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SKIP GARIBALDI AND ALEXANDER S. MERKURJEV

Abstract. The Rost invariant of the Galois cohomology of a simple simply connected
algebraic group over a field F is defined regardless of the characteristic of F , but unfortu-
nately some formulas for it are only known with some hypothesis on the the characteristic.
We improve those formulas by (1) removing the hypothesis on the characteristic and (2)
removing an ad hoc pairing that appears in those formulas. As a preliminary step of
independent interest, we also extend the classification of invariants of quasi-trivial tori
to all fields.

1. Introduction

Cohomological invariants provide an important tool to distinguish elements of Galois
cohomology groups such as H1(F,G) where G is a semisimple algebraic group. In case
G is simple and simply connected there are no non-constant invariants with values in
Hd(∗,Q/Z(d − 1)) for d < 3. For d = 3, modulo constants the group of invariants
H1(∗, G) → H3(∗,Q/Z(2)) is finite cyclic with a canonical generator known as the Rost
invariant and denoted by rG; this was shown by Markus Rost in the 1990s and full details
can be found in [GaMS]. Rost’s theorem raised the questions: How to calculate the Rost
invariant of a class in H1(F,G)? What is a formula for it?

At least for G of inner type An there is an obvious candidate for rG, which is certainly
equal to mrG for some m relatively prime to n+1. The papers [MePT] and [GaQ] studied
the composition

(1.1) H1(F,C)→ H1(F,G)
rG−→ H3(F,Q/Z(2))

for C the center of G, and under some assumptions on char(F ), computed the composition
in terms of the value of m for type A. Eventually the value of m was determined in [GiQ].
The main result is Theorem 1.2, which gives a formula for (1.1) which does not depend
on the type of G nor on char(F ). This improves on the results of [MePT] and [GaQ]
by removing the hypothesis on the characteristic and avoiding the ad hoc type-by-type
arguments used in those papers. We do rely on [GiQ] for the computation of m for type
A, but nothing more.

The strategy is to (1) extend the determination of invariants of quasi-trivial tori from
[MePT] to all fields (see Theorem 3.7), (2) to follow the general outline of [GaQ] to reduce
to the case of type A, and (3) to avoid the ad hoc formulas used in previous work by giving
a formula independent of the Killing-Cartan type of G.
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Specifically, there is a canonically defined element t◦G ∈ H2(F,C◦), where C◦ denotes
the dual multiplicative group scheme of C in a sense defined below, and a natural cup
product H1(F,C)⊗H2(F,C◦)→ H3(F,Q/Z(2)). We prove:

Theorem 1.2. Let G be a semisimple and simply connected algebraic group over a field
F , C ⊂ G the center of G. Let t◦G be the image of the Tits class tG under ρ̂∗ : H2(F,C)→
H2(F,C◦). Then the diagram

H1(F,C)

−t◦G∪ ''

i∗ // H1(F,G)

rG
��

H3(F,Q/Z(2))

commutes, where the cup product map is the one defined in (2.9).

The map ρ̂∗ is deduced from a natural map ρ defined in terms of the root system, see
§5c.

Theorem 1.2 gives a general statement for all invariants H1(∗, G) → H3(∗,Q/Z(2)),
which we state precisely in Theorem 6.4 below.

2. Cohomology of groups of multiplicative type

Let F be a field and M a group scheme of multiplicative type over F . Then M is
uniquely determined by the Galois module M∗ of characters over Fsep. In particular, we
have

M(Fsep) = Hom(M∗, F×sep).

If M is a torus T , then T ∗ is a Galois lattice and we set T∗ = Hom(T ∗,Z). We have

(2.1) T (Fsep) = T∗ ⊗ F×sep.

If M is a finite group scheme C of multiplicative type, we set C∗ := Hom(C∗,Q/Z), so
we have a perfect pairing of Galois modules

(2.2) C∗ ⊗ C∗ → Q/Z.
Write C◦ for the group of multiplicative type over F with the character module C∗. We
call C◦ the group dual to C.

Example 2.3. We write µn for the sub-group-scheme of Gm of n-th roots of unity. The
restriction of the natural generator of G∗m (the identity Gm → Gm) generates µ∗n and
thereby identifies µ∗n with Z/nZ. From which µ∗n = Z/nZ via the pairing (2.2), hence
µ◦n = µn.

The change-of-sites map α : Spec(F )fppf → Spec(F )ét yields a functor

α∗ : Shfppf(F )→ Shét(F )

between the categories of sheaves over F and an exact functor

Rα∗ : D+ Shfppf(F )→ D+ Shét(F )
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between derived categories.
Every group M of multiplicative type can be viewed as a sheaf of abelian groups either

in the étale or fppf topology. We have α∗(M) = M for every group M of multiplicative
type. If M is smooth, we have Riα∗(M) = 0 for i > 0 by [Mi 80, Proof of Theorem 3.9].
It follows that Rα∗(M) = M , hence

(2.4) H i
ét(F,M) = H i

ét(F,Rα∗(M)) = H i
fppf(F,M) for M smooth.

If

1→ C → T → S → 1

is an exact sequence of algebraic groups with C a finite group of multiplicative type and
T and S tori, this sequence is exact in the fppf-topology but not in the étale topology
(unless C is smooth). Applying Rα∗ to the exact triangle

C → T → S → C[1]

in D+ Shfppf(F ), we get an exact triangle

Rα∗(C)→ T (Fsep)→ S(Fsep)→ Rα∗(C)[1]

in D+ Shét(F ) since Rα∗(T ) = T (Fsep) and the same for S. In other words,

(2.5) Rα∗(C) = cone(T (Fsep)→ S(Fsep))[−1].

Recall that Z(1) is the complex in D+ Shét(F ) with only one nonzero term F×sep placed
in degree 1, i.e., Z(1) = F×sep[−1]. Set

C∗(1) := C∗
L
⊗ Z(1), C∗(1) := C∗

L
⊗ Z(1),

where the derived tensor product is taken in the derived category D+ Shét(F ). If T is an
algebraic torus, we write

T∗(1) := T∗
L
⊗ Z(1) = T∗ ⊗ Z(1) = T (Fsep)[−1].

Tensoring the exact sequence

0→ T∗ → S∗ → C∗ → 0

with Z(1) and using (2.1), we get an exact triangle

C∗(1)→ T (Fsep)→ S(Fsep)→ C∗(1)[1].

It follows from (2.5) that

C∗(1) = Rα∗(C)

and therefore,

H i
fppf(F,C) = H i

ét(F,Rα∗(C)) = H i
ét(F,C∗(1)).

Recall that we also have

H i
fppf(F, T ) = H i

ét(F, T ) = H i+1
ét (F, T∗(1)).
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Remark 2.6. There is a canonical isomorphism (see [Me 16, §4c])

C∗(1) ' C(Fsep)⊕ (C∗ ⊗ F×sep)[−1]

The second term in the direct sum vanishes if char(F ) does not divide the order of C∗ or
if F is perfect.

Notation 2.7. To simplify notation we will write H i(F,C) for H i
ét(F,C∗(1)) = H i

fppf(F,C)

and H i(F,C◦) for H i
ét(F,C

∗(1)) = H i
fppf(F,C

◦).

Every C-torsor E over F has a class c(E) ∈ H1(F,C).

Example 2.8. Taking colimits of the connecting homomorphism arising from the se-
quences 1→ Gm → GLd → PGLd → 1 or 1→ µd → SLd → PGLd → 1 — which are exact
in the fppf topology — gives isomorphisms H2(K,Gm) ' Br(K) and H2(K,µn) ' nBr(K)
as in [GiS, 4.4.5]1, which we use.

In view of (2.4) and Notation 2.7, we work in the derived category of étale sheaves as
in, for example, [FK, Appendix A.II]. We use the motivic complex Z(2) of étale sheaves

over F defined in [L 87] and [L 90]. Set Q/Z(2) := Q/Z
L
⊗ Z(2). The complex Q/Z(2)

is the direct sum of two complexes. The first complex is given by the locally constant
étale sheaf (placed in degree 0) the colimit over n prime to char(F ) of the Galois modules
µ⊗2
n := µn ⊗ µn. The second complex is nontrivial only in the case p = char(F ) > 0 and

it is defined as
colim

n
WnΩ2

log[−2]

with WnΩ2
log the sheaf of logarithmic de Rham-Witt differentials (see [Kahn]).

