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Tits p-indexes of semisimple algebraic groups

Charles De Clercq and Skip Garibaldi

Abstract
The first author has recently shown that semisimple algebraic groups are classified up to motivic
equivalence by the local versions of the classical Tits indexes over field extensions, known as
Tits p-indexes. We provide in this article the complete description of the values of the Tits p-
indexes over fields. From this exhaustive study, we also deduce criteria for motivic equivalence of
semisimple groups of many types, hence giving a dictionary between classic algebraic structures,
representation theory, cohomological invariants and Chow motives of the twisted flag varieties
for those groups.

The Tits index (sometimes called Satake diagram) of a semisimple linear algebraic group G
over a field k includes as special cases the classical notions of Schur index of a central simple
associative algebra and the Witt index of a quadratic form. It is a fundamental invariant of
semisimple algebraic groups. However, for the purpose of stating and proving theorems about
Chow motives with Fp coefficients, one should consider not the Tits index of G, but rather
the (Tits) p-index, meaning the Tits index of GL where L is an algebraic extension of k of
degree not divisible by p, yet all the finite algebraic extensions of L have degree a power of p.
Such an L is called a p-special closure of k in [9, §101.B] and all such fields are isomorphic as
k-algebras, so the notion of Tits p-index over k is well defined.

Let G be a semisimple algebraic group over k. As shown in [8], the Tits p-indexes of G on all
fields extensions of k — the higher Tits p-indexes of G — determine the motivic equivalence
class of G modulo p. The aim of this article is to determine the values of the Tits p-indexes
of the absolutely simple algebraic groups, using as a starting point the known list of possible
Tits indexes as in [47], [45], or [38]. Along the way, we give in some cases criteria for motivic
equivalence for semisimple groups in terms of their algebraic and cohomological invariants.

1. Generalities

1.1. Definition of the Tits index.

References for this subsection: [47], [38], [30, §1]
The Tits index is (1) the Dynkin diagram of G, which we conflate with its set ∆ of vertices,

together with (2) the action of the absolute Galois group Gal(k) of k on ∆, and (3) a Gal(k)-
invariant subset ∆0 ⊂ ∆. Specifically, pick a maximal k-torus T in G containing a maximal
k-split torus S. For ksep a separable closure of k — so Gal(k) are the k-automorphisms of
ksep — T × ksep and G× ksep are split, and, from the set Φ of roots of G× ksep with respect
to T × ksep one picks a set of simple roots ∆. As T is k-defined, Gal(k) acts naturally on Φ;
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this action need not preserve ∆, but modifying it by elements of the Weyl group in a natural
way gives a canonical action of Gal(k) on ∆, called the ∗-action. The resulting graph (Dynkin
diagram with vertex set ∆) with action by Gal(k) is uniquely defined up to isomorphism in
the category of graphs with a Gal(k)-action; it does not depend on the choice of T or ∆.

This addresses parts (1) and (2) of the Tits index. To define ∆0 in (3), choose orderings on
T ∗ (equivalently, on Φ, in the sense of [5, §VI.1.6]) and S∗ such that the linear map, restriction
T ∗ → S∗, takes nonnegative elements of T ∗ to nonnegative elements of S∗. Take ∆ to be the set
of simple roots in Φ with respect to this ordering. Define ∆0 to be the set of α ∈ ∆ such that
α|S = 0; it is a union of Gal(k)-orbits in ∆. One has ∆0 = ∆ iff G is anisotropic and ∆0 = ∅
iff G is quasi-split. The elements of δ0 = ∆ \∆0 are called distinguished and the number of
Gal(k)-orbits of distinguished elements equals the rank of a maximal k-split torus in G.

To represent the Tits index graphically, one draws the Dynkin diagram and circles the
distinguished vertices. Traditionally, one indicates the Galois action by drawing vertices in the
same Gal(k)-orbit physically close to each other on the page, and by using one large circle or
oval to enclose each Gal(k)-orbit in δ0. The Tits index of G has no circles iff G is anisotropic,
and every vertex is circled iff G is quasi-split.

The definition of Tits index is compatible with base change, as explained carefully in [39,
pp. 115, 116]. That is, for each extension E of k, the Tits index of G× E may be taken to have
the same underlying graph (the Dynkin diagram with vertex set ∆) with Gal(E)-action given
by the restriction map Gal(E)→ Gal(k), and with set of distinguished vertices containing the
distinguished vertices in the Tits index of G. It follows that the Tits p-index of G, as defined
in the first paragraph of this paper, is also compatible with base change.

1.2. Which primes p?

If every simple group of a given type is split by a separable extension of degree not divisible
by p, then the only possible p-index is the split one. Thus, [43, §2.2] gives a complete list S(G)
of the primes meriting consideration, which we reproduce in Table 1. (Or see [49] for more
precise information on degrees of splitting fields.)

To say this in a different way, we fix a prime p and will describe the possible Tits indexes
of a simple algebraic group over a field k that is p-special, i.e., such that every finite extension
has degree a power of p. A minimal p-special extension of k, i.e., a p-special closure of k, can
be constructed as follows. If k is perfect or has characteristic p, take the subfield of ksep fixed
by a p-Sylow subgroup of Gal(k). If char k is positive but different from p, perform the same
construction but on the perfect closure of k.

type of G exponent of the center elements of S(G)

An n+ 1 2 and the prime divisors of n+ 1
Bn, Cn, Dn (n 6= 4) 2 2

G2 1 2
D4, E7 2 2 and 3

F4 1 2 and 3
E6 3 2 and 3
E8 1 2, 3, and 5

Table 1. Primes S(G)

1.3. Twisted flag varieties and motivic equivalence.

References for this subsection: [4], [3], [30, §1]
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For each subset Θ of ∆, there is a parabolic subgroup PΘ of G× ksep (determined by the
choice of simple roots) whose Levi subgroup has Dynkin diagram ∆ \Θ. The (projective)
quotient variety (G× ksep)/PΘ is the variety of parabolic subgroups of G× ksep that are
conjugate to PΘ. This variety is k-defined if and only if Θ is invariant under Gal(k), in which
case we denote it by XΘ. These varieties are the twisted flag varieties of G.

Now fix a Gal(k)-invariant subset Θ of ∆. The following are equivalent: (1) XΘ has a k-point;
(2) XΘ is a rational variety; (3) Θ ⊆ δ0. In this way, the Tits index of G gives information
about XΘ.

