language of [H, p. 132]. Élie Cartan proved that the set H1(R, Ḡ) has
four elements, corresponding to the four real forms of G. The image of
the natural map q : H1(R, G) → H1(R, Ḡ) is the set {G,Gcpt} where Gcpt

denotes the compact form of G; these are the groups whose Tits class is
[H] ∈ H2(R, µ2). As is standard, H1 of the center of G—i.e., H1(R, µ2) =
Z/2Z—acts transitively on the fibers of q. Further, the Rost invariant

rG : H1(R, G)→ H3(R,Z/12Z) = {0, (−1)3} = Z/2Z
satisfies

rG(z · η) = rG(η) + z · (−1)2 for z ∈ H1(R, µ2) and η ∈ H1(R, G)

by [GQ, 2.3] and [Ga 01, 7.1]. That is, q is 2-to-1 and each fiber has
one element in the kernel of rG and one element whose Rost invariant is
(−1)3 ∈ H3(R,Z/2Z); in total H1(R, G) has four elements. (The descrip-
tion of H1(R, G) and the fibers of q can also be obtained from [Serre GC,
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§III.4.5, Exercise (a)], but that reference does not directly say anything
about the Rost invariant.)

In particular, the kernel of the Rost invariant rG is not zero. This is in
contrast with the case of the split simply connected group Esc

7 of type E7,
where the kernel of the Rost invariant on H1(k,Esc

7 ) is zero for every field
k by [Ga 01].

We will now show how to use the invariant u to distinguish the classes
in the kernel of rG. Fix a field k of characteristic zero and a quaternion
k-algebra Q. Define G to be the simply connected group of type E7 whose
Tits index is (5.2) (if Q is division) or is split (if Q is split). We have:

5.3. Proposition. There are inclusions SL(Q)×F4 ⊂ G ⊂ E8 such that for
(λ,A) ∈ H1(k, SL(Q))×H1(k, F4), we have:

(1) The image of (λ,A) in H1(k,Aut(G)) is a group of type E7 whose
Lie algebra arises from the Tits construction with Q and A as inputs.

(2) rG(λ,A) = rE8(λ,A) = (λ) · [Q] + rF4(A).
(3) If (λ,A) is in the kernel of rE8, then u(λ,A) = f5(A).

Regarding the statement in (1): Tits’s construction of Lie algebra from
[T], when fed a quaternion algebra Q and an Albert algebra A as inputs,
produces a Lie algebra (equivalently, a group) of type E7 as output. As
in 3.1 and 3.3, Tits’s construction amounts to applying H1 to an inclusion
of groups PGL2×F4 ⊂ Eadj

7 , where Eadj
7 denotes the split adjoint group of

type E7.

5.4. Example. Before we prove the proposition, we apply it to the case
k = R and Q = H from Example 5.1. It follows from the description of real
forms of E7 in terms of the Tits construction from [J, pp. 120, 121] that
the fiber of q over G contains the classes (±1, split Albert) and the fiber
over Gcpt is (±1, compact Albert). By 5.3(2), these four classes are distinct
and so represent all the elements of H1(R, G). The kernel of rG consists of
(1, split) and (−1, compact), and 5.3(3) says that u sends these two classes to
0 and (−1)5 respectively. That is, u distinguishes the two classes in ker rG,
as promised.

For use in the proof of Proposition 5.3, we note that examining the ex-
tended Dynkin diagram of G2 shows that it contains a maximal subgroup D
isomorphic to (SL2×SL2)/µ2, where the first copy of SL2 has Dynkin index
1 in G2 and the second has Dynkin index 3.

5.5. Lemma. For each quaternion k-algebra Q, there is a unique class q ∈
H1(k,D) whose image in H1(k,G2) is zero and such that D twisted by q is
isomorphic to (SL(Q)× SL(Q))/µ2.

Proof. Write φ : SL2 → D for the diagonal embedding φ(g) = (g, g). Fix a
square root i of −1 in some algebraic closure of k and put

x := φ
(
i 0
0 −i

)
and y := φ

(
0 i
i 0

)
∈ D(k(i)).
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One checks that x and y are fixed by Gal(k(i)/k) and so are k-points. Fur-
ther, x2 = y2 = 1 and xy = yx. Therefore, they generate a subgroup of D
isomorphic to Z/2Z× Z/2Z.