Note that H i(F,Q/Z(2)) ' H i+1(F,Z(2)) for i ≥ 3.
Tensoring (2.2) with Z(2), we get the pairings

C∗(1)
L
⊗ C∗(1)→ Q/Z(2) and

H i(F,C)⊗Hj(F,C◦)→ H i+j(F,Q/Z(2)).(2.9)

If S is a torus over F , we have S∗(1) = S∗ ⊗Gm[−1] = S[−1] and the pairings

S∗ ⊗ S∗ → Z, S∗(1)
L
⊗ S∗(1)→ Z(2) and

H i(F, S)⊗Hj(F, S◦)→ H i+j+2(F,Z(2)) = H i+j+1(F,Q/Z(2))(2.10)

if i+ j ≥ 2.
Let

1→ C → T → S → 1

be an exact sequence with T and S tori and C finite. Dualizing we get an exact sequence
of dual groups

(2.11) 1→ C◦ → S◦ → T ◦ → 1.

1This reference assumes char(F ) does not divide n, because it uses H1 to denote Galois cohomology.
With our notation, their arguments go through with no change.
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We have the homomorphisms

ϕ : S(F )→ H1(F,C), ψ : H2(F,C◦)→ H2(F, S◦).

Proposition 2.12. For every a ∈ S(F ) and b ∈ H2(F,C◦), we have ϕ(a) ∪ b = a ∪ ψ(b)
in H3(F,Q/Z(2)). Here the cup products are taken with respect to the pairings (2.9) and
(2.10) respectively.

Proof. The pairing S∗ ⊗ S∗ → Z extends uniquely to a pairing S∗ ⊗ T ∗ → Q. We have
then a morphism of exact triangles

S∗(1)
L
⊗ S∗(1)

��

// S∗(1)
L
⊗ T ∗(1)

��

// S∗(1)
L
⊗ C∗(1)

s

��

// S∗(1)
L
⊗ S∗(1)[1]

��
Z(2) // Q(2) // Q/Z(2) // Z(2)[1]

and a commutative diagram

H1(F, S∗(1))⊗H2(F,C∗(1))

��

// H1(F, S∗(1))⊗H2(F, S∗(1)[1])

��
H3(F,Q/Z(2)) // H3(F,Z(2)[1])

and therefore, a commutative diagram

H0(F, S)⊗H2(F,C◦)

��

// H0(F, S)⊗H2(F, S◦)

��
H3(F,Q/Z(2)) H3(F,Q/Z(2)).

On the other hand, the composition S∗(1)
L
⊗ C∗(1)→ C∗(1)

L
⊗ C∗(1)→ Q/Z(2) coincides

with s. Therefore, we have a commutative diagram

H1(F, S∗(1))⊗H2(F,C∗(1))

��

// H1(F,C∗(1))⊗H2(F,C∗(1))

��
H3(F,Q/Z(2)) H3(F,Q/Z(2))

and therefore, a diagram

H0(F, S)⊗H2(F,C◦)

��

// H1(F,C)⊗H2(F,C◦)

��
H3(F,Q/Z(2)) H3(F,Q/Z(2)).

The result follows. �
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Remark 2.13. We have used that the diagram

H i(A[a])⊗Hj(B[b]) // H i+j(A[a]⊗B[b])

H i+a(A)⊗Hj+b(B) // H i+j+a+b(A⊗B)

is (−1)ib-commutative for all complexes A and B.

Let A be an étale algebra over F and C a finite group scheme of multiplicative type
over A. Then C ′ := RA/F (C) is a finite group of multiplicative type over F . Moreover,
C ′◦ ' RA/F (C◦) and there are canonical isomorphisms

ι : H i(A,C)
∼→ H i(F,C ′) and ι◦ : H i(A,C◦)

∼→ H i(F,C ′
◦
).

Lemma 2.14. We have ι(x) ∪ ι◦(y) = NA/F (x ∪ y) in H i+j(F,Q/Z(2)) for every x ∈
H i(A,C) and y ∈ Hj(A,C◦).

Proof. The group scheme C ′A is naturally isomorphic to the product C1×C2× · · ·×Cs of
group schemes over A with C1 = C. Let π : C ′A → C be the natural projection. Similarly,
C ′◦ ' C◦1 × C◦2 × · · · × C◦s . Write ε : C◦ → C ′A

◦ for the natural embedding. Then the
inverse of ι coincides with the composition

H i(F,C ′)
res−→ H i(A,C ′A)

π∗−→ H i(A,C)

and ι◦ coincides with the composition

H i(A,C◦)
ε∗−→ H i(A,C ′

◦
A)

NA/F−−−→ H i(F,C ′
◦
).

Since π∗(ι(x)) = x, we have res(ι(x)) = (x, x2, . . . xs) for some xi. On the other hand,
ε∗(y) = (y, 0, . . . , 0), hence

(2.15) res(ι(x)) ∪ ε∗(y) = x ∪ y.
Finally,

ι(x) ∪ ι◦(y) = ι(x) ∪NA/F (ε∗(y))

= NA/F

(
res(ι(x)) ∪ ε∗(y)

)
by the projection formula

= NA/F (x ∪ y) by (2.15). �

Lemma 2.16 (Projection formula). Let f : C → C ′ be a homomorphism of finite group
schemes of multiplicative type. For a ∈ Hm(F,C), the diagram

Hk(F,C ′◦)

f∗

��

∪f∗(a)
// Hk+m(F,Q/Z(2))

Hk(F,C◦)
∪a // Hk+m(F,Q/Z(2))

commutes.
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Proof. The pairing used in the diagram are induced by the pairings C∗ ⊗C∗ → Q/Z and
C ′∗ ⊗ C ′∗ → Q/Z. The (obvious) projection formula for these pairing reads 〈f ∗(x), y〉 =
〈x, f∗(y)〉 for x ∈ C ′∗ and y ∈ C∗. �

3. Invariants of quasi-trivial tori

3a. Cohomological invariants. For a field F write Hj(F ) for the cohomology group
Hj(F,Q/Z(j−1)), where j ≥ 1 (see [GaMS]). In particular, H1(F ) is the character group
of continuous homomorphisms ΓF → Q/Z and H2(F ) is the Brauer group Br(F ).

The assignment K 7→ Hj(K) is functorial with respect to arbitrary field extensions.
If K ′/K is a finite separable field extension, we have a well-defined norm map NK′/K :
Hj(K ′)→ Hj(K).

The graded group H∗(F ) is a (left) module over the Milnor ring K∗(F ).

Definition 3.1. Let A be a functor from the category of field extensions of F to pointed
sets. A degree d cohomological invariant of A is a collection of maps of pointed sets

ιK : A(K)→ Hd(K)

for all field extensions K/F , functorial in K. The degree d cohomological invariants of
G form an abelian group denoted by Invd(A). If L/F is a field extension, we have a
restriction homomorphism

Invd(A)→ Invd(AL),

where GL is the restriction of G to the category of field extensions of L.
If the functorA factors through the category of groups, we further consider the subgroup

Invdh(A) of Invd(A) consisting of those invariants ι such that ιK is a group homomorphism
for every K.

Example 3.2. If G is an algebraic group over F , we can view G as a functor taking a
field extension K to the group G(K) of K-points of G; in this case we consider Invdh(G).
We have also another functor H1(G) : K → H1(K,G) and we consider Invd(G). If G is
commutative, then H1(K,G) is a group for every K, and we also consider Invdh(H

1(G)).

3b. Residues. Our goal is to prove Theorem 3.7 concerning the group Invdh(T ) for T a
quasi-split torus. Such invariants of order not divisible by char(F ) were determined in
[MePT]. We modify the method from [MePT] so that it works in general. The difficulty is
that the groups Hj(K) do not form a cycle module, because the residue homomorphisms
need not exist.

If K is a field with discrete valuation v and residue field κ(v), write Hj(F )nr,v for the
subgroup of all elements of Hj(F ) that are split by finite separable extensions K/F such
that v admits an unramified extension to K. Note that every element in Hj(F )nr,v of
order not divisible by char(F ) belongs to Hj(F )nr,v.