In case XΘ does not have a k-point, the Chow motive of XΘ nonetheless gives information
about the geometry of XΘ. Suppose now that G′ is a semisimple group over k, and that the
quasi-split inner forms GνG , G′νG′ of G, G

′ are isogenous. That is, suppose that there is an
isomorphism f from the Dynkin diagram ∆ of G to that of G′ that commutes with the action
of Gal(k). This defines a correspondence XΘ ↔ Xf(Θ) between the twisted flag varieties of G
and G′. The groups G, G′ are motivic equivalent modulo a prime p if there is a choice of f
such that the mod-p Chow motives of XΘ and Xf(Θ) are isomorphic for every Gal(k)-stable
Θ ⊆ ∆. The groups G, G′ are motivic equivalent if the groups are motivic equivalent mod p
for every prime p (where f may depend on p). The main result of [8] says, for a prime p: G
and G′ are motivic equivalent mod p iff there is an isomorphism f whose base change to each
p-special field E containing k identifies the distinguished vertices in the Tits index of G× E
with those in the Tits index of G′ × E. Informally, G and G′ are motivic equivalent mod p iff
G×K and G′ ×K have the same Tits p-index for every extension K of k. This theorem is
one motivation for our study of the possible Tits p-indexes of semisimple groups.

1.4. The quasi-split type of G.

A group G over k has quasi-split type tTn if, upon base change to a separable closure ksep

of k, G× ksep is split with root system of type Tn and if the image of Gal(k)→ Aut(∆) has
order t. If t = 1, then G is said to have inner type and otherwise G has outer type. In the case
where k is p-special, evidently t must be a power of p.

1.5. The Tits class of G.

Suppose that G is adjoint with simply connected cover G̃. One has an exact sequence
1→ Z → G̃→ G→ 1 where Z is the scheme-theoretic center of G̃. This gives a connecting
homomorphism ∂ : H1(k,G)→ H2(k, Z); here and below Hi denotes fppf cohomology. There
is a unique class νG ∈ H1(k,G) such that twisting G by νG gives a quasi-split group [25, 31.6],
and we call tG := −∂(νG) ∈ H2(k, Z) the Tits class of G.

As a finite abelian group scheme, there is a unique minimal natural number n such that
multiplication by n is the zero map on Z, it is called the exponent of Z. If p does not divide n
and k is p-special, then the Tits class of G is necessarily zero.

Lemma 1. Suppose G is a semisimple adjoint algebraic group with simply connected cover
G̃. If tG = 0, then there is a unique class ξG ∈ H1(k, G̃) so that the twisted group G̃ξG is
quasi-split.

Proof. As tG = 0, the exactness of the sequence H1(k, G̃)→ H1(k,G)
∂−→ H2(k, Z) shows

that there is a ξ ∈ H1(k, G̃) mapping to νG, and it remains to prove uniqueness.
By twisting, it is the same to show that, for G̃ quasi-split simply connected, the map

H1(k, G̃)→ H1(k,Aut(G̃)) has zero kernel. By [17, Theorem 11, Example 15], the kernel of
the map is the image of H1(k, Z)→ H1(k, G̃). As Z is contained in every maximal torus of
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G̃, at least one of which, call it S, is quasi-trivial, the map factors through H1(k, S), which is
zero by Hilbert’s Theorem 90.

1.6. The Tits algebras of G.

References for this subsection: [25, §27], [48]
Let G̃, Z be as in the previous subsection. The Tits class provides, by way of the Tits

algebras, a cohomological obstruction for an irreducible representation of G̃× ksep over ksep to
be defined over k. Specifically, such a representation has highest weight a dominant weight λ.
Put k(λ) for the subfield of ksep of elements fixed by the stabilizer of λ in Gal(k) (under the ∗-
action). The weight λ is fixed by Gal(k(λ)), i.e., λ restricts to a homomorphism Z → Gm. The
Tits algebra AG(λ) is the image of tG under the induced map λ : H2(k(λ), Z)→ H2(k(λ),Gm);
the irreducible representation is defined over k(λ) iff AG(λ) = 0. (Note that in this definition
AG(λ) is only a Brauer class, but a more careful definition gives a central simple algebra whose
degree equals the dimension of the representation.)

AsH2(k, Z) is a torsion abelian group where every element has order dividing the exponent of
Z, there is a unique element tG,p of p-primary order such that tG − tG,p has order not divisible
by p. We write AG,p(λ) ∈ H2(k(λ),Gm) for the image of tG,p under λ; it is the p-primary
component of the Brauer class AG(λ). We now show that if G and G′ are motivic equivalent
mod p, then they must have the same Tits algebras “up to prime-to-p extensions”. Note that
if G and G′ are motivic equivalent mod p for some p, then the isomorphism f provides an
isomorphism f∗ : Z ′ → Z of the centers of their simply connected covers.

Proposition 2. Suppose G and G′ are absolutely simple algebraic groups that are motivic
equivalent mod p via an isomorphism of Dynkin diagrams f . Then tG,p and f∗(tG′,p) generate
the same subgroup of H2(k, Z) and, for every dominant weight λ, AG,p(λ) and AG′,p(f(λ))
generate the same subgroup of H2(k(λ),Gm).

Proof. The claim is trivial unless G has type A, B, C, D, E6, or E7 and p divides the
exponent of Z. (We remark that tG,p = tG except possibly when G has type A.)

Suppose first that G has inner type. We verify the claim about AG,p(λ) and AG′,p(f(λ)) for a
given dominant weight λ that we may assume is not in the root lattice. Then there is a unique
minuscule weight λ0 congruent to λ module the root lattice, and we have AG,p(λ) = AG,p(λ0)
and similarly for G′. Replacing λ with λ0, we may assume that λ is a fundamental dominant
weight and therefore is dual to a simple coroot α∨. SetK to be a p-special closure of the function
field of the twisted flag variety Xα for G. Then α is distinguished in the Tits index of G×K
(trivially), hence f(α) is distinguished for G′ ×K and resK/k AG′,p(f(λ)) is zero [48, p. 211].
But the kernel of resK/k, on the p-primary part of H2(k,Gm), is generated AG,p(λ) [32, Th. B].
By symmetry AG,p(λ) and AG′,p(f(λ)) generate the same subgroup of the p-primary part of the
Brauer group. If G has type other thanDn for even n ≥ 4, then the character group Z∗ is cyclic;
taking λ to be a generator we find an m not divisible by p so that mAG,p(λ) = AG,p′(f(λ)).
In the excluded case, Z has exponent 2 and (assuming p = 2) AG,2(λ) = AG′,2(f(λ)) for all
λ ∈ Z∗ and we set m = 1. Thus, since the map H2(k, Z)→

∏
λH

2(k(λ), Z) is injective [17,
Prop. 7], we find that mtG,p = f∗(tG′,p).