Write Q = (a, b) for a, b ∈ k×/k×2 = H1(k,Z/2Z), and put q for the
image of (a, b) ∈ H1(k,Z/2Z×Z/2Z) in H1(k,D). One checks that each of
the two projections D → PGL2 send q to the class of Q in H1(k,PGL2). It
follows that D twisted by q is (SL(Q)× SL(Q))/µ2.

It is an exercise to see that if Q is split, then q is trivial in H1(k,D). In
particular, the image of q under the Rost invariantH1(k,G2)→ H3(k,Z/2Z)
is a symbol killed by the function field of the Severi-Brauer variety of Q,
hence is of the form [Q] · (c) for some c ∈ k×. Map SL(Q) into (SL(Q) ×
SL(Q))/µ2 by, say, g 7→ (g, 1) and consider the diagram

H1(k,D) −−−−→ H1(k,G2) −−−−→ H3(k,Z/2Z)

τq

y' τq

y' y?−rG2
(q)

H1(k, SL(Q)) −−−−→ H1(k,Dq) −−−−→ H1(k, (G2)q) −−−−→ H3(k,Z/2Z)

where τq denotes the twisting isomorphism. The diagram commutes by
[Gi 00, p. 76, Lem. 7]. The image of c ∈ k×/Nrd(Q×) = H1(k, SL(Q))
along the bottom row is [Q] · (c) because SL(Q) has Dynkin index 1 in Dq.
Replacing q with τ−1

q (c) gives the desired class. Tracing through the proof
also demonstrates the uniqueness of q. �

Proof of Prop. 5.3. Mapping SL2 → D via g 7→ (1, g) gives a diagram of
inclusions

SL2×F4 −−−−→ D × F4 −−−−→ G2 × F4y y y
Esc

7 −−−−→ (SL2×Esc
7 )/µ2 −−−−→ E8

where the SL2 in the upper left has Dynkin index 3 in Esc
7 and contains the

center of Esc
7 . Twisting this diagram by the class q from Lemma 5.5 gives a

diagram of inclusions

SL(Q)× F4 −−−−→ Dq × F4 −−−−→ G2 × F4y y y
G −−−−→ (SL(Q)×G)/µ2 −−−−→ E8

(Twisting E8 by q gives back the split E8 because (E8)q contains G2×F4, so
has k-rank at least 6.) Claim (2) follows immediately and Theorem 3.10 gives
(3). The image of SL2×F4 under Esc

7 → Eadj
7 is the subgroup PGL2×F4

arising in Tits’s construction, giving (1). �

Example 5.1 showed that the Rost invariant could have nonzero kernel on
H1(k,G) for G a group with Tits index (5.2). Proposition 5.3 gives more,
namely a lower bound on the complexity of this kernel.



10 SKIP GARIBALDI AND NIKITA SEMENOV

5.6. Corollary. For every simply connected G with Tits index (5.2), the
functor H1(∗, G)0 has essential (2-)dimension ≥ 3.

Proof. Put Q for the quaternion division algebra underlying the Tits class
of G. Suppose first that cd2 k ≤ 2. Put E := k(t1, t2, t3) where the ti’s are
indeterminates, and write A for the reduced Albert E-algebra with f3(A) =
[Q] ·(t1) and f5(A) = f3(A) ·(t2) ·(t3). By Prop. 5.3(2), the image η of (t1, A)
in H1(E,G) is in H1(E,G)0. Further, if η = resE′/k(η′) for some extension
E′ contained in E and η′ ∈ H1(E′, G)0, then resE/E′u(η′) = u(η), which is
the nonzero class f5(A) in H5(E,Z/2Z) by Prop. 5.3(3). Hence cd2E

′ ≥ 5
and E′/k has transcendence degree at least 3. The claim is proved in this
case.

For general k, the proof of [M 92, Th. 4] shows that there is an extension
F/k such that G × F has Tits index (5.2) (because Q ⊗ F is division) and
cd2 F ≤ 2. As the essential 2-dimension can only decrease when we enlarge
the base field, the corollary is proved. �

6. Galois descent for representations of finite groups

In this section, we restate some observations of Serre from [Serre 00] and
[GR] regarding projective embeddings of simple groups in exceptional al-
gebraic groups. Combining these results with the u-invariant for E8 gives
some new embeddings results, see Example 6.6 below.