There are residue homomorphisms (see [GaMS] or [Kato])

∂v : Hj(K)nr,v → Hj−1(κ(v)).
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Example 3.3. Let K = F (t) and let v be the discrete valuation associated with t. Then
κ(v) = F and ∂v(t · hK) = h for all h ∈ Hj−1(F ).

Lemma 3.4. Let K ′/K be a field extension and let v′ be a discrete valuation on K ′

unramified over its restriction v on K. Then the diagram

Hj(K)nr,v

��

∂v // Hj−1(κ(v))

��
Hj(K ′)nr,v′

∂v′ // Hj−1(κ(v′))

commutes.

3c. Invariants of tori. Let A be an étale F -algebra and TA the corresponding quasi-split
torus, i.e.,

TA(K) = (A⊗F K)×

for every field extension K/F . If B is another étale F -algebra, then

TA×B = TA × TB

and
Invdh(T

A×B) ' Invdh(T
A)⊕ Invdh(T

B).

Write A as a product of fields: A = L1 × L2 × · · · × Ls. Set

H i(A) := H i(L1)⊕H i(L2)⊕ · · · ⊕H i(Ls).

For d ≥ 2 define a homomorphism

αA : Hd−1(A)→ Invdh(T
A)

as follows. If h ∈ Hd−1(A), then the invariant αA(h) is defined by

αA(h)(t) = NA⊗K/K(t · hA⊗K) ∈ Hd(K)

for a field extension K/F and t ∈ TA(K) = (A⊗F K)×.

Remark 3.5. In the notation of the previous section, (TA)◦ ' TA, and we have

Hd−1(F, (TA)◦) = Hd−1(F, TA) = Hd−1(A,Gm) = Hd−1(A).

The pairing (2.10) for the torus TA, i = 0, and j = 2,

A× ⊗H2(A) = TA(F )⊗H2(F, (TA)◦)→ H3(F ),

takes t ⊗ h to NA/F (t ∪ hA) = αA(h)(t). In other words, the map αA coincides with the
map

H2(F, (TA)◦)→ Inv3
h(T

A)

given by the cup product.

Note that every element h ∈ Hd−1(A) is split by an étale extension of A, hence the
invariant αA(h) vanishes when restricted to Fsep.

Question 3.6. Do all invariants in Invdh(T
A) vanish when restricted to Fsep?
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The answer is “yes” when char(F ) = 0. Indeed, for any prime p 6= char(F ) and for F
separably closed, the zero map is the only invariant TA(∗)→ Hd(∗,Qp/Zp(d− 1)) that is
a homomorphism of groups [Me 99, Prop. 2.5].

The main result of this section is:

Theorem 3.7. The sequence

0→ Hd−1(A)
αA

−→ Invdh(T
A)

res−→ Invdh(T
A
sep)

is exact.

That is, defining Ĩnv
d

h(T
A) := ker res, we claim that αA : Hd−1(A)

∼→ Ĩnv
d

h(T
A).

The torus TA is embedded into the affine space A(A) as an open set. Let ZA be the
closed complement A(A) \ TA and let SA be the smooth locus of ZA (see [MePT]). Then
SA is a smooth scheme over A. In fact, SA is a quasi-split torus over A of the A-algebra
A′ such that A × A′ ' A ⊗F A. We have A = L1 × L2 × · · · × Ls, where the Li’s are
finite separable field extensions of F , and the connected components of SA (as well as the
irreducible components of ZA) are in 1-1 correspondence with the factors Li. Let vi for
i = 1, 2, . . . , s be the discrete valuation of the function field F (TA) corresponding to the
i-th connected component Si of SA, or equivalently, to the i-th irreducible component Zi
of ZA. The residue field of vi is equal to the function field F (Zi) = F (Si). We then have
the residue homomorphisms

∂i : Hd(F (TA))nr,vi → Hd−1(F (Zi)) = Hd−1(F (Si)).

Write H̃d(F (TA)) for the kernel of the natural homomorphismHd(F (TA))→ Hd(Fsep(TA)).

Since every extension of the valuation vi to Fsep(TA) is unramified, we have H̃d(F (TA)) ⊂
Hd(F (TA))nr,vi for all i. Write F (SA) for the product of F (Si) over all i. The sum of the

restrictions of the maps ∂i on H̃d(F (TA)) yields a homomorphism

∂A : H̃d(F (TA))→ Hd−1(F (SA)).

Applying u ∈ Ĩnv
d

h(T
A) to the generic element ggen of TA over the function field F (TA),

we get a cohomology class u(ggen) ∈ Hd(F (TA)). By assumption on u, we have u(ggen) ∈
H̃d(F (TA)). Applying ∂A, we get a homomorphism

βA : Ĩnv
d

h(T
A)→ Hd−1(F (SA)), u 7→ ∂A(u(ggen)).

If B is another étale F -algebra. We have (see [MePT])

SA×B = SA × TB + TA × SB.

In particular, F (SA) ⊂ F (SA×B) ⊃ F (SB). Lemma 3.4 then gives:
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Lemma 3.8. The diagram

Ĩnv
d

h(T
A)⊕ Ĩnv

d

h(T
B)

βA⊕βB

// Hd−1(F (SA))⊕Hd−1(F (SB))

��
Ĩnv

d

h(T
A×B)

βA×B

// Hd−1(F (SA×B))

commutes.

Recall that SA is a smooth scheme over A with an A-point. It follows that A ⊂ F (SA)
and the natural homomorphism

Hj(A)→ Hj(F (SA))

is injective by [GaMS, Proposition A.10]. We shall viewHj(A) as a subgroup ofHj(F (SA)).
Let A = L1×L2×· · ·×Ls be the decomposition of an étale F -algebra A into a product

of fields. The height of A is the maximum of the degrees [Li : F ]. The height of A is 1 if
and only if A is split. The following proposition will be proved by induction on the height
of A.

Proposition 3.9. The image of the homomorphism βA is contained in Hd−1(A).

Proof. By Lemma 3.8 we may assume that A = L is a field. If L = F , we have SA =
SpecF , so A = F (SA) and the statement is clear.

Suppose L 6= F . The algebra L is a canonical direct factor of L ⊗F L. It follows that
the homomorphism βL is a direct summand of βL⊗L. Since the height of the L-algebra
L⊗F L is less than the height of A, by the induction hypothesis, Im(βL⊗L) ⊂ Hd−1(L⊗L).
It follows that Im(βL) ⊂ Hd−1(L). �

It follows from Proposition 3.9 that we can view βA as a homomorphism

βA : Ĩnv
d

h(T
A)→ Hd−1(A).

We will show that αA and βA are isomorphisms inverse to each other. First consider
the simplest case.

Lemma 3.10. The maps αA and βA are isomorphisms inverse to each other in the case
A = F .

Proof. If A = F , we have TA = Gm. The generic element ggen is equal to t ∈ F (t)× =
F (Gm). Let h ∈ Hd−1(A) = Hd−1(F ). Then the invariant αF (h) takes t to t · h ∈
H̃d(F (t)). By example 3.3, βF (αF (h)) = ∂v(t ·h) = h, i.e., the composition βF ◦αF is the
identity. It suffices to show that αF is surjective.

Take u ∈ Ĩnv
d

h(Gm). We consider t as an element of the complete field L := F ((t)) and
let x = uL(t) ∈ Hd(L). By assumption, x is split by the maximal unramified extension
L′ := Fsep((t)) of L. By a theorem of Kato [Kato],

x ∈ Ker
(
Hd(L)→ Hd(L′)

)
= Hd(F )⊕ t ·Hd−1(F ),
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i.e., x = h′L + t · hL for some h′ ∈ Hd(F ) and h ∈ Hd−1(F ).
Let K/F be a field extension. We want to compute uK(a) ∈ Hd(K) for an element

a ∈ K×. Consider the field homomorphism ϕ : L → M := K((t)) taking a power series
f(t) to f(at). By functoriality,

uM(at) = uM(ϕ(t)) = ϕ∗(uL(t)) = ϕ∗(x) = ϕ∗(h
′
L + t · hL) = h′M + (at) · hM ,

therefore,

uM(a) = uM(at)− uM(t) = (h′M + (at) · hM)− (h′M + t · hM) = a · hM .