Now suppose that G has outer type. We may replace k by a p-special closure and so suppose
that G becomes inner type over an extension of degree p and that p divides the exponent of Z
(for otherwise tG,p and tG′,p are necessarily zero). Thus we may assume that p = 2 and G has
type 2An−1 with even n ≥ 4 or type 2Dn for n ≥ 4. We give the details for type A; the type
D case is easier.
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Write G = SU(B, τ) and G′ = SU(B′, τ ′) for B, B′ central simple K-algebras of degree n for
some separable quadratic extensionK of k, and τ , τ ′ K/k-involutions onB,B′ respectively as in
[25, pp. 366, 367]. The fundamental weight λn/2 in the center of the Dynkin diagram (Table 2)
is fixed by Gal(k) and has Tits algebra AG,2(λn/2) the class of the discriminant algebra D(B, τ)
of (B, τ) as in [25, p. 378] and similarly for G′. The argument as for G of inner type shows that
D(B, τ) and D(B′, τ ′) have the same class in the Brauer group H2(k,Gm). Replacing k by K
and applying the result for the inner case shows that B and B′ generate the same subgroup
(necessarily of order a power of 2) inH2(K,Gm). Therefore, there is an odd numberm such that
mAG,2(λ1) = AG′,2(f(λ1)) for λ1 the fundamental weight corresponding to the far left vertex
in the Dynkin diagram, hence, for λi the fundamental weight dual to the simple coroot α∨i ,
we have mAG,2(λi) = miAG,2(λ1) = iAG′,2(f(λ1)) = AG′,2(f(λi)) in H2(K,Gm). As of course
mAG,2(λn/2) = AG,2(λn/2), we find that mtG,2 and f∗(tG′,2) have the same image under the
injective map H2(k, Z)→

∏
λH

2(k(λ), Z) hence are equal.

1.7. The Rost invariant.

References for this subsection: [20], [25]
We refer to [20, pp. 105–158] for the precise definition of the abelian torsion groups

H3(k,Z/dZ(2))→ H3(k,Q/Z(2)); if d is not divisible by char k, then H3(k,Z/dZ(2)) =
H3(k, µ⊗2

d ). For all k, the natural inclusion identifies H3(k,Z/dZ(2)) with the d-torsion in
H3(k,Q/Z(2)). For G̃ a simple simply connected algebraic group, there is a canonical morphism
of functors

rG̃ : H1(∗, G̃)→ H3(∗,Q/Z(2))

known as the Rost invariant. The order nG̃ of rG̃ is known as the Dynkin index of G̃, and rG̃
can be viewed as a morphism H1(∗, G̃)→ H3(∗,Z/nG̃Z(2)).

Lemma 3. Let G̃ be absolutely simple and simply connected with center Z. Put m for the
largest divisor of nG̃ that is relatively prime to the exponent of Z. Then there is a canonical
morphism of functors r̄G̃ such that the diagram

H1(∗, G̃/Z)
r̄G̃−−−−→ H3(∗,Z/mZ(2))x xπ

H1(∗, G̃)
rG̃−−−−→ H3(∗,Z/nG̃Z(2))

commutes, where π is the projection arising from the Chinese remainder decomposition of
H3(∗,Z/nG̃Z(2)).

Under the additional hypothesis that m is not divisible by char k, this result was proved in
[18, Prop. 7.2] using the elementary theory of cohomological invariants from [15]. We give a
proof valid for all characteristics that relies on the (deeper) theory of invariants of degree 3 of
semisimple groups developed in [29].

Proof. Put G := G̃/Z. For G of inner type, this result is included in the calculations in [29,
§4]. Consulting the list of Dynkin indexes for groups of outer type from [20], we have m = 1
except for types 2An with n even, types 3D4 or 6D4, and type 2E6, where m is respectively 2,
3 and 4. To complete the proof, we calculate the group denoted Q(G)/Dec(G) in [29]. Note
that Q(G) may be calculated over an algebraic closure, so the calculations in [29] show that
Q(G) is (n+ 1)Zq, 2Zq, or 3Zq respectively.
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The group Dec(G) is nGZq where nG is the gcd of the Dynkin index of each representation
ρ as ρ varies over the k-defined representations of G. Clearly, nG is unchanged by replacing G
by a twist by a 1-cocycle η ∈ H1(k, G̃), and nG̃η divides nGη . Consulting then the maximum
values for nG̃η from [20], we conclude that nG is divisible by 2(n+ 1), 12, 12 respectively. On
the other hand, nG divides the Dynkin index of the adjoint representation, which is twice the
dual Coxeter number; hence nG divides 2(n+ 1), 12, 24 respectively. Thus the maximal divisor
of |Q(G)/Dec(G)| that is relatively prime to the exponent of Z divides m and the claim follows
from the main theorem of [29].

For completeness, we note that for type 2E6, the Weyl module with highest weight λ1 + λ6

of dimension 650 has Dynkin index 300 [27], so nG divides gcd(24, 300) = 12, i.e., nG = 12.

Definition 4. Suppose G is an absolutely almost simple algebraic group, and put G̃, Ḡ
for its simply connected cover and adjoint quotient. For m as defined in Lemma 3, we define:

b(G) := −r̄G̃(νḠ) ∈ H3(k,Z/mZ(2)).

If tG = 0, we define:
a(G) := −rG̃(ξḠ) ∈ H3(k,Z/nG̃Z(2))

for ξḠ as in Lemma 1.
Factoring nG̃ = mc, we have H3(k,Z/nG̃Z(2)) = H3(k,Z/mZ(2))⊕H3(k,Z/cZ(2)). In case

tG = 0, by Lemma 3 the invariants are related by the equation a(G) = b(G) + c(G) for some
c(G) ∈ H3(k,Z/cZ(2)).

(An) r r r · · · r r r
1 2 3 n−2 n−1 n

(E6) r r rr r r
1 3 4 5 6

2

(Bn) r r r · · · r r > r
1 2 3 n−2 n−1 n

(E7) r r r rr r r
7 6 5 4 3 1

2

(Cn) r r r · · · r r < r
1 2 3 n−2 n−1 n

(E8) r r r r rr r r
8 7 6 5 4 3 1

2

(Dn) r r r · · · r r��
ZZ

r
r1 2 3 n−3

n−2

n

n−1

(F4) r r> r r
1 2 3 4

(G2) r< r
1 2

Table 2. Dynkin diagrams of simple root systems, with simple roots numbered

2. Tits p-indexes of classical groups

As envisioned by Siegel and Weil [50] and detailed in [25], classical groups can be described
over a field k of characteristic 6= 2 as automorphism groups of central simple algebras with
involutions. Recall that a simple k-algebra is said to be central if its k-dimension is finite and if
its center is k. The degree deg(A) of a central simple algebra is the square root of its dimension
and its index ind(A) is the degree of a division k-algebra Brauer equivalent to A.