Let A be an abstract finite group and G a semisimple linear algebraic
group defined over Q. Fix a faithful representation π : G → GLN defined
over Q.

6.1. Definition. Let Q ⊂ F be a field. The character of a homomorphism
α : A→ G(F ) is the character of the composition π ◦ α : A→ GLN (F ). We
say that the character of α is defined over F if all its values belong to F .

Let ϕ : A→ G(F ) be a monomorphism and χ its character. Assume that
χ is defined over F , ZG(F )(ϕ(A)) = 1 (in particular, G is adjoint), that
there is exactly one G(F )-conjugacy class of homomorphisms A → G(F )
with character χ, and G is split or AutG = G.

The following theorem can be extracted from Serre’s paper [Serre 00,
2.5.3].

6.2. Theorem. In the above notation, we have:
(1) There exists a unique inner form G0 of G defined over F together

with a monomorphism A→ G0(F ) with character χ.
(2) If ψ,ψ′ : A → G0(F ) have character χ, then there is a unique g ∈

G0(F ) such that ψ′ = Int(g)ψ.
(3) For every field extension K/F there is a representation A → G(K)

with character χ iff G ' G0 over K.

We recalled the definition of inner form in Remark 3.5. The composition
G(F ) π−→ GLN (F ) tr−→ F is invariant under the twisted Galois action ∗ and
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so defines a morphism of varieties G0 → A1 over F . Using this, it makes
sense to speak of the character of a homomorphism A → G0(F ) as in the
theorem.

Proof. Let

P = {α : A→ G | α is a representation with character χ};
it is a variety over F and G acts on it by conjugation. By assumptions on
A and G this action is transitive. Moreover, the condition on the centralizer
guarantees that this action is simply transitive, i.e., for any α, β ∈ P (F )
there exists a unique g ∈ G(F ) with β = αg. Thus, P is a G-torsor.

Let η ∈ H1(F,G) be the 1-cocycle corresponding to the torsor P . Then
σ ·ϕ = η−1

σ ϕησ for all σ ∈ Gal(F/F ). Define now G0 as the twisted form of
G over F by the torsor P , equivalently, the 1-cocycle η. As ϕ : A → G(F )
is invariant under the twisted Galois action, it restricts to a homomorpihsm
A→ G0(F ), proving (1).

For (2), we assumed there is a g ∈ G0(F ) such that ψ′ = Int(g)ψ, and
this g is in G0(F ) by the argument from (3.4).

Let K/F be a field extension. If there is a representation A→ G(K) with
character χ, then obviously G and G0 are isomorphic over K. Conversely,
if G and G0 are isomorphic over K, then the image of the cocycle η in
H1(K,Aut(G)) is zero. As G is split adjoint or AutG = G, it follows that
η is already zero in H1(K,G), proving (3). �

6.3. Example. Trivially, one may replace the conclusion of Theorem 6.2.2
with “there exists f ∈ Aut(G0)(F ) such that ψ′ = fψ”; one simply takes
f = Int(g). However, this f need not be unique, as we now illustrate. Take
A, G, ϕ, π as in Th. 6.2 with G split and suppose that the representation
πϕ of A is irreducible (e.g., take A = PSL(2, 8), G = G2 and π the 7-
dimensional fundamental representation as in Example 6.5 below). We may
apply the theorem also where G, ϕ, π are replaced by G×G, ϕ× ϕ, π × π:
the claim ZG×G(ϕ(A), ϕ(A)) = 1 is obvious and the irreducibility hypothesis
shows that every homomorphism A → G × G with the character 2 trπϕ is
conjugate to ϕ× ϕ. Taking F = F and ψ := ψ′ := ϕ× ϕ, we find g = 1 in
Th. 6.2.2 as stated, but also τψ = ψ where τ ∈ Aut(G×G)(F ) interchanges
the two summands.

To characterize the isomorphism criterion of Theorem 6.2.3 we need the
following proposition.

6.4. Proposition. For each Killing-Cartan type Φ in the table
Type Φ F4 G2 E8

n 3 3 5
there is a unique algebraic group G0 of type Φ that is compact at every
real place of every number field; it is defined over Q. For every field K of
characteristic zero and n as in the table, the following are equivalent:

(1) G0 ⊗K is split.