It follows that u(a) = a · hK since the homomorphism Hd(K) → Hd(M) is injective by
[GaMS, Proposition A.9]. We have proved that u = αA(h), i.e., αA is surjective. �

Lemma 3.11. The homomorphism βA is injective.

Proof. The proof is similar to the proof of Proposition 3.9. We induct on the height
of A. The right vertical homomorphism in Lemma 3.8 is isomorphic to the direct sum
of the two homomorphisms Hd−1(F (SA)) → Hd−1(F (SA × TB)) and Hd−1(F (SB)) →
Hd−1(F (TA× SB)). Both homomorphisms are injective by [GaMS, Proposition A.10]. It
follows from Lemma 3.8 that we may assume that A = L is a field.

The case L = F follows from Lemma 3.10, so we may assume that L 6= F . The
homomorphism βL is a direct summand of βL⊗L. The latter is injective by the induction
hypothesis, hence so is βL. �

Lemma 3.12. The composition βA ◦ αA is the identity.

Proof. We again induct by the height of A. By Lemma 3.8 that we may assume that
A = L is a field.

The case L = F follows from Lemma 3.10, so we may assume that L 6= F . The
homomorphisms αL and βL are direct summands of αL⊗L and βL⊗L respectively. The
composition βL⊗L ◦αL⊗L is the identity by the induction hypothesis, hence βA ◦αA is also
the identity. �

It follows from Lemma 3.11 and Lemma 3.12 that αA and βA are isomorphisms inverse
to each other. This completes the proof of Theorem 3.7.

4. Invariants of groups of multiplicative type

In this section, C denotes a group of multiplicative type over F such that there exists
an exact sequence

1→ C → T → S → 1

such that S and T are quasi-trivial tori. For example, this holds if C is the center of a
simply connected semisimple group G over F , such as µn. In that case, C is isomorphic
to the center of the quasi-split inner form Gq of G, and we take T to be any quasi-trivial
maximal torus in Gq. Then T ∗ is the weight lattice Λw and S∗ ' Λr, where the Galois
action permutes the fundamental weights and simple roots respectively.
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Proposition 4.1. Every invariant in Ĩnv
3

h(H
1(C)) is given by the cup product via the

pairing (2.9) with a unique element in H2(F,C◦).

Proof. SinceH1(K,T ) = 1 for everyK, the connecting homomorphism S(K)→ H1(K,C)
is surjective for every K and therefore the natural homomorphism

Inv3
h(H

1(C))→ Inv3
h(S)

is injective.
Consider the diagram

H2(F,C◦)

��

� � // H2(F, S◦)

o
��

// H2(F, T ◦)

o
��

Ĩnv
3

h(H
1(C)) �

� // Ĩnv
3

h(S) // Ĩnv
3

h(T ),

where the vertical homomorphisms are given by cup products and the top row comes from
the exact sequence (2.11); it is exact since H1(K,T ◦) = 1 for every field extension K/F .

The bottom row comes from applying Ĩnv
3

h to the sequence T (K)→ S(K)→ H1(K,C);
it is a complex. The vertical arrows are cup products, and the middle and right ones are
isomorphisms by Theorem 3.7 and Remark 3.5. The diagram commutes by Proposition
2.12. By diagram chase, the left vertical map is an isomorphism. �

Note that the group H2(F, T ) is a direct sum of the Brauer groups of finite extensions
of F . Therefore, we have the following, a coarser version of [Ga 12, Prop. 7]:

Lemma 4.2. The homomorphism H2(F,C) →
∐

Br(K), where the direct sum is taken
over all field extensions K/F and all characters of C over K, is injective.

Remark 4.3. The group G becomes quasi-split over the function field F (X) of the variety
X of Borel subgroups of G, so F (X) kills tG. But the kernel of H2(F,C)→ H2(F (X), C)
need not be generated by tG, as can be seen by taking G of inner type Dn for n divisible
by 4.

5. Root system preliminaries

5a. Notation. Let V be a real vector space and R ⊂ V a root system (which we assume
is reduced). Write Λr ⊂ Λw for the root and weight lattices respectively. For every root
α ∈ R, the reflection sα with respect to α is given by the formula

(5.1) sα(x) = x− α∨(x) · α,
for every x ∈ V , where α∨ ∈ V ∗ := HomR(V,R) is the coroot dual to α. Write R∨ ⊂ V ∗

for the dual root system and Λ∨r ⊂ Λ∨w for the corresponding lattices. We have

Λ∨r = (Λw)∗ := Hom(Λw,Z) and Λ∨w = (Λr)
∗.

The Weyl group W of R is a normal subgroup of the automorphism group Aut(R)
of the root system R. The factor group Aut(R)/W is isomorphic to the automorphism
group Aut(Dyn(R)) of the Dynkin diagram of R. There is a unique Aut(R)-invariant
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scalar product ( , ) on V normalized so that square-length dα∨ := (α, α) of short roots in
every irreducible component of R is equal to 1. The formula (5.1) yields an equality

α∨(x) =
2(α, x)

(α, α)

for all x ∈ V and α ∈ R.
We may repeat this construction with the dual root system R∨, defining (, )∨ on V ∗ so

that the square-length dα := (α∨, α∨)∨ is 1 for short coroots α∨ (equivalently, long roots
α).

5b. The map ϕ.

Proposition 5.2. There is a unique R-linear map ϕ : V ∗ → V such that ϕ(α∨) = α
for all short α∨. Furthermore, ϕ is Aut(R)-invariant, ϕ(α∨) = dαα for all α∨ ∈ R∨,
ϕ(Λ∨w) ⊆ Λw, and ϕ(Λ∨r ) ⊆ Λr. Analogous statements hold for ϕ∨ : V → V ∗. If R is
irreducible, then ϕϕ∨ : V ∗ → V ∗ and ϕ∨ϕ : V → V are multiplication by dα for α a short
root.

Proof. Define ϕ∨ by 〈ϕ∨(x), y〉 = 2(x, y) for x, y ∈ V and ϕ by 〈x′, ϕ(y′)〉 = 2(x′, y′)∨ for
x′, y′ ∈ V ∗. We have

〈ϕ∨(α), x〉 = 2(α, x) = (α, α) · α∨(x) = dα∨ · α∨(x),

hence ϕ∨(α) = dα∨ · α∨. And similarly for ϕ. For uniqueness of ϕ and ϕ∨, it suffices to
note that the short roots generate V ∗, which is obvious because they generate a subspace
that is invariant under the Weyl group.

Let x ∈ Λw. By definition,

Z 3 α∨(x) =
2(x, α)

(α, α)

for all α ∈ R. It follows that 〈ϕ∨(x), α〉 = 2(x, α) ∈ Z since (α, α) ∈ Z. Therefore,
ϕ(x) ∈ Λ∨w.

For each root β ∈ R, ϕ∨ϕ(β∨) = dβdβ∨β
∨ and similarly for ϕϕ∨. As R is irreducible,

either all roots have the same length (in which case dβdβ∨ = 1) or there are two lengths
and β and β∨ have different lengths (in which case dβdβ∨ is the square-length of a long
root); in either case the product equals dα as claimed. �

Remark 5.3. If the root system R is simply laced, then ϕ gives isomorphisms from V ∗,
Λ∨w, and Λ∨r to V , Λw, and Λr respectively that agree with the canonical bijection R∨ → R
defined by α∨ ↔ α.

Example 5.4. For α∨ a simple coroot, we write f∨α for the corresponding fundamental
dominant weight of R∨. Consider an element x′ =

∑
xββ

∨ where β ranges over the simple
roots. As (f∨α , β

∨)∨ = 1
2
〈f∨α , β〉(β∨, β∨)∨, we have (f∨α , x

′)∨ = xα(f∨α , α
∨)∨ = 1

2
dαxα. That

is, 〈ϕ(f∨α ), x′〉 = dαxα = 〈dαfα, x′〉 for all x′, and we conclude that ϕ(f∨α ) = dαfα.