An involution σ on a central simple algebra A is a k-linear antiautomorphism of order
2. Following [25], the index ind(A, σ) of a central simple algebra is the set of the reduced
dimensions of the σ-isotropic right ideals in A. (Recall that a right ideal I of A is σ-isotropic if
σ(I)I = 0.) As [25, §6] states, ind(A, σ) is of the form {0, ind(A), ..., r ind(A)}, where r is the
Witt index of an (skew-)hermitian form attached to (A, σ).
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Definition 5. Let p be a prime and (A, σ) be a central simple k-algebra with involution.
The p-index of (A, σ) is the union of the sets ind(A⊗k E, σ ⊗ IdE), where E runs through all
finite extensions of k of degree not divisible by p; we denote it by indp(A, σ).

Entirely analogous statements hold for a central simple algebra with quadratic pair (A, σ, f)
as defined in [25]; one simply adapts the notion of isotropic right ideal and ind(A, σ, f) as in
[25, pp. 73, 74].

In this section we will list the possible Tits p-indexes for the classical groups and relate them
to the index of a corresponding central simple algebra with involution or quadratic pair. The
actual list of indexes is identical with the one in [47]; the core new material here is the proof
of existence of such indexes over 2-special fields given in the next section. We do not discuss
motivic equivalence for classical groups here, because the cases of special orthogonal groups
and groups of type 1An were handled in [8].

2.1. Type 1An.

An absolutely simple simply connected groups of type 1An is isomorphic to the special linear
group SL1(A) of a degree n+ 1 central simple k-algebra A. The coprime-to-p components of
A vanishes over a p-special closure of k, hence denoting by dp the integer pvp(ind(A)) we get
the following description of the p-indexes of type 1An. In the interest of clarity, we list after
the Tits p-index the distinguished orbits in the p-index, which we call distinguished p-orbits
to emphasize the prime p.

(1An, p) r r · · · r r r · · · r r r · · · · · · r r r · · · r r r · · · r rf f f f
dp − 1 dp − 1 dp − 1 dp − 1

dp 2dp

Distinguished p-orbits: {dp, 2dp, ..., n+ 1− dp}.

The twisted flag varieties of type 1An are isomorphic to the varieties of flags of right ideals of
fixed dimension [30]. Note that any power of p may be realized as the integer dp for a central
simple algebra defined over a suitable field k.

2.2. Type 2An.

The absolutely simple simply connected groups of type 2An correspond to the special unitary
groups SU(A, σ), where (A, σ) is a central simple algebra of degree n+ 1 with involution of the
second kind. (Recall that in this case A is a central simple K-algebra for a separable quadratic
extension K of k.) As in 1.4, we need only consider the prime 2. We denote by d the index of
A and r is the integer such that ind2(A, σ) = {d2, 2d2, ..., rd2}.

(2An, 2)
r r · · · r r r · · · r r r · · · · · · r r r · · ·r r · · · r r r · · · r r r · · · · · · r r r · · ·
fd2f f2d2f ff

rd2

d2 − 1 d2 − 1

n− 2rd2

· · ·
· · · rr rr �	
· · ·
· · ·
rr rrHH��r

if n+ 1 = rd2, the right side is · · ·
· · · rr rrH�rf

Distinguished 2-orbits: {{d2, n+ 1− d2}, {2d2, n+ 1− 2d2}, ..., {rd2, n+ 1− rd2}}.



Page 8 of 20 CHARLES DE CLERCQ AND SKIP GARIBALDI

The associated twisted flag varieties are described in [30]. We will show in §3 that any of
such Tits 2-index can be realized by a group of type 2An defined over a suitable field.

2.3. Type Bn.

An absolutely simple simply connected group of type Bn is isomorphic to the spinor group
Spin(V, q) of a (2n+ 1)-dimensional quadratic space (V, q). (The adjoint groups of type Bn
correspond to the special orthogonal groups.) The Witt index of the quadratic space (V, q) is
denoted by iw(q) and the only torsion prime here is 2.

(Bn, 2) r r · · · r r r r · · · r r r>ff f fiw(q)

Distinguished 2-orbits: {1, 2, ..., iw(q)}.

The Tits 2-index coincides with the classical Tits index for such groups by Springer’s
theorem (see [44], [9, Corollary 18.5] for a characteristic-free proof). It is thus known from
Tits classification that any such Tits 2-index can be achieved as the index of the spinor group
of some quadratic space (V, q).

2.4. Type Cn.

Up to isomorphism, an absolutely simple simply connected group of type Cn is the symplectic
group Sp(A, σ) associated to a central simple k-algebra of degree 2n with symplectic involution.
As previously the only torsion prime here is 2 and we denote the 2-index ind2(A, σ) =
{d, 2d, ..., rd}, where d is the index of A.

(Cn, 2) r r · · · r r r · · · r r r · · · · · · r r r · · · r r r<fd f2d frd
d− 1 d− 1 n− rd

if n = rd, the right side becomes · · · r r rf<
Distinguished 2-orbits: {d, 2d, ..., rd}.

The twisted flag varieties for such groups correspond to varieties of flags of σ-isotropic
subspaces of fixed dimension [30]. We will show in §3 how to construct symplectic groups of
any such prescribed 2-index over suitable fields.

2.5. Type 1Dn.

Over a base field k of characteristic 6= 2, absolutely simple simply connected algebraic group
of type 1Dn are described as spinor groups Spin(A, σ) of a 2n-degree central simple k-algebras
(A, σ) with orthogonal involution of trivial discriminant. The suitable generalization to include
k of characteristic 2 is the notion of algebra with quadratic pair (A, σ, f) as in [25]. We keep
the same notations as before for the indexes of A, (A, σ), and (A, σ, f).
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(1Dn, 2) r r · · · r r r · · · r r r · · · · · · r r r · · · r r rr��ZZf f f
d− 1 d− 1

n− rd
d = 1 and n = r · · · r rrf

f
f��ZZ d = 2k, k ≥ 2 and n = rd · · · r rrf��ZZ

d = 2 and n = 2r · · · rf rrf��ZZ n− rd = 2 · · · rf rr��ZZ
Distinguished 2-orbits: {d, 2d, ..., rd}.

As detailed in [30] when char k 6= 2, the associated twisted flag varieties are the varieties
of flags of σ-isotropic subspaces of prescribed dimension. This same description holds in all
characteristics (replacing (A, σ) with (A, σ, f)), as can be seen in case A is split as in [2,
pp. 258–262] and by Galois descent for general A, cf. [6, p. 219].