12 SKIP GARIBALDI AND NIKITA SEMENOV

(2) (−1)n = 0 ∈ Hn(K,Z/2).
(3) −1 is a sum of 2n−1 squares of the field K.

Proof. The first sentence is a standard part of the Kneser-Harder-Chernousov
Hasse principle. The group G0 is split at every finite place.

For the second claim, all cases but E8 are well-known. For E8, if G0⊗K is
split, then (−1)5 is zero by the existence of u; see 2.1. For the converse, G0

equals t(A) where A is the unique Albert Q-algebra with no nilpotents (see
Example 3.9). If (−1)5—i.e., f5(A)—is zero in H5(K,Z/2Z), then A ⊗ K
has nilpotents and G0 ⊗K is split by Example 3.8. �

In the following examples we write Altl for the alternating group of degree
l and as ζl = e2πi/l a primitive l-th root of unity.

6.5. Example (type G2). Let G denote the split group of type G2, A =
G(F2) (resp. PSL(2, 8), PSL(2, 13)), and K a field of characteristic zero.
Then there is an embedding A → G(K) iff −1 is a sum of 4 squares of K
and ζ9 + ζ̄9 ∈ K (for PSL(2, 8)), resp.

√
13 ∈ K (for PSL(2, 13)).

Indeed, fix the minimal fundamental representation π : G→ GL7. By [A,
Theorem 9(3,4,5)] there is a representation ϕ : A → G(Q) whose character
χ is defined over F = Q (resp. F = Q(ζ9 + ζ̄9), F = Q(

√
13)). Moreover, G

acts transitively on the homomorphisms A → G(Q) with character χ (see
[A] and [Griess, Cor. 1 and 2]).

By [A, 9.3(1)] the representation ϕ is irreducible, so ZG(Q)(A) = 1. Thus,
all conditions of Theorem 6.2 are satisfied. Therefore there is a twisted form
G0 of G defined over F and an embedding A→ G0(F ).

In particular, there is an embedding A → G0(R). Since any finite sub-
group of a Lie group is contained in its maximal compact subgroup, it is
easy to see that G0 ⊗F R is compact for all embeddings of F into R. More-
over, by Theorem 6.2 we have an embedding A → G(K) iff G0 and G are
isomorphic over K. By Proposition 6.4 the latter occurs iff −1 is a sum of
4 squares of K.

(Thus, we have recapitulated the argument from [Serre 00, 2.5.3]).

6.6. Example (type E8). Let G denote the split group of type E8, A =
PGL(2, 31) (resp. A = SL(2, 32)), and K a field of characteristic zero. We
view G as a subgroup of GL248 via the adjoint representation. There is an
embedding A→ G(K) iff −1 is a sum of 16 squares (resp. and ζ11 + ζ̄11 ∈ K
for A = SL(2, 32)).

Indeed, by [GR, Theorem 2.27 and Theorem 3.25] there exists an em-
bedding A → G(Q) whose character is defined over F = Q (resp. F =
Q(ζ11 + ζ̄11)). Using [GR] one can check all conditions of Theorem 6.2 (cf.
Example 6.5).

It follows by Theorem 6.2 that there is an embedding A → G0(F ) for
some twisted form G0 of G. Again as in Example 6.5 one can see that G0

is the unique group such that G0 ⊗F R is compact for all embeddings of F
into R. Finally by Proposition 6.4 G and G0 are isomorphic over a field
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extension K/F iff −1 is a sum of 16 squares in K. This proves Theorem
1.1.

Roughly speaking, we have added the facts about the compact E8 con-
tained in the proof of Proposition 6.4 (which uses the existence of the u-
invariant) to Serre’s appendix [GR, App. B].

One can also take G to be the form of E8 over Q that is neither split nor
anisotropic. Then in the same way one can show that A embeds in G(K)
iff −1 is a sum of 4 squares (resp., and ζ11 + ζ̄11 ∈ K for A = SL(2, 32)).

In the same way one can get the following example:

6.7. Example (type A1). Let G = PGL2, A = Alt4 (resp. Alt5), and K a
field of characteristic zero. Then there is an embedding A → G(K) iff −1
is a sum of 2 squares and for Alt5 additionally

√
5 ∈ K (see [Serre 72, §2.5]

and [Serre 80, §1]).
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