ON THE SPLIT EXCEPTIONAL LIE ALGEBRA E, *

George B. Seligman
I%tréduction
Let J De the split exceptional Jordan algebra over the
field F ofmcharacte”istic # 2,3.

That is, we shall regard J as
the set of 3 by 3 matrices

f;

Qi 1 S PR
s a= | 85 & 853 ,
215 833 O3
where

j-& FP and where aij’ 1 <1< ) <3, are elements of the

split Cayley algebra O based on F. Composition in J is defined

by aséb = ab + ba , the product ab denoting opdinary multiplication

of matrices with entries in C. Addition and multiplication by sca-

lars are defined in obvious fashion. For the sake of concreteness,

we take C to be the algebra of 2 by 2 matrices
0. antch ¢ a’ 3 _
¢ freke } , a,iv € F, a,b & F’, with involution c = ©
ja a 5 -a »
sending { into - , and with product
b [5 . a }
! = | 2 |
LI W & i ; LY %
;fa x?‘“g (e e\ ¥ ¢ ¥ 4 (a,d) ac + ba - (bad) |
Geo-oto” ¥ ; W = §
Ny N Db %j a s §b +3a + (arc) ﬂg + (b,c) j
where aac and (a,c) denote respectively the customaery vector

and scalar products in FB.

Then g

carries a symmetric bilinear form (a,b) = Tr(aeb),
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and a symmetric trilinear form (a,b,c) = Tr((asb)ec) - Tr(a)(b,c)

- Tr(b)(a,c) - Tr(c)(a,b) + 2Tr(a)Tr(b)Tr(c) (see [8]). The form
(a,b) is non-singular on J. Thus 1f a and b are elements of J,
there is a unlque element ;a,‘xb in J satisfying (axb,c) = {a,b,c)

for all ¢ € J. In fact, one has

aXb = aeb - Tr(a)b - Tr(bla + (Tr(a)Tr(b) - (a,b))I ,
where I 1s the identity matriz diag 11,1,1, in J (thus 27'I 1s
the identity of J). Clearly axXxb = bXa .

Let V Dbe the space of all 2 by 2 matrices of the form

- (2).

at

a,;"}i& F, a,b € J, and define a quartic form q on V by
(1) q(a) = (aXa,bXb) - —(a a,a)a - -(b b,b)4 - 2(3(a, b) - ad)2 .

Polarization yields the following 4-linear form, for which
(A,A,A,A) = 24 q(A) ; let

A, = 5 21 i
i - 1
\by 3y

5

a
\} s, 1 <1<4 ; then
(A shyrhsohy) = 42" w1 lar PagPar ) - 42 (8n85,0,)

- 4g2(a1,a3,a4) - 493(a1,a2,a4) - 4g4(al,a2,33)
4§l(b2,b3,b4) - Agig(bl,bs,%) - 45?53(*01,*02,*04)
- 4534(b1,b2,b3) -

(2)

2y (e Bw)(a‘ew’blﬁr)
* 2y 913§’2§(a3§’b4wj 82::“1:1 don 25 Ly 2
where ZW indicates that the sum is to be taken over all permutations

w of (1,2,3,4), Z'W that only those twelve permutations I with

— .
e

1w < 27 eare to be taken, and 'y that only those six permutations

™ with 1% < 2 and 3Y < 47 are to be taken.

—

Now let L Dbe the set of 2ll linear transformations T of V
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such that (A,A,A,AT) = O for all A & V, or, equivalently, such that

(AlT’AZ’A3’AA) + (AlaAgT’A3’A4) + (Al’AQ’ABT’AA) + (Al’Ag’A3’A4T) =0

for all Ai € V. Then L 1s a Lle algebra of linear transformations

of Y, and is ;losed undéf p-th powers if F 1s of prime character-

istiéi p ; hence L 1s a restricted Lie algéﬁra in the latter case [7].
The Lie algébra L 1is adapted, for the case of a general

field F, from a complevaie algebra providing a realization of the

133fdim;nsional simple Lie algebra Eb as an irreducible Lie algebra

of linear transformations in a space of minimal dimension, namely 56.