Any such 2-index can be realized as the index of the spinor group of a central simple k-algebra
with orthogonal involution of trivial discriminant over a suitable field.

2.6. Type 2Dn.

Absolutely simple simply connected algebraic groups of type 2Dn are described by spinor
groups of 2n-degree central simple k-algebras endowed with an orthogonal involution of non-
trivial discriminant (again, this notion is replaced by quadratic pairs to cover base fields of
characteristic 2). We denote here the discrete invariants associated to algebras with involution
in the same way as for 1Dn, and the only torsion prime is 2. As for the 1Dn case, the twisted
flag varieties for such groups are described in [30] and for any such prescribed 2-index can be
associated to a suitable spinor group.

(2Dn, 2) r r · · · r r r · · · r r r · · · · · · r r r · · · r r rr��f f f
d− 1 d− 1

n− 2rd

n− rd = 1 and d = 1 · · · rf rf rr��
�
�
�
� n− rd = 1 and d = 2 · · · rf r rr��

�
�
�
�

Distinguished 2-orbits:

{
{d, 2d, ..., rd} if rd < n− 1;
{d, 2d, ..., (r − 1)d, {n− 1, n}} if rd = n− 1.

3. Tignol’s construction

To complete the determination of all the values of the Tits p-indexes of classical groups,
it remains to show that each of the previously-announced indices can be realized by suitable
absolutely simple groups. Recall that a central simple algebra with involution (A, σ) is adjoint
to a (skew)-hermitian form hσ on a right D-module, where D is a division algebra Brauer-
equivalent to A. Adding hyperbolic planes to hσ, the problem is reduced to the construction
of anisotropic central simple algebras with involutions (A, σ) of any kind with A of any index
a power of 2 over 2-special fields. We reproduce here a construction of such algebras with
involutions which is due to Jean-Pierre Tignol.

Let Γn be a product of n copies of Z(2), the ring of rational numbers with odd denominators.
For any fieldK, consider the fieldKn of power series

∑
γ∈Γn

aγx
γ whose support is well ordered
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with respect to the lexicographical order [10]. The field Kn is endowed with the valuation
v : Kn −→ Γn ∪ {∞} which sends an element to the least element of its support.

Lemma 6. If K is 2-special, then Kn is also 2-special.

Proof. Let L be a finite separable field extension of Kn. The valuation v extends uniquely
to L and Kn is maximally complete, hence the equality

[L : Kn] = [L̄ : K] · (v(L×) : v(K×n ))

holds [42, Ch. 2]. The field K being assumed to be 2-special, [L̄ : K] is a power of 2. Moreover
the quotient group v(L×)/v(K×n ) is torsion [10, Theorem 3.2.4] and v(K×n ) is Γn, hence the
order of the quotient group v(L×)/v(K×n ) is a power of 2.

We now describe Tignol’s procedure to construct from anyK-division algebra with involution
(D,σ) a family of anisotropic algebras with involutions of the same kind over Kn.

Proposition 7. LetM be a rightDKn -module of rank k which is at most n. The hermitian
form

hk : M ×M −→ DKn

(a1, ..., ak, b1, ...bk) 7→
∑k
i=1 σKn(ai)x

εibi

where εi is the n-uple whose only non-zero entry is 1 at the i-th position is anisotropic.

Proof. Setting v(d⊗ λ) = v(λ) for any d ∈ D× and λ ∈ K×n , the valuation v extends to a
σ-invariant valuation on DKn . One observes that for any element a of D×Kn , v(σKn(a)xεia) =
εi + 2v(a) belongs to εi + 2Γn and thus

v

(
k∑
i=1

σKn(ai)x
εiai

)
= min{εi + 2v(ai), i = 1, ..., k}.

It follows that if hk(a1, ..., ak, a1, ..., ak) = 0, then ai = 0 for all i = 1, ..., k.

Corollary 8. Each of the previously described indices of type (2An, 2), (Cn, 2), (1Dn, 2),
(2Dn, 2) is the Tits 2-index of a semisimple algebraic group defined on a suitable field.

Proof. As seen in a previous discussion, it suffices to construct over 2-special fields algebras
with anisotropic involutions (A, σ) of any kind, where the index of A can be any power of 2.

Take a sufficiently large transcendental field extension K(x1, ..., xs) of a field K, over which
we can consider a division algebra with involution (D,σ) of any kind. (For instance, D may
be chosen to be a tensor product of quaternion algebras.) Writing L for the 2-special closure
of K(x1, ..., xs), we can apply Tignol’s procedure to (DL, σL). Proposition 7 gives rise to an
anisotropic algebra with involution (Mk(DLn), σLn) which is of the same kind as (D,σ) and
thus fulfills the required assumptions.

4. Tits p-indexes of exceptional groups

In this section we will list the possible Tits p-indexes of exceptional groups, meaning groups
of the types omitted from §2.
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4.1. The cases (G2, 2), (3D4, 3), (F4, 3), and (E8, 5).

We now consider some groups G relative to a prime p in cases where p does not divide the
exponent of the center of the simply connected cover G̃ and the Dynkin index nG̃ factors as
cp for some c not divisible by p. Definition 4 then gives an element b(G) ∈ H3(k,Z/pZ(2))
depending only on G.

Proposition 9. If the quasi-split type of G and p are one of (G2, 2), (3D4, 3), (F4, 3), or
(E8, 5), then the following are equivalent:

(i) G is quasi-split by a finite separable extension of k of degree not divisible by p.
(ii) G is isotropic over a finite separable extension of k of degree not divisible by p.
(iii) b(G) = 0.

And for G of type G2, F4, or E8 the preceding are equivalent also to:
(iv) The Chow motive with Fp coefficients of the variety of Borel subgroups of G is a sum

of Tate motives.
Moreover, for every field k, there exists a p-special field F ⊇ k and an anisotropic F -group of
the same quasi-split type as G.

Proof. It is harmless to assume that k is p-special. Suppose (ii), that G is k-isotropic.
When we consult the list of possible Tits indexes from [47], we find that for G of type G2, G
is necessarily split. If G has type 3D4, then the only other possibility is that the semisimple
anisotropic kernel is isogenous to a transfer RL/k(A1) where L is cubic Galois over k. But L
has no separable field extensions of degree 2, so a group of type A1 is isotropic, hence G is
split. If G has type F4, the only possibility has type B3, which is isotropic, hence again (i). If
G has type E8, the possibilities are E7, D7, E6, D6, or D4, and all such groups are isotropic
as in Table 1. Thus, (ii) implies (i).