Remark 5.5. Let q ∈ S2(Λw)W be the only quadratic form on Λ∨r that is equal to 1 on
every short coroot in every component of R∨. It is shown in [Me 16, Lemma 2.1] that the
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polar form p of q in Λw ⊗Λw in fact belongs to Λr ⊗Λw. Then the restriction of ϕ on Λ∨w
coincides with the composition

Λ∨w
id⊗p−−→ Λ∨w ⊗ (Λr ⊗ Λw) = (Λ∨w ⊗ Λr)⊗ Λw → Λw.

5c. The map ρ. Write ∆ := Λw/Λr and ∆∨ := Λ∨w/Λ
∨
r . Note that ∆ and ∆∨ are dual

to each other with respect to the pairing

∆⊗∆∨ → Q/Z.
The group W acts trivially on ∆ and ∆∨, hence ∆ and ∆∨ are Aut(Dyn(R))-modules.

The homomorphism ϕ yields an Aut(R)-equivariant homomorphism

ρ : ∆∨ → ∆.

The map ρ is an isomorphism if R is simply laced (because ϕ is an isomorphism) or if
Λw = Λr. Similarly, ρ = 0 iff ϕ(Λ∨w) ⊆ Λr, iff p ∈ Λr ⊗ Λr.

Example 5.6. Suppose R has type Cn for some n ≥ 3. Consulting the tables in [B],
f∨n , the fundamental weight of R∨ dual to the unique long simple root αn, is the only
fundamental weight of R∨ not in the root lattice. As αn is long, dαn = 1, so ϕ(f∨n ) = fn,
which belongs to Λr iff n is even. That is, ρ = 0 iff n is even; for n odd, ρ is an
isomorphism.

Example 5.7. Suppose R has type Bn for some n ≥ 2. For the unique short simple root
αn, dαn = 2, and ϕ(f∨n ) = 2fn is in Λr. For 1 ≤ i < n, ϕ(f∨i ) = fi ∈ Λr. We find that
ρ = 0 regardless of n.

Thus we have determined ker ρ for every irreducible root system.

Example 5.8. Suppose R is irreducible and char(F ) = dα for some short root α. Then
for G, G∨ simple simply connected with root system R, R∨ respectively, there is a “very
special” isogeny π : G → G∨. The restriction of π to a maximal torus in G induces a
Z-linear map on the cocharacter lattices π∗ : Λ∨r → Λr, which, by [CGP, Prop. 7.1.5] or
[S, 10.1], equals ϕ.

In case R = Bn, π is the composition of the natural map G = Spin2n+1 → SO2n+1

with the natural (characteristic 2 only) map SO2n+1 → Sp2n. As π vanishes on the center
of G, it follows that ρ = 0 as in Example 5.7. Similarly, in case R = Cn, one can
recover Example 5.6 by noting that the composition π : G = Sp2n → Spin2n+1 with the
spin representation Spin2n+1 ↪→ GL2n is the irreducible representation of G with highest
weight fn by [S, §11].

Example 5.9. For R = An−1, define τ : ∆
∼→ Z/nZ via τ(f1) = 1/n ∈ Q/Z. As

〈f1, f
∨
1 〉 = (n − 1)/n ∈ Q, defining τ∨ : ∆∨

∼→ Z/nZ via τ∨(f∨1 ) = −1/n ∈ Q/Z gives a
commutative diagram

∆⊗∆∨
〈 , 〉

//

τ⊗τ∨ o
��

Q/Z

Z/nZ⊗ Z/nZ
natural

88
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i.e., τ∨ is the isomorphism induced by τ and the natural pairings. Furthermore, although
ρ is induced by the canonical isomorphism R∨ ' R, the previous discussion shows that
the diagram

(5.10) ∆∨
ρ //

τ∨ o
��

∆

τ o
��

Z/nZ −1 // Z/nZ

commutes, where the bottom arrow is multiplication by −1.
(The action of Aut(R) on ∆ interchanges f1 and fn−1. Defining instead τ(−f1) =

τ(fn−1) = 1/n, also gives the same commutative diagram (5.10). That is, the commuta-
tivity of (5.10) is invariant under Aut(R).)

6. Statement of the main result

6a. The map ρ. Let G be a simply connected semisimple group with root system R.
Let C be the center of G. Then C∗ = Λw/Λr = ∆ and C∗ = Λ∨w/Λ

∨
r = ∆∨, and we get

from §5c a homomorphism

ρ = ρG : C∗ → C∗

of Galois modules. Therefore, we have a group homomorphism

ρ̂ = ρ̂G : C → C◦.

Note that ρ̂ is an isomorphism if R is simply laced.

6b. The Tits class. Let G be a simply connected group over F with center C. Write
tG for the Tits class tG ∈ H2(F,C). By definition, tG = −∂(ξG), where

∂ : H1(F,G/C)→ H2(F,C)

is the connecting map for the exact sequence 1 → C → G → G/C → 1 and ξG ∈
H1(F,G/C) is the unique class such that the twisted group ξG is quasi-split.

6c. Rost invariant for an absolutely simple group. Let G be a simply connected
group over F . Recall (see [GaMS]) that, for G absolutely simple, Rost defined an invariant
rG ∈ Inv3(H1(G)) called the Rost invariant, i.e., a map

rG : H1(F,G)→ H3(F,Q/Z(2))

that is functorial in F .

Lemma 6.1. If G is an absolutely simple and simply connected algebraic group, then
o(rG) · tG = 0.

Proof. The order o(rG) of rG is calculated in [GaMS], and in each case it is a multiple of
the order of tG. �
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As mentioned in [Gi, §2.3], there are several definitions of the Rost invariant that may
differ by a sign. In [GiQ], Gille and Quéguiner proved that for the definition of the Rost
invariant rG they choose, in the case G = SL1(A) for a central simple algebra A of degree n
over F , the value of rG on the image of the class aF×n ∈ F×/F×n = H1(F, µn) in H1(F,G)
is equal to (a) ∪ [A] if n is not divisible by char(F ) and to −(a) ∪ [A] if n is a power of
p = char(F ) > 0. Therefore, we normalize the Rost invariant by multiplying the p-primary
component of the Rost invariant (of all groups) by −1 in the case p = char(F ) > 0.

6d. The main theorem. For G semisimple and simply connected over F , there is an
isomorphism

(6.2) ψ : G
∼→

n∏
i=1

RFi/F (Gi),

where the Fi are finite separable extensions of F and Gi is an absolutely simple and
simply connected Fi-group. The product of the corestrictions of the rGi

(in the sense of
[GaMS, p. 34]) is then an invariant of H1(G), which we also denote by rG and call the
Rost invariant of G. The map ψ identifies the center C of G with

∏
iRFi/F (Ci) for Ci the

center of Gi, and the Tits class tG ∈ H2(F,C) with
∑
tGi
∈
∑
H2(Fi, Ci).

The composition rG ◦ i∗ is a group homomorphism by [MePT, Corollary 1.8] or [Ga 01,
Lemma 7.1]. That is, the composition rG◦i∗ in Theorem 1.2 taken over all field extensions
of F can be viewed not only as an invariant of H1(C), but as an element of Inv3

h(H
1(C)

as in Definition 3.1. Over a separable closure of F , the inclusion of C into G factors
through a maximal split torus and hence this invariant is trivial by Hilbert Theorem 90.
By Proposition 4.1 the composition is given by the cup product with a unique element in
H2(F,C◦). We will prove Theorem 1.2, which says that this element is equal to −t◦G.

6e. Alternative formulation. Alternatively, we could formulate the main theorem as
follows. The group of invariants Inv3(H1(G)) is a sum of n cyclic groups with generators
(the corestrictions of) the rGi

’s, and in view of Lemma 6.1 we may define a homomorphism

(6.3) Inv3(H1(G))→ H2(F,C) via
∑

nirGi
7→
∑
−nitGi

.

Theorem 6.4. For every invariant s : H1(∗, G)→ H3(∗,Q/Z(2)), the composition

H1(∗, C)→ H1(∗, G)→ H3(∗,Q/Z(2))

equals the cup product with the image of s under the composition

Inv3(H1(G))→ H2(F,C)→ H2(F,C◦).

This will follow immediately from the main theorem, which we will prove over the
course of the next few sections.
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7. Rost invariant of transfers

The following statement is straightforward.

Lemma 7.1. Let A be an étale F -algebra and G a simply connected semisimple group
scheme over A, C the center of G. Then C ′ := RA/F (C) is the center of G′ := RA/F (G)
and C ′◦ ' RA/F (C◦), and the diagram

H i(A,C)

o
��

ρ̂∗G // H i(A,C◦)

o
��

H i(F,C ′)
ρ̂∗
G′ // H i(F,C ′◦)

commutes.

Lemma 7.2. Set C ′ := RA/F (C) and G′ := RA/F (G). Then the image of tG under the

isomorphism H2(A,C)
∼→ H2(F,C ′) is equal to tG′.

Proof. The corestriction of a quasi-split group is quasi-split. �

Lemma 7.3. Let G be a simply connected semisimple algebraic group scheme over an
étale F -algebra A. If Theorem 1.2 holds for G, then it also holds for RA/F (G).

Proof. Let C be the center of G and G′ := RA/F (G). The group C ′ := RA/F (C) is the
center of G′. Let x ∈ H1(A,C) and let x′ ∈ H1(F,C ′) be the image of x under the

isomorphism ν : H1(A,C)
∼→ H1(F,C ′). We have

rG′(i
′∗(x′)) = rG′(ν(i∗(x)))

= NA/F (rG(i∗(x)) by [GaMS, Proposition 9.8]

= NA/F (−t◦G ∪ x) by Theorem 1.2 for x

= −t◦G′ ∪ x′ by Lemmas 2.14, 7.1 and 7.2. �

If Theorem 1.2 holds for semisimple groups G1 and G2, then it also holds for the group
G1 ×G2. Combining this with Lemma 7.3, reduces the proof of Theorem 1.2 to the case
where G is absolutely almost simple.

8. Rost invariant for groups of type A

In this section, we will prove Theorem 1.2 for G absolutely simple of type An−1 for each
n ≥ 2.

8a. Inner type. Suppose G has inner type. Then there is an isomorphism ψ : SL1(A)
∼→

G, where A is a central simple algebra of degree n over F . The map ψ restricts to an
isomorphism µn

∼→ C, identifying C∗ with Z/nZ, and induces ψ◦ : C◦
∼→ µn. We find a
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commutative diagram

(8.1)

H2(F,C◦)⊗H1(F,C) −−−→ H3(F,Q/Z(2))

ψ◦⊗ψ−1

y ∥∥∥
H2(F, µn)⊗H1(F, µn) −−−→ H3(F,Q/Z(2))

where the top and bottom arrows are the cup product from (2.9).
The connecting homomorphism arising from the Kummer sequence 1 → µn → Gm →

Gm → 1 gives an isomorphism H1(K,µn) ' K×/K×n for every extension K/F . For each
field extension K/F , the isomorphism ψ identifies the map H1(K,C) → H1(K,G) with
the obvious map K×/K×n = H1(K,µn) → H1(K,SL1(A)) = K×/Nrd(A×K). Further,
ψ−1(tG) ∈ H2(K,µn) is the Brauer class [A] of A as in [KMRT, pp. 378, 426]. By Example

5.9, the composition H1(F, µn)
ψ−→ H1(F,C)

ρ̂∗−→ H1(F,C◦)
ψ◦−→ H1(F, µn) is multiplication

by −1 and in particular [A] 7→ tG 7→ t◦G 7→ −[A]. That is, Theorem 1.2 claims that the
diagram

(8.2) H1(K,µn)

[A]⊗
��

ψ−1

// H1(K,C) // H1(K,G)

rG
��

H2(K,µn)⊗H1(K,µn) // H3(K,Q/Z(2))

commutes, where the bottom arrow is the same as in (8.1).
Let p be a prime integer and write m for the largest power of p dividing n. Both maps

H1(K,µn) → H3(K,Q/Z(2)) in (8.2) are group homomorphisms, so it suffices to verify
Theorem 1.2 on each p-primary component rG(x)p of the Rost invariant with values in
Qp/Zp(2). In the case where p does not divide char(F ), the commutativity of (8.2) is part
of [GiQ, Theorem 1.1]. (Note that the definition of cup product used in [GiQ], the one
from [GiS, §3.4], is the same as (8.1), cf. [FK, pp. 302, 303].)

Now let p = char(F ) > 0. Consider the sheaf νm(j) in the étale topology over F defined
by νm(j)(L) = Kj(L)/pmKj(L). The natural morphisms Z(j)→ νm(j)[−j] for j ≤ 2 are
consistent with the products, hence we have a commutative diagram

(Z/mZ)(1)
L
⊗ (Z/mZ)(1)

o
��

// (Z/mZ)(2)

o
��

νm(1)[−1]⊗ νm(1)[−1] // νm(2)[−2].

Therefore, we have a commutative diagram

H2(F, µm)⊗H1(F, µm)

o
��

// H3(F,Z/pmZ(2))

o
��

H1(F, νm(1))⊗H0(F, νm(1)) // H1(F, νm(2))
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(see Remark 2.13 after Proposition 2.12). The bottom arrow is given by the cup product
map

mBr(F )⊗ (F×/F×m)→ H3(F,Q/Z(2))

(see [GiQ, 4D]). It is shown in [GiQ, Theorem 1.1] that the p-component of the Rost
invariant of G is given by the formula

rG(x)p = [A]p ∪ (x) ∈ H3(K,Qp/Zp(2))

for every x ∈ K×. (The formula in [GiQ] contains an additional minus sign, but it does
not appear here due to the adjustment in the definition of rG in §6c.) This completes the
proof of Theorem 1.2 for groups of inner type A.

8b. Outer type. Now suppose that G has outer type An−1. There is an isomorphism
ψ : G

∼→ SU(B, τ), where B is a central simple algebra of degree n over a separable
quadratic field extension K/F with an involution τ of the second kind (τ restricts to a
nontrivial automorphism of K/F ). The map ψ identifies C with µn,[K], and C = C◦.

Suppose first that n is odd. Since GK ' SL1(B), the theorem holds over K. As K
has degree 2 over F and C has odd exponent, the natural map H1(F,C)→ H1(K,C) is
injective, hence the theorem holds over F by the following general lemma.

Lemma 8.3. Let L1, L2, . . . , Ls be field extensions of F such that the natural homomor-
phism H2(F,C) →

∏
iH

2(Li, C) is injective. If Theorem 1.2 holds for G over all fields
Li, then it also holds over F .

Proof. The left vertical map in Theorem 1.2 is multiplication by some element h ∈
H2(F,C◦). We need to show that h = −t◦G. This equality holds over all fields Li,
hence it holds over F by the injectivity assumption. �

So we may assume that n is even. Then H1(F,C) is isomorphic to a factor group of
the group of pairs (a, z) ∈ F× ×K× such that NK/F (z) = an and H2(F,C) is isomorphic
to a subgroup of Br(F )⊕ Br(K) of all pairs (v, u) such that vK = mu and NK/F (u) = 0,
see [MePT, pp. 795, 796].

Suppose that B is split; we follow the argument in [KMRT, 31.44]. Then SU(B, τ) =
SU(h), where h is a hermitian form of trivial discriminant on a vector K-space of dimen-
sion n for the quadratic extension K/F . Let q(v) := h(v, v) be the associated quadratic
form on V viewed as a 2n-dimensional F -space. The quadratic form q is nondegenerate,
and we can view SU(h) as a subgroup of H := Spin(V, q). The Dynkin index of G in

H is 1, hence the the composition H1(K,G) → H1(K,H)
rH−→ H3(K) equals the Rost

invariant of G. Then rH is given by the Arason invariant, which has order 2. A computa-
tion shows that the image of the pair (a, z) representing an element x ∈ H1(F,C) under
the composition

H1(F,C)→ H1(F,G)
rG−→ H3(F )

coincides with [D] ∪ x, where D is the class of the discriminant algebra of h. On the
other hand, [D] ∪ x coincides with the cup product of x with the Tits class tG = −t◦G
represented by the pair ([D], 0) in H2(F,C◦), proving Theorem 1.2 in this case.
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Now drop the assumption that B is split. As for the n odd case, the theorem holds
over K. Note that there is an injective map H2(F,C) → Br(F ) ⊕ Br(K). Let X =
RK/F (SB(B)). By [MeT, 2.4.6], the map Br(F ) → Br(F (X)) is injective, hence the
natural homomorphism

H2(F,C)→ H2(F,CF (X))⊕H2(F,CK)

is injective. The theorem holds over K and by the preceding paragraph the theorem holds
over F (X). Therefore, by Lemma 8.3, the theorem holds over F .

9. Conclusion of the proof of Theorem 1.2

Choose a system of simple roots Π of G. Write Πr for the subset of Π consisting of all
simple roots whose fundamental weight belongs to Λr and let Π′ := Π \Πr. Inspection of
the Dynkin diagram shows that all connected component of Π′ have type A.

Every element of Πr is fixed by every automorphism of the Dynkin diagram, hence is
fixed by the ∗-action of the absolute Galois group of F on Π. It follows that the variety
X of parabolic subgroups of Gsep of type Π′ is defined over F . By [MeT], the kernel
of the restriction map Br(K) → Br(K(X)) for every field extension K/F is generated
by the Tits algebras associated with the classes in C∗ of the fundamental weights fα
corresponding to the simple roots α ∈ Πr. But fα ∈ Λr, so these Tits algebras are split
[T 71], hence the restriction map Br(K) → Br(K(X)) is injective and, by Lemma 4.2,
the natural homomorphism H2(F,C) → H2(F (X), C) is injective. In view of Lemma
8.3, it suffices to prove Theorem 1.2 over the field F (X), i.e., we may assume that G
has a parabolic subgroup of type Π′. The Levi subgroup G′ of that parabolic is simply
connected with Dynkin diagram Π′, and its center C ′ contains C [GaQ, Prop. 5.5]. Write
j for the embedding homomorphism C → C ′ and j◦ for the dual C ′◦ → C◦.

Let G′ =
∏

iG
′
i with Gi simply connected simple groups, C =

∏
Ci, where Ci is the

center of Gi, Π′i ⊂ Π the system of simple roots of Gi. Write j◦i for the composition
C ′◦i → C ′◦ → C◦.

Lemma 9.1. The map j∗i : H2(F,C)→ H2(F,C ′i) takes the Tits class tG to tG′i.

Proof #1. It suffices to check that j∗(tG) = tG′ , for the projection H2(F,C ′)→ H2(F,C ′i)
sends tG′ 7→ tG′i .

There is a rank |Πr| split torus S in G whose centralizer is S · G′. Arguing as in
Tits’s Witt-type Theorem [T 66, 2.7.1, 2.7.2(d)], one sees that the quasi-split inner form
of G is obtained by twisting G by a 1-cocycle γ with values in CG(S)/C, equivalently, in
G′/C. Clearly, twisting G′ by γ gives the quasi-split inner form of G′. The Tits class tG is
defined to be −∂G(γ) where ∂G is the connecting homomorphism H1(F,G/C)→ H2(F,C)
induced by the exact sequence 1 → C → G → G/C → 1 and similarly for G′ and C ′.
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The diagram

H1(F,G′/C) //

��

H1(F,G/C)
∂G // H2(F,C)

j∗

��
H1(F,G′/C ′)

∂G′ // H2(F,C ′)

commutes trivially, so j∗(tG) = j∗(−∂G(γ)) = −∂G′(γ) = tG′ as claimed. �

Proof #2. For each χ ∈ T ∗, define F (χ) to be the subfield of Fsep of elements fixed by
the stabilizer of χ under the Galois action. Note that because G is absolutely almost
simple, the ∗-action fixes Πr elementwise, F (χ) equals the field extension F (χ|T ′) defined
analogously for χ ∈ (T ′)∗. The diagram

H2(F,C)
j∗ //

χ|C

''

H2(F,C ′)

χ|C′
��

H2(F (χ),Gm)

commutes. Now χ|C′(tG′ − j∗(tG)) = χ|C′(tG′)− χ|C(tG), which is zero for all χ ∈ T ∗ by
[T 71, §5.5]. As

∏
χ∈(T ′)∗ χ|C′ is injective by [Ga 12, Prop. 7], tG′ = j∗(tG) as claimed. �

The diagram Π′i is simply laced. Write di for the square-length of α∨ ∈ R∨ for α ∈ Π′i.

Lemma 9.2. The homomorphism ρ̂G : C → C◦ coincides with the composition

C
j−→ C ′

ρ̂G′−−→ C ′◦ =
∏
i

C ′◦i

∏
i(ji
◦)di

−−−−−→ C◦,

where ji is the composition C → C ′ → C ′i.

Proof. For every simple root α ∈ Π write fα for the corresponding fundamental weight.
Write Λ′r and Λ′w for the root and weight lattices respectively of the root system R′ of G′.
Let

Φ := {fα | α ∈ Πr}.
Then Φ is a Z-basis for the kernel of the natural surjection Λw → Λ′w. If α ∈ Π′, we write
α′ for the image of α and f ′α for the image of fα under this surjection. All α′ (respectively,
f ′α) form the system of simple roots (respectively, fundamental weights) of R′. If α ∈ Π′,
the image α′∨ of α∨ under the inclusion Λ′r

∨ ↪→ Λr
∨ is a simple coroot of R′.

If V is the real vector space of R, then R′ ⊂ V ′ := V/ span(Φ) and R′∨ ⊂ V ′∗ ⊂ V ∗.
Let x ∈ Λ∨w, i.e., 〈x, α〉 ∈ Z for all α ∈ Π. Since Φ ⊂ Λr, we have aα := 〈x, fα〉 ∈ Z for
all α ∈ Πr. Then the linear form x′ := x −

∑
α∈Πr

aαα
∨ vanishes on the subspace of V

spanned by Φ, hence x′ ∈ Λ′w
∨. We then have a well defined homomorphism

(9.3) s : Λ∨w → Λ′w
∨
, x 7→ x′.

If α ∈ Π′, then 〈x′, α〉 = 〈x′, α′〉. It follows that if x′ =
∑

α∈Π bαf
∨
α in Λ∨w for bα = 〈x′, α〉 ∈

Z, then x′ =
∑

α∈Π′ bαf
′
α
∨ in Λ′w

∨.
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Since Φ ⊂ Λr, we have a surjective homomorphism

C ′
∗

= Λ′w/Λ
′
r = Λw/ span(Φ,Π′)→ Λw/Λr = C∗

dual to the inclusion of C into C ′. The dual homomorphism

C∗ = Λ∨w/Λ
∨
r → Λ′w

∨
/Λ′r

∨
= C ′∗

is induced by s.
Consider the diagram

Λ∨w

s
��

ϕ // Λw

Λ′w
∨ ϕ′ // Λ′w,

t

OO

where the map t is defined by t(f ′α) = dαfα for all α ∈ Π′ and the maps ϕ and ϕ′ are
defined in Proposition 5.2.

It suffices to prove that Im(t ◦ ϕ′ ◦ s− ϕ) ⊂ Λr.
Consider the other diagram

Λ∨w
ρ // Λw

Λ′w
∨

t∨

OO

ρ′ // Λ′w,

t

OO

where t∨(f ′α
∨) = f∨α for all α ∈ Π′. This diagram is commutative. Indeed,

(ρ ◦ t∨)(f ′α
∨
) = ρ(f∨α ) = dαfα = t(f ′α) = (t ◦ ρ′)(f ′α

∨
),

where the second equality is by Example 5.4. (Recall that the root system R′ of G′ is
simply laced, hence ρ′(f ′α

∨) = f ′α.)
We claim that

(t∨ ◦ s)(x)− x ∈ span(Φ∨) + Λ∨r
for every x ∈ Λ∨w, where Φ∨ := {f∨α | α ∈ Πr}. Indeed, in the notation of (9.3) we have

(t∨ ◦ s)(x)− x = t∨(x′)− x = t∨(x′)− x′ −
∑
α∈Πr

aαα
∨

= t∨
(∑
α∈Π′

bαf
′
α
∨)−∑

α∈Π

bαf
∨
α −

∑
α∈Πr

aαα
∨

= −
∑
α∈Πr

bαf
∨
α −

∑
α∈Πr

aαα
∨ ∈ span(Φ∨) + Λ∨r .

It follows from the claim that

(t ◦ ρ′ ◦ s)(x)− ρ(x) = (ρ ◦ t∨ ◦ s)(x)− ρ(x) = ρ
(
(t∨ ◦ s)(x)− x

)
∈ ρ
(
span(Φ∨) + Λ∨r

)
.

As ρ(f∨α ) = dαfα ∈ Λr for all fα ∈ Φ, this is contained in Λr, proving the claim. �

Lemmas 9.1 and 9.2 yield:
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Corollary 9.4. t◦G =
∑

i di · j◦∗i (t◦G′i
).

Lemma 9.5. The diagram

H1(F,G′)

��

∏
iH

1(F,G′i)∑
di·rG′

i
��

H1(F,G)
rG // H3(F,Q/Z(2))

commutes.

Proof. The composition H1(F,G′i) → H1(F,G)
rG−→ H3(F,Q/Z(2)) coincides with the

k-th multiple of the Rost invariant rG′i , where k is the order of the cokernel of the map
Q(G) → Q(G′i) of infinite cyclic groups generated by positive definite quadratic forms
qG and qG′i on the lattices of coroots normalized so that the forms have value 1 on the
short coroots (see [GaMS]). Recall that all coroots of G′i have the same length, hence qG′i
has value 1 on all coroots of G′i. Therefore, k coincides with di, the square-length of all
coroots of G′i viewed as coroots of G. �

Write each G′i = RLi/F (Hi) for Li a separable field extension of F and Hi a simply
connected absolutely simple algebraic group of type A over Li. Theorem 1.2 is proved for
such groups in §8. By Lemma 7.3, Theorem 1.2 holds for the group G′i and hence for G′.

Let x ∈ H1(F,C) and let y ∈ H1(F,G),
∏
x′i ∈ H1(F,C ′) =

∏
H1(F,C ′i) and

∏
y′i ∈∏

H1(F,G′i) denote its images under the natural maps. We find

rG(y) =
∑
i

di · rG′i(yi) by Lemma 9.5

=
∑
i

di · (−t◦G′i ∪ x
′
i) by the main theorem for all G′i

=
∑
i

di · j◦∗i (−t◦G′i) ∪ x by Lemma 2.16

= −t◦G ∪ x by Corollary 9.4.

This completes the proof of Theorem 1.2.

10. Concrete formulas

The explicit formulas for the restriction of the Rost invariant to the center given in
[MePT] and [GaQ] (for F of good characteristic) relied on an ad hoc formula for a pairing
C ⊗ C → Q/Z(2) depending on the type of G. In this section, we deduce those formulas
from Theorem 1.2; as a consequence we find that those formulas hold regardless of char(F ).

10a. The pairing induced by ρ. The map ρ defines a bilinear pairing ∆∨⊗∆∨ → Q/Z
via

(10.1) ∆∨ ⊗∆∨
id⊗ρ−−→ ∆∨ ⊗∆→ Q/Z.

We now determine this pairing for each simple root system R.
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For R with different root lengths, ρ is zero and hence (10.1) is zero unless R = Cn for
odd n ≥ 3. In that case (and also for R = E7), ∆ ' Z/2 ' ∆∨ and ρ is the unique
isomorphism, so (10.1) amounts to the product map x ⊗ y 7→ xy. Therefore we may
assume that R has only one root length.

If ∆∨ is cyclic, we pick a fundamental dominant weight f∨i that generates ∆∨ and the
pairing (10.1) is determined by the image of f∨i ⊗ f∨i . The image of this under id ⊗ ρ is
f∨i ⊗ fi as in Example 5.4, so the image in Q/Z is the same as that of the coefficient of
the simple root αi appearing in the expression for fi in terms of simple roots, for which
we refer to [B].

For R = An, we have ∆∨ ' Z/(n + 1) generated by f∨1 and f∨1 ⊗ f∨1 7→ n/(n + 1),
cf. Example 5.9.

For R = Dn for odd n > 4, ∆∨ ' Z/4 generated by f∨n and f∨n ⊗ f∨n 7→ n/4.
For R = E6, we have ∆∨ ' Z/3 generated by f∨1 and f∨1 ⊗ f∨1 7→ 1/3.
For R = Dn for even n ≥ 4, ∆∨ is isomorphic to Z/2⊕Z/2 generated by f∨n−1, f∨n . The

tables show that f∨n−1 ⊗ f∨n−1 and f∨n ⊗ f∨n map to n/4 whereas f∨n ⊗ f∨n−1 and f∨n−1 ⊗ f∨n
map to (n− 2)/4. That is, viewing (10.1) as a bilinear form on F2 ⊕ F2, for n ≡ 0 mod 4
it is the wedge product (which is hyperbolic) and for n ≡ 2 mod 4 it is the unique (up to
isomorphism) metabolic form that is not hyperbolic.

10b. The cup product on C. Let G be a simple simply connected algebraic group over
F with center C. The pairing (10.1) reads as follows:

C∗ ⊗ C∗
id⊗ρ−−→ C∗ ⊗ C∗ → Q/Z.

Twisting (tensoring with Z(1)
L
⊗ Z(1)) we get a composition

C∗(1)
L
⊗ C∗(1)→ C∗(1)

L
⊗ C∗(1)→ Q/Z(2),

where the second map was already defined in (2.9). Therefore, we have a pairing

(10.2) H1(F,C)⊗H2(F,C)→ H1(F,C)⊗H2(F,C◦)→ H3(F,Q/Z(2)),

which we denote by •. In this language, Theorem 1.2 says that

(10.3) rGi
∗(x) = −x • tG for x ∈ H1(F,C).

Combining this observation with the computation of (10.1) recovers the formulas given
in [MePT] and [GaQ], with no restriction on char(F ).

Example 10.4. Suppose G has inner type Dn for some n ≥ 4. Then G is isomorphic to
Spin(A, σ, f) for some central simple algebra A with quadratic pair (σ, f) such that the
(even) Clifford algebra of (A, σ, f) is a product C+ × C−, see [KMRT, 26.15]. Put µ2 for
the kernel of the map Spin(A, σ, f)→ SO(A, σ, f) and write i2 for the inclusion µ2 ↪→ G.
(The highest weights of the representations Spin(A, σ, f) → GL1(Cε) for ε = ± both
restrict to the nonzero character on i2(µ2).)
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We claim that, for z ∈ H1(F, µ2),

(10.5) rGi
∗
2(z) =

{
z ∪ [A] if n even

z ∪ [C+] if n odd,

an equation inH3(F,Z/2Z(2)). This can be seen by combining (10.3) with the calculations
in §10a. Alternatively, arguing as in the beginning of §9, it suffices to verify (10.5) in case
the variety X has an F -point, where we may check the equality via Lemma 9.5 on the
subgroup G′. Then Equation 12.2 of [GaQ] settles the n even case, and an analogous
computation handles n odd. Note that for n odd, one could as well write z ∪ [C−] in
(10.5), as [C−] = 3[C+] and 2z = 0.

Example 10.6. The exact sequence 1 → C
i−→ G → G/C → 1 gives a connecting

homomorphism ∂ : (G/C)(F )→ H1(F,C). It follows from (10.3) that, for y ∈ (G/C)(F ),
∂(y) • tG = rGi

∗∂(y) = 0, i.e.,

(10.7) (im ∂) • tG = 0 in H3(F,Q/Z(2)).

For G of inner type An−1, G is isomorphic to SL1(A) for a central simple algebra
A and we may identify im ∂ with Nrd(A×) ⊆ H1(F, µn). In this case, (10.7) says: If
x ∈ Nrd(A×), then (x) ∪ [A] = 0.

For G of type Cn, G is isomorphic to Sp(A, σ) for a central simple algebra A with
symplectic involution σ and we may identify im ∂ with the group G(A, σ) of multipliers
of similtudes of (A, σ). If n is even, (10.7) is an empty claim because • is identically zero.
If n is odd, (10.7) says that G(A, σ) ∪ [A] = 0, i.e., since A is Brauer-equivalent to a
quaternion algebra, G(A, σ) ⊆ Nrd(A×); this is proved in [KMRT, 12.22].
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