This realization of E7 has been described by Freudenthal [2]. Ve

oropose to show here that thé Lie algebra % defined above is a

realizatlion of the unique simple Lie algebra of classical itype Eﬁ

over F, in the sense of [5], and to apply general techniques [6-9]

to the study of its automorphism group.

1. The Freudenthal resolution.

It will be recalled [8] that there is a realization of the
simple Lle algebra of classical type E6 over F as the set of
linear transformations T of q’ such that (aT,a,a) = O for all
a € J ; we call this algebra ,E6(g)‘ There is also an "outer"
automorphism of ;%(g) given 5y T == -T*, where T 1is the ad joint
of T with respect to the bilinear form (a,b) on J. Now g6(;)
‘may be regarded as a subalgebra of L’ via the mapp;ng sending

T & Eé(J) onto the mavping which sends

fg a} {O aT} :
b A - 0

This mapping of Es(g) into L 1is clearly one-one, linear, and

vreserves the Lie product. To see that A -3 A' is in L, we have
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(A',A,A,4) = 12(aTXa,bXb) - 12(aXa,bT’Dd) - 12g(aT,a,a)
+ 123 (bT",b,b) - 6(alT,b)(a,b) + 6(2,bT") (a,b)
+ 1204 (aT,b) - 1204 (a,bT™) .
Since (aT,a,2) = 0 = (bT#,b,b) and (aT,b) = (a,bT%), the above
reduces to 12[ (aTXa,bXDb) - (aX’a.,bT*)(b)] ; that is, we have
(A',A,4,4) = 12[(aT,a,bXDb) - (axa,bT ,b)]. By the skewness of T,
™ with respect to the (symmetric) trilinear form, this is
-6[(a,a, (bXD)T) - ((aXa)T" ,b,b)] = 6[((aXa)r™,bXDb) - (axa,(bXb)T™)]
= 0. Thus A-» A' is in L, and these mappings, formed for all
T e 36(J), form a 78—dimensignal subalgebra of L isomorphic to

E-(J) . )
o /1 o) Py

Let I= ; | € Vy, T& L , and 1IT = ) } & V.

\Oo 1 } A ‘ b {% -

Then from O = (I,I,I,IT) = -24(a+/3) we have g@ = -a . Define a
linear transformation 8 of V by
iox| ot o
Pt S = 1 ’ g‘“é F .
y 3 39y -a
Then I(T-S) has the form
{0 c%

la o

C onatk,
(E%t;‘,*-g
tg_&f&iﬁw . \?

One sees at once from (2) that 8 € L , using only the bilineerity
of aXb and the multilinearity of the forms involved. Upon replacing
T by T-S &L, ve my assume IT = I(T-8) as above.

Now leﬁﬂ P(c) De the mapping of V sending

o a% {%&b,c) ;§c§§
A = i into I
b A Lexa 0
Q(d) the mapping sending A into %
fo ixb |
! 1 !
K.C.‘d §(a’d)}
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where ¢ and d are as above. Then each of these mappings is in
L, and subtracting theur sum from T gilves a reduction to the case
IT = 0. To establish that P(c) and Q(d) are in L involves a

rather long calculation, which reduces to the following identity:

(3) 6(XXX,YK(ZXX)) = (y,z)(x,x,x) + 3(y,x)(z,x,x).

(¢ puhe.