Assume now (iii); we prove (i). As k is p-special (and because of our choice of G), tG = 0,
so we are reduced to showing that, for G̃q the quasi-split inner form of the simply connected
cover of G, the Rost invariant rG̃q has zero kernel. By the main result of [24], we may assume
that char k = 0. The kernel is zero for type G2 by [20, p. 44], for F4 it is [25, §40], for 3D4 it
is [16], for E8 it is [7] or see [15, 15.5].

Trivially, (i) implies the other conditions, including (iv). The remaining implication, that
(iv) implies (i), is [37, Cor. 6.7].

For existence, choosing a versal torsor under the simply connected cover of G provides an
extension E ⊇ k and an E-group G′ of the same quasi-split type as G with b(G′) 6= 0. Then
G′ × F is the desired group, where F is any p-special closure of E.

For (G, p) as in the proposition, we needn’t display the possible Tits p-indexes, because there
are only two possibilities: quasi-split (every vertex is distinguished) or anisotropic (no vertex
is distinguished).

Corollary 10. Suppose (G, p) is one of the pairs considered in Proposition 9, and G′ is a
simple algebraic group that is an inner form of G. Then G and G′ are motivic equivalent mod
p if and only if b(G) and b(G′) generate the same subgroup of H3(k,Z/pZ(2)).

Proof. The element νG ∈ H1(k,G) represents a principal homogeneous space; write K for
its function field. The kernel of H3(k,Z/pZ(2))→ H3(K,Z/pZ(2)) is the group generated by
b(G) [20, p. 129, Th. 9.10]. If the isomorphism of the Tits p-indexes extends to an isomorphism
between p-indexes of GE and G′E for every extension E of k, then GK and G′K are both
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quasi-split, hence b(G′) is in 〈b(G)〉; by symmetry the two subgroups generated by b(G) and
b(G′) are equal. Conversely, if the two subgroups are equal, then for each extension E of k,
either resE/k(b(G)) is zero and both GE and G′E are quasi-split, or it is nonzero and both are
anisotropic; in this case the isomorphism of the Tits p-indexes over k clearly extends to an
isomorphism over E. Applying the main result of [8] gives the claim.

Remarks specific to G2. For G,G′ of type G2, we have: G ∼= G′ iff b(G) = b(G′), cf. [25,
33.19] and [46], i.e., motivic equivalence mod 2 is the same as isomorphism.

The flag varieties for type G2 are described in [6, Example 9.2].

Remarks specific to F4 at p = 3. For G,G′ of type F4 over a 3-special field k, we have: G ∼=
G′ iff b(G) = b(G′). If char k = 0, this is [41] and we can transfer this result to all characteristics
using the same method as in [22, §9].

4.2. Type D4.

For G of type D4, Aut(∆)(ksep) is the symmetric group on 3 letters, so G has type tD4 with
t = 1, 2, 3, or 6. Groups of type 1D4 or 2D4 were treated in §2; this includes the case where k
is 2-special. Thus it remains to consider groups of type 3D4 and p = 3, which was treated in
subsection 4.1.

Flag varieties. For groups of type 3D4 and 6D4, the k-points of the twisted flag varieties
are described in [12].

4.3. Type F4 and p = 2.

Groups of type F4, just as for type G2, are all simply connected and adjoint and therefore all
have Tits class zero; therefore the invariants a and b from Definition 4 agree. For G a group of
type F4, one traditionally decomposes b(G) ∈ H3(k,Z/6Z(2)) as f3(G) + g3(G) for f3(G) ∈
H3(k,Z/2Z(2)) and g3(G) ∈ H3(k,Z/3Z(2)). There is furthermore another cohomological
invariant f5(G) ∈ H5(k,Z/2Z(4)), see [25, 37.16] or [20, p. 50] when char k 6= 2 (in which
case f5(G) belongs to H5(k,Z/2Z)) or [34, §4] for arbitrary k. (These statements rely on
viewing each group of type F4 over k as the automorphism group of a uniquely determined
Albert k-algebra. For general background information on Albert algebras, see [25, Ch. IX],
[46], or [35].) Table 3 gives a dictionary relating the Tits index of G with the values of these
invariants; in the last column we give the signature of the Killing form for the Lie algebra
over R with that Tits index. (Implicitly this is a statement of existence; one can calculate the
signature of the Killing form from the Tits index by the formula from [26, §6].)

signature
Tits index of G f3(G) f5(G) g3(G) of real formq q q q>e e e e 0 0 0 4q q q q> e 6= 0 0 0 −20q q q q> f5(G) and g3(G) not both zero −52

Table 3. Tits index of a group of type F4

For type F4, we should consider p = 2, 3 by Table 1. The case p = 3 was handled in
Proposition 9. For p = 2, all three possible indexes occur over the 2-special field R, so they
are also 2-indexes. Alternatively, one can handle the p = 2 case by noting that groups of type
F4 over a 2-special field are of the form Aut(J) for an Albert algebra J containing a nonzero
element with norm zero, i.e., such that J is reduced as described in [34, 1.7] or [20, p. 47].
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Proposition 11. Groups G and G′ be groups of type F4 over a field k are motivic
equivalent mod 2 iff f3(G) = f3(G′) and f5(G) = f5(G′). The groups G, G′ are motivic
equivalent (mod every prime) iff f3(G) = f3(G′), f5(G) = f5(G′), and g3(G) = ±g3(G′).

Proof. The elements fd(G) for d = 3, 5 are symbols, so we may find d-Pfister quadratic forms
qd whose Milnor invariant ed(qd) ∈ Hd(k,Z/2Z(d− 1)) equals fd(G). For Kd the function field
of qd, the kernel of the map Hd(k,Z/2Z(d− 1))→ Hd(Kd,Z/2Z(d− 1)) is generated by fd(G)
as follows from [33, Th. 2.1] (if char k 6= 2) as explained in [9, p. 180]. The first claim now
follows by the arguments used to prove Corollary 10. The second claim follows from the first
and Corollary 10.

We thank Holger Petersson for contributing the following example.

Example 12. Given a group G of type F4 over k, we describe how to construct a group
G′ that is motivic equivalent to G modulo every prime but which need not be isomorphic to
G.

Write G = Aut(J) and furthermore write J as a second Tits construction Albert algebra
J = J(B, τ, u, µ) for some quadratic étale k-algebra K, where B is a central simple K-algebra
of degree 3 with unitary K/k-involution τ , u ∈ B× is such that τ(u) = u, and µ ∈ K× satisfies
NK/k(µ) = NrdB(u). Then g3(G) = −corK/k([B] ∪ [µ]) and f3(G) is the 3-Pfister quadratic
form over k corresponding to the unitary involution τ (u) : x 7→ u−1τ(x)u on B. The 1-Pfister
NK/k is a subform of the 3-Pfister q corresponding to the involution τ [36, Prop. 2.3] so there
exist γ1, γ2 ∈ k× such that q = 〈〈γ1, γ2〉〉 ⊗NK/k. Combining [36, 2.9] and [35, 7.9] gives

f5(G) = 〈〈γ1, γ2〉〉 ⊗ f3(G). (4.1)

Define now G′ := Aut(J ′) where J ′ is the second Tits construction Albert algebra
J(B, τ, u−1, µ−1). Since the unitary involutions τ (u) and τ (u−1) of B are isomorphic under
the inner automorphism x 7→ uxu−1, we have f3(G′) = f3(G). As 〈〈γ1, γ2〉〉 does not change
when passing from J to J ′, we find f5(G′) = f5(G). As clearly g3(G′) = −g3(G), G and G′ are
motivic equivalent mod p for all p.

It is unknown if J ′ depends on the choice of expression of J as a second Tits construction;
perhaps it only depends on J . This is a specific illustration of the general open problem [43,
p. 465]: Do the invariants f3, f5, and g3 distinguish groups of type F4?

Flag varieties. For groups of type F4, the k-points of the twisted flag varieties are described
in [6, 9.1], relying on [40] or [1]. A portion of this description for k = R can be found in [11,
28.22, 28.27]. For J an Albert algebra, Aut(J) is isotropic iff J has nonzero nilpotents, and
Aut(J) is split iff J is the split Albert algebra.

4.4. Type E6 and p = 2, 3.

For G of type 1E6, the class tG has order dividing 3 and can be represented by a central simple
algebra of degree 27 [48, p. 213] which we denote by A; it is only defined up to interchanging
with its opposite algebra. The list of possible Tits indexes from [47] is reproduced in the first
column of Table 4. The constraints on the index of A given in the second column can be
deduced from the possible indexes of the Tits algebras of the semisimple anisotropic kernel as
explained in [48, p. 211]. In the column for 2-special fields, we give the signature of the Killing
form on the real Lie algebra if one occurs with that Tits index.
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occurs as occurs as
index of G indA a 2-index? a 3-index?

q q q q qqee e e e e 1 yes (6) yes

q q q q qqe e 1 yes (−26) no

q q q q qqee 3 no yes

q q q q qq divides 27 no yes

Table 4. Possible Tits indexes of groups of type 1E6

4.4.1. Type 1E6 and p = 3. Over a 3-special field, every group of type 1D4 is split, therefore
the Tits index with semisimple anisotropic kernel of that type (row 2 in Table 4) cannot occur.
Table 5 is justified in [22, §10], where the top row — which is only proved assuming char k = 0
— refers to the mod-3 J-invariant defined in [37] describing the decomposition of the mod-
3 Chow motive of the variety X∆ of Borel subgroups of G. In particular, there exists an
anisotropic group of type 1E6 over a 3-special field, completing the justification of the last
column of Table 4.

J3(G) (0, 0) (1, 0) (0, 1) (1, 1) (2, 1)

Tits 3-index of G split q q q q qqee · · · anisotropic · · ·

index of A 1 3 1 3 9 or 27

Table 5. Possible values for the mod-3 J-invariant of G of type 1E6, assuming char k = 0

4.4.2. Type 1E6 with tG = 0. For any group G of type 1E6 with tG = 0, we get
from Definition 4 an element a(G) ∈ H3(k,Z/6Z(2)), which we write as f3(G) + g3(G) for
f3(G) ∈ H3(k,Z/2Z(2)) and g3(G) ∈ H3(k,Z/3Z(2)). It follows from [15, 11.1] that the simply
connected cover of G is the group of isometries of the cubic norm form of an Albert algebra J ,
and from general properties of the Rost invariant that f3(G) and g3(G) equal the corresponding
values for the automorphism group Aut(J) of type F4. Combining the description of the flag
varieties of G in terms of subspaces of J from [6, §7] as well as the relationships between
values of the cohomological invariants and properties of J from [25, §40] and [34] gives the
information in Table 6.

Proposition 13. Let G and G′ be groups of type 1E6 over a field k such that tG = tG′ = 0.
Then G and G′ are motivic equivalent modulo a prime p if and only if the p-torsion components
of a(G) and a(G′) generate the same subgroup of H3(k,Z/pZ(2)).

Proof. Table 6 shows that the Tits 2-index only depends on whether f3(G) is zero and the
3-index only depends on whether g3(G) is zero. Combine this with the main result of [8].
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occurs as occurs as
Tits index of G f3(G) g3(G) a 2-index? a 3-index?

q q q q qqee e e e e 0 0 yes yes

q q q q qqe e 6= 0 0 yes no

q q q q qq any 6= 0 no yes

Table 6. Table of possible Tits indexes for G of type 1E6 with tG = 0

4.4.3. Type 1E6 and p = 2. Over a 2-special field, the Tits class of any group G of type
E6 is zero so Table 6 applies and in particular G is isotropic. From this, we deduce the third
column of Table 4.

Corollary 14. Groups G and G′ of type 1E6 over a field k are motivic equivalent mod 2
if and only if f3(G) = f3(G′).

Proof. As the Tits classes tG and tG′ are zero over every 2-special field, the claim follows
immediately from Proposition 13.

4.4.4. Type 2E6 and p = 2. For G of type 2E6, the element b(G) belongs to H3(k,Z/4Z(2)).
(If k is 2-special, then tG = 0 and a(G) = b(G).) In this setting, the possible Tits 2-indexes
have been determined in [21, Prop. 2.3]. We reproduce that table here, as well as indicate the
signature of the Killing form on the real simple Lie algebra with that Tits index, if such occurs.

index b(G) ∈ H3(k,Z/4Z(2)) occurs over R?q qq qq q�� �� ���� ��e 0 yes (2)q qq qq q�� �� ��e nonzero symbol in H3(k,Z/2Z(2)) killed by K yes (−14)q qq qq q�� �� �� symbol in H3(k,Z/2Z(2)) not killed by K noq qq qq q��e in H3(k,Z/2Z(2)), not a symbol noq qq qq q�� 6= 0 yes (−78)

Table 7. Possible Tits 2-indexes for G of type 2E6. The field K is the separable quadratic extension
of k such that G×K has type 1E6.

Flag varieties. The k-points of the twisted flag varieties for groups of type 1E6 are described
in [6, §7] and for type 2E6 in [21, §5]. If G is a group of type 1E6 with tG = 0, then the
simply connected cover of G is the the group of norm isometries of an Albert k-algebra J and
the variety of total flags has k-points {S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5} where Si ⊂ J is a singular
subspace, dimSi = i, and S5 is not a maximal singular subspace.



Page 16 of 20 CHARLES DE CLERCQ AND SKIP GARIBALDI

4.5. Type E7 and p = 2, 3.

Let now G have type E7. The class tG has order 1 or 2 and can be represented by a unique
central simple algebra of degree 8 [48, 6.5.1], which we denote by A. Table 8 lists the possible
Tits indexes for G. As before, if a Tits index occurs over R, we list the signature of the Killing
form in the 2-index column.

occurs as occurs as
index of G indA a 2-index? a 3-index?

q q q q q qqe e e e e ee 1 yes (7) yes

q q q q q qqe e e e 2 yes (−5) no

q q q q q qqe e e 1 yes (−25) no

q q q q q qqe e 2 yes no

q q q q q qq e 2 yes no

q q q q q qqe divides 4 yes no

q q q q q qq e 1 no yes

q q q q q qq divides 8 yes (−133) no

Table 8. Tits indexes of groups of type E7

4.5.1. The index of A The second column of Table 8 lists the possible values for the index
of A, taken from [48, 6.5.5]. In that reference, Tits asked whether the groups in the sixth row
of Table 8, those with semisimple anisotropic kernel of type 1D6, could be explicitly described.
We now do so under the assumption that char k 6= 2 and using the language of [25]. By Tits’s
Witt-type Theorem, it is equivalent to describe the semisimple anisotropic kernel up to isogeny,
meaning a group SO(A, σ) where A is a central simple k-algebra of degree 12 and exponent
2 — in particular A ∼= M3(D) for some D of degree 4 — σ is an orthogonal involution with
trivial discriminant, and the even Clifford algebra C(A, σ) is M32(k)×M8(D). All such (A, σ)
are obtained by the construction in the paper [23], which takes as inputs a quadratic étale k-
algebra K, a central simple K-algebra B of degree 6 and exponent 2, and a unitary involution
τ on B. That is, every such (B, τ) produces an (A, σ) and thereby a group of type E7 with
semisimple anisotropic kernel of type 1D6 or with more circled vertices, and every such E7 is
obtained in this way. To explicitly give an E7 with indA = 4, it suffices to pick a (B, τ) whose
discriminant algebra has index 4, which is done for example in [25, p. 148, Exercise 13].

4.5.2. Type E7 and p = 2. We must justify the third column of Table 8. As in §4.4.3, a
group of type 1E6 over a 2-special field is isotropic, so a group of type E7 over a 2-special field
cannot have semisimple anisotropic kernel of type 1E6.
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For the three “yes” entries that do not occur over R, we note that group of type E7 with
these Tits indexes occur over some field k and odd-degree extensions of k cannot make the
semisimple anisotropic kernel (of type 1D4 × 1A1, 1D5 × 1A1, or 1D6) isotropic.

In the anisotropic case in the last row of the table, A may have index 1, 2, 4, or 8 over a
2-special field. A versal form of E7 over some field F has Tits algebra of index 8 by [31, p. 164],
[28], or [18, Lemma 14.3]. Going up to a 2-special extension of F , it is clear that there do exist
groups of type E7 over a 2-special field that have Tits algebra of index 8 and so are anisotropic.
The compact real form of E7 has Tits algebra the quaternions (of index 2). An example of an
anisotropic group G of type E7 with tG = 0 over a 2-special field is given in [15, Example A.2].

4.5.3. Type E7 and p = 3. We now justify Table 9, which implies the claims in the fourth
column of Table 8. Let G be a group of type E7 over a 3-special field k, so tG = 0.

We claim that G is isotropic. Suppose first the char k 6= 2, 3. Put E6 and E7 for the split
simply connected groups of those types. The natural inclusion E6 ⊂ E7 gives a surjection in
cohomology H1(k,E6 o µ4)→ H1(k,E7), see [15, 12.13]. As H1(k, µ4) = 0, the class ξG from
Lemma 1 lies in the image of H1(k,E6) and it follows that the Tits index of (E7)ξG , i.e., of
the simply connected cover of G, is as in the bottom row of Table 9 or has more distinguished
vertices. Note that as in Table 6, (E6)ξG is split iff g3((E6)ξG) = 0 iff b(G) = 0, and anisotropic
iff g3((E6)ξG) 6= 0 iff b(G) 6= 0. This completes the justification of Table 9 if char k 6= 2, 3. If k
has characteristic 2 or 3, then arguing as in [22, §9] reduces the claim to the case of characteristic
zero.

Tits 3-index of G b(G)

q q q q q qqe e e e e ee 0

q q q q q qq e 6= 0

Table 9. Possible Tits 3-indexes for a group G of type E7

Proposition 15. Simple algebraic groups G and G′ of type E7 over a field k are motivic
equivalent mod 3 iff b(G) = ±b(G′) ∈ H3(k,Z/3Z(2)).

Proof. Combine Table 9 and the arguments used for Corollary 10.

Flag varieties. The flag varieties for groups of type E7 are described in [13, §4] and [14].

4.6. Type E8 and p = 2, 3.

For type E8, by Table 1 we should consider p = 2, 3, 5. The case p = 5 was handled in
Proposition 9. We list the possible Tits indexes from [47] in the first column of Table 10.

4.6.1. Type E8 and p = 2. As anisotropic strongly inner groups of types D4, D6, D7, and
E7 exist over 2-special fields by the previous sections, and a compact E8 exists over R, the
“yes” entries in the second column of Table 10 are clear. For the one “no”, we refer to Table 4.

4.6.2. Type E8 and p = 3. In view of results for groups of smaller rank, it suffices to justify
the existence of an anisotropic E8 over a 3-special field. For this, we refer to Table 11, which
is justified in [22, §10].
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occurs as occurs as occurs as
Tits index of G a 2-index? a 3-index? a 5-index?

q q q q q q qqe e e e e e ee
yes (8) yes yes

q q q q q q qqe e e e yes (−24) no no

q q q q q q qqe e yes no no

q q q q q q qq e e no yes no

q q q q q q qqe yes no no

q q q q q q qq e yes no no

q q q q q q qq
yes (−248) yes yes

Table 10. Possible Tits indexes for a group of type E8

J3(G) (0, 0) (1, 0) (1, 1)

Tits 3-index of G split q q q q q q qe eq
anisotropic

b(G) 0 nonzero symbol otherwise

Table 11. Possible values for the mod-3 J-invariant of G of type E8, assuming char k = 0 and k
3-special

Flag varieties. Currently there is no concrete description of the flag varieties of E8 available
in the form analogous to the others presented here. However, groups of type E8 can be viewed
as the automorphism group of various algebraic structures as explained in [19] (such as a 3875-
dimensional algebra, for fields of characteristic 6= 2), so the methods of [6] can in principle be
used to give a concrete description of the flag varieties in terms of such structures.
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