”ﬁ%; ' (p

u$%L*MQI

For once (3) 1s shown, let A € V be as above; then

i

(A,A,A,AP(c)) = 12(aXa,bx(cXa)) + 12)(bXb,aXc)

12a/ (a,a,e) - 2(b,c)(a,a,a) - 12/4(b,b,cXa)

6(a,b)(a,ec Xa) - 6§(a,b)(c,b) + 120 *".3(3.,0&8.)
12(1 (b e)

+ 1204%(b,c) + 6 4(b,c)(a,b)

6(a,b)(a,cx2)
3(a,b)(a,c,2a)),
which is zero by (3). A similar calculation shows that (3) implies

= 12(aX a,b X (c xa)) - 2(b,ec)(a,a,a)
= 2(6(3«‘1{39}33@(3&&)) - (bsc)(aaa‘,a)

that each Q(d) e L. We defer the proof of (3) to the next section.
Now suppose that T 1is in L, and that IT = 0. Let

;1 oY
L e vV, HT =
~ o -1 b

Then from 3(IT,I,I,H) + (I,I,I,HT) =0

el aa
E .

(r,1,I,HT), we have

—
{ ?“6?»

1]

-24(a+/3) =0, or o +/9 =0. From (H,H,H,HT) = O, we find
24(q -/3) =0, or a = A. Tws a=74=0.

;0 ¢l '%(ec) ©cR z
Now if C = | €V, then CT = | =
0 . cS 1{? (O ) ]

\ 0

where i and *‘? are linear functions on J, and R,S are linear

s

transformations of J, all of these being determined by T. Then
0 = 3(11,1,1,0) + (I,I,I,0T) yields ¥ = - (5 further,

v
e

o= (1I1,0,0,C) + 3(1,0,0,CT) gives O = (I,C,C,CT) = -4(c,c,cR),
so that R € Eg(J). Finally, O = (0,C,C,0T) = -4 J(e)(c,c,e).
Since both {{?(c) and (c,c,c) are defined by polynomials in the
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coefficients of ¢ relative to some basis for J, these polynomials
being homogeneous of respective degrees 1 and 3,hand since (ec,c,c)
is not identically zero, it follows that ((c) =0 for all e

(F has at least 5 elements)., Thus & =0 = ¥ ; similarly, if

el s

/0 o% i [o av
| & vV, then DT = | !

D= | :
Law 0
where W & Eg(J) depends only on T, as does the transformation U
of J.

w- With ¢ and HT as above, we have O = 3(HT,H,H,C) +
(4,H,H,0T), from which O = (HT,H,H,C) = -4(b,c) for all ¢ = J.
Thus b = 0, and a = 0 (in HT) is a similar consequence of )

o = 3(yr,",H,D) + (H,H,H,DT) ; hence we have HT = O.

From O = 2(IT,I,C,D) + (I,I,CT,D) + (I,I,0,DT) = (I,I,CT,D)
+ (I,1,0,DT), one has O = 4(cR,d) + 4(c,aW). Tmus W = -R, the
image of R under the exceptional automorphism of §6(q)'

Finally, from O = (17,0,C,D) + 2(1,cT,C,D) + (r,¢,c,DT)
we see that -4(c,c,dU) = O for all c¢,d € J, from which it follows
by polarization on ¢ that (c,e,dU) = O for all c,d,eéJ. In
particular, 0 = (I,I,dU) = 4Tr(dU), so that Tr(dU) = O. Tﬁen for
all e &€ J, we havé O = (I,e,du) = -(e,dU), so that 4aU =0 by
the non-sgﬁgularity of the trace form. Likewise 8§ = 0, and we
now have established that

f"‘i ¢ 0 cr}

fT= | . s REE() .
\a 8/ R 0

e,
M

—

By analogy with the method of Freudenthal [2] in the complex

case, we have therefore shown that every T &€ L 1s a sum of trans-

s
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formations of four types conslidered above, all of whlch are in L,

and which are collected below:

H

/% { o9 i
i S as ¢
T T R
S vy agw ey T
. 3 i1
H X §~(a,y) 1@ .
e |2 T2 AR
ST la X x 0y
(4) 2 wz\ 3’0 x
iz X i ary . ,
Q¢ = ?ﬁm‘} Ea 1 » 8 & J
v A e glex)
3 x\__, [0 =R}
Tg? :\,..., Al 7 i g o) T = Bl
y A -y

We thus have a linear mapping (a,a,b JR) ~=2 N+ By+ Qu+ T, from
the direct sun F #J $J B E,(J) onto L. This mapping is in fact
one-cne; for if N+ Pyt Q.+ TR = 0 , the image of I is

a
=0,

o |a

s

q
!
3y -a

-

so that o = 0, a = 0 = b, and hence TR = 0, from which R = 0.

Thus L has dimension 1 4+ 27 + 27 + 78

133 , and may be regarded
as the space F & J 8J ®E.(J) , with the composition
[(g,a,b,R),((,c,a,8)]1 = (5,e,f,U), vhere

i = %— ((b,C) - (a,d))s
e:%—@a—gc)-ﬁa&-c‘ﬂ,
5
%) £ =2 (aa -0p) +ar"- vs",

xU = £((b,e) - (2,d))x + 5((b,x)c - (x,d)a) +dX (ax x)
-bx(exx) + x[rR8] , x & J.
(This product may be read off from the effect of the commuitator

0 x\
[NE-kPa-!-Qb-f-TR s N§+PC+Qd+TS] on I and on { o o j)
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2. Proof of the identity (3).

We shall use in the proof of this ldentity several other iden-
tities in J, which it will be helpful to list (such evident identities

ag Xy = yeX are omitted):
(6) ((xex)ey)ex = (xex)e(yex) (Jordan identity);

(7) (XQY'Z) = (X’Y,Z) H

(8) If Tr(w) = 0, then

(xew,y,2) + (x,y°w,2) + (x,y,2°w) = 0 ;

f ; (9) (xex) x = 2Tr(X)x°X - (2'.‘1’1:'(x)2 - (x,x))x + %—(x,x,x)l .
L onglig,

{Emﬁgéﬂ?-j\ Now every element of g can be written in the form él +b,
where Tr(b) = 0. In view of the bilinearity of (3) in y and z,
it thus suffices,fo prove (3) in the four cases: (1) y =2 =1 ;
(11) y = I, Tr(z) = 0; (iii) z = I, Tr(y) = 0; (iv) Tr(y) = 0 = Tr(z).
In case (i), we have IX(Ixx) = I x(Tr(x)I - x) =x + Tr(x)I,
from which 6(xxx,IX(Ixx)) = 6(x%xx,x) + 6Tr(x)(x%xx,I)
= 6(x,x,x) + 3(I,x)(x,x,I) = (I,I)(x,x,x) + 3(I,x)(I,x,x) , and (3)
is established.
In case (ii), we have I X(zxx) = Tr(zxx)I - (zXx)
= (z2,x)I - %(Z,X)I - z¢X 4+ Tr(x)z + %(Z,X)I = - zex + Tr(x)z , from
which 6(xxx,I X(z%Xx)) = -6(x%xxX,x2) + 6Tr(x)(x xx,2)
= -6(x,%x,x%2) + 6Tr(x)(x,x,2). The first term here is zero by (8),
and the second is 3(I,x)(z,x,x). 8ince (I,z) = 2Tr(z) = 0, we have
(I,z)(x,x,x) =0, and (3) again holds.
In case (iii), yX(Ixx) =y X(Tr(x)I - x) = -Tr(x)y - Xy
+ Tr(x)y + %—(x,y)l = - Xey + %—(x,y)l. Thus 6(xXx,y X (IXxx))
= -6(x,%x,xsy) + 3(x,y)(x,x,I) = (y,I)(x,x,x) + 3(x,y)(I,x,x) as in (ii).
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In case (iv) we note first that (xXx,yx (zxx))
= (xxx,7,2%x) = ((xxx)X(z2xx),y) , and that (xxx) X (zxx)
= (xox -2Tr(x)x +(Tr(x)2- 3(x,x))1) X (zex - Tr(x)z - 3(z,%)I)
= (xex) % (20x) - 2Tr(x) (x X (z+x)) + (Tr(x)®~ 5(x,%))(I X (2:x))
- Tr(x) (xex)X z + 27r(x)2(x X2) + Tr(x)(Tr(x)? - 3(x,x))z
-%{z,X)(X~X)XI + Tr(x)(z,x)x X I ~%(Z,X)(TP(X)2- %(X,X))IXI
= (xox)x(z'x) - 2Tr(x)(x X(z°x)) + (2,x)(Tr(x)® - F(x,%))I
—(Tr(x)? - L(x,x))zex - Tr(x)(xex)X z + 2Tr(x)% (x X 2)
#(tr(x)? - Err(x) (x,%))z - 3(x,%)(2,%)T + 5(z,x)xx
# (2,0)Tr (x)T - Tr(x)(z,%x)x - (2,%)(Tr(x)® - F(x,x))I
= (xex)X(xo2)-2Tr(x) (x X (x+2) )+ (2,%x)r (x)°T -(z,x) (x,%)1
- Tr(x)(xex)X z - (Tr(x)® - 2(x,x))zex + 2Tr(x)®xx 2
1

+ (TI'(X)3 - §TI‘(X)(X,X))Z + %-(Z,X)x-x - Tr(x)(z,:ﬁ)x .

We use the above to compute 6(xXx,yX (zXx)) =
6((xxx)x(z%Xx),y); in the expansion of this scalar product using our
last value for (x¥x)¥X(z Xx), the first two terms are
6((xex)X(x02),y) - 12Tr(x)(x X(x:2),y) = 6(x*x,x°2,¥) -12Tr(x) (x,X:2,7),
which since Tr(z) =0 1is equal by (8) to =6((x¢x)sz,x,y)

- 6(x+x,Xx,y2) + 6Tr(x)(x,x,y*z). Since Tr(y) = O, we have (I,y) = 03

making use of these substitutlons, we find
6(xxx,7% (zXx)) = =6((xex)e2,x,y) - 6(x°X,X,y>2)
+ 6Tr(x)(x,x,y:2) - 6Tr(x)(x-x,2,y)
(10) - 6Tr(x)2(2x,5) + 3(x,x)(2:x,¥)

+ 12Tr(x)2(x,z,y) + 67r(x)°(z,7)
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- 3Tr(x)(x,x)(z,y) + 3(z,x)(x'x,y)
- 6TP(X>)(Z9X) (ny) B

Now ((x+x)ez,x,5) = (((x:x)e2)X x,y) = (((x+x)s2) %,7)
- ((xex),2)(x,y) = Te(x)((x:x):2,y) = ((x:x)e (z2x),¥) - (x%,2)(X,¥)
- Te(x)((xex)e2z,y) Dby (6), and this is
((xox)%(z°x),y) + (x,x)(zx,y) + (z,x)(xx,¥)
- (x,y)(x°x,2) - Tr(x)((x:x) 2,7)
= (xeX,x:2,y) + (X,x)(zex,y) + (z,x)(x-x,¥)
- (x,y)(x:x,2) = Tr(x)((x-x): 2,¥)
= =((xex)ez,x,y) - (x+x,x,y°2) + (x,x)(zx,7)
+ (2,%)(xsx,7) - (x,7)(xex,2) - Tr(x)((x-x)z,5) ,
again using (8). Since this is an expression for ((xex)eZ,X,7)

we have 1
((x-x)02,%,y) = 5l-(xex,x,5:2) + (x,%)(2%,7)

(11) + (z,x)(x-x,y) - (x,y)(x-x,2)
- Tr(x)((xex) 2,y)].

Furthermore, (x+x,Xx,yez) = ((x-x)Xx,y,z), and (xex)X X

= (xex)x - (x,x)x = Te(x)xx + (Tr(x)(x,x) - %(X-X,X))I

= Tr(x)X.x = 2Tr(x)2x + (%(x,x,x) + Tr(x)(x,x) - %(x'x,x))l

by (9); thus
(xex%,%,722) = Tr(x)(x:x,y2) - 2Tr(x)2(x,y02) + %(X,X,X)(Y,Z)

(12) .
+ 2TI‘(X)(X,X)(1Y,Z) - (X'X,X)(y,Z) .
Substitution in (10) of (11) and (12) yields
6(xXx,7 X(2Xx)) = 3T (x) (x+%,y:2) + 6Tr(x)?(x,y:2)
- 2(y.2) (x,%x,x) - 9Tr(x)(x,x)(y,z) + 3(y,2) (xex,x)
(13)

+ 3(x,y) (x2x,2) + 3Tr(x)((x:x)°2,y) + 6Tr(x)(x,x,y¢2)
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- 6Tr(x)(xsx,2,y) - 6Tr(x)2(z-x,y) + 12Tr(x)2(x,z,y)
+ 6Tr(x)(y,2) - 6Tr(x)(x,2)(x,7) .

By (7) and the commutativity of J, the first and seventh terms
cancel, as do the second and tenth. It will also be noted that the
eighth and ninth terms combine to give

6Tr(x)[(xx x,yv2) - (x°x,y¥X2)]

6Tr(x)[(x:X,y°2) - 2Tr(x)(x,y°2) + 2Tr(x)2(y,z)
- (x,x)(y,2) - (xx,y.2) + (x,x)(y,2)]
= - 12Tr(x)2(x,yoz) + 12Tr(x)3(y,z) .

The fifth term of (13) is equal to 3(y,z)(xXx,x)
+ 6Tr(x)(x,x)(y,2z) - 6Tr(x)3(y,z) + 3Tr(x)(x,x)(y,z), of which ex-
pression the first term is 3(y,z)(x,x,x). Now substitution in (13)

from the above ylelds

6(xx x,y X(zxx)) = (y,2)(x,x,x) + 127r (x)°(y,2) + 3(x,y)(x-%,2)
(14) - 12me(x)(x,y02) + 127r(x) % (x,2,¥)
- 6Tr(x)(x,y)(x,z) .

gsince (x+x,z) = (x,x,z) + 2Tr(x)(x,2z), while (x,y.2) = (x,y,2)
+ %(y,z)(x,l) = (x,y,z) + Tr(x)(y,2z) , we may substitute in (14) to
get 6(xXx,y X (2 Xx)) = (y,z)(x,x,x) + B(XQy)(X’X’Z)’ which

completes case (iv) and the vroof of the identity (3).

3. Identification of g as E7 .

From (5) one sees that [(1,0,0,0),(0,0,0,8)] = O for all
S & §6(q), go that 1f Hy is a standard Cartan subalgebra [6] of
@6(J), then H = (O,O,O,HO) + (?,0,0,0) is a seven-dimensional
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commutative subalgebra of L. Also if S 1s a root-vector relative
to Hy in 4%6(5)’ then (0,0,0,8) belongs to a weight a of the ad-

joint representation of H in L, such that a((1,0,0,0)) = O.

Moreover, one sees from (5) that

[(o,a,0,0),(0,0,0,T)]

(0,ar,0,0) ,

1l

[(0,2,0,0),(1,0,0,0)1 = £(0,2,0,0) ,

[(0,0,5,0),(0,0,0,7)] = - (0,0,bT",0) ,
{(0,0,b,O),(l,0,0,0)] = = %—(0,0,b,O) ’
{(0,0,b,0),(0,2,0,0)] = (Q,0,0,U) ’

vhere a = 2'-(a,,b) , ¢U = l(a,b)c + l—(b,c)a -bX(axe) .
- 2 6 2

Letting Ups - sUg be the basis for Q we have used in
studying ?5({) [8], and letting ui(j,k) = uiEJk + ﬁiEkj €9J,
1<i<8,1<3<kx3, these u,(J,k) together with the matrix
units Ejj, 1<J<3, form a basis for J relative to which the
transformations in a certain Cartan subalgebra of. gé(q) “aet
diagonally [8]. To show that &H is simplé of type E%? we may
assume that Hy is this Cartan subalgebra. From [8], H, has a
basis hy, ....,hg with “

u, (1,2)hy = 85,u,(1,2) , 1 <4,) <43

IA

ui+4(1‘2)hj = - Qijui+4(l’2) , <1, <4 ;

uk(1,2)h5 =0, uk(1,2)h6 = uk(1,2) », L<k<8.
since [(0,u,(1,2),0,0),(1,0,0,0)1 = %(o,uk(l,e),o,o) , each
(O,uk(1,2),0,0), 1 <k <8, 1s a root-vector in %; relative to H.

The corresponding root 3k(1’2) is given by
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9 (1,2)(Z] ) Mby) = + 2+ 52, Lk ch

7 - 2 .

here h, = (o;o,o,hi) 1<1<6,h, =(1,0,0,0) . Similarly

(0,0,u,(1,2),0) Dbelongs to the root @k(l,Q), where

(1,2 (B Mhy) = =26 -5, Lasksh;

- My -d-5%,5<k<8.

Likewise, results on E(J) from [8] show that :

(5 (1,2)(Z 24hy)

(O,uk(l,B),0,0) belongs to .gk(l,B), where
_1 4 2 i
% (1,3)(2 ahy) = 50 Ty M) H A -2+ S, Lk b
_1l,4 , 2 . .
(0,0,uk(l,B),O) belongs toi?k(l,B), where
/7 - 4 2 .

(O,uk(2,3),0,0) belongs to gk(Q,B), where

2 (2,3)(2 2yn,) = Ty F 2N - Ty Ay) - A F SN L 1k <3
0, (2,3) (2 M4hy) = - %—zg*:l Ay - X5t %;_7 :
0, (2,3)(2 2yn) = B(EI by - Ny -2 ) - M+ 5y 52k ST
0g(2,3) (% Myny) = 5 31 My = A5+ 5 s

(0,0,u,(2,%),0) belongs to {;}k(zg) , Wwhere

. _ 4 2 .
s (2,3)(2 g:jhj) = 9.(2,3) (25 g\_jhj) * A -3 s 1<k<8;

(0,E;;,0,0) belongs to €1 <1 <3, vhere

B} 2, ¥ = - z
fi(zayng) =205+ 527 L3 2yhy) = 205 + 226 + 317

. 2 .
052 Ahy) = <20 + 3 5
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(0,0,E

44+0) Delongs to - 5,,1<1<3.

-1

A1l the @ (3,m), B, (3,m), }gi, ani all the non-zero roots to
which belong vectors of the form (0,0,0,8) are distinet, span the
dual space of %i and contain no arithmetic progression of roots
vhose difference is a root and having length greater than three (in
fact the only progressions of this form of length three have the
form -g, o, a, where O 1is admitted as a root), One now sees
that L has center zero, and has a2ll the characteristic properties
of a Lie algebra of classical type [5] except possibly the properties
[LL] L and that [L L_ o] Dbe one-dimensional for every non-zero
root a (for H and the ;oot-vectors listed above span L) To
show [LL] = L we see by the above and the fact that Eé(J) is 1its
own der;#ed algebra that it suffices to show (1,0,0,0) € [IL]. But

now from [(0,0,b,0),(0,2,0,0)1 = 5((a,b),0,0,U), U € Eg(J) it
follows that (1,0,0,0) € [LL], and from (3, (3,k) = -g4,,(3,k)
5§1+4(3,k) = -q,(J,k), 1 <1 <4, 1<) <k <3, together with
(ui(J,k),ui+4(3,k)) =4, 1 <1<4,1<3<k<3, and (Eii’Eii) =2,

1 <1i<3, that [L L_,] 4 O for all roots o whose root-vectors
are not in 36(4) For those L € E6(J), we already know that
[L L_ ] 3 0 from [8]. 8ince all L are one-dimensional, it fol-

1ows that all [LGL_G] are, Hence L is of classical type,
therefore a direct sum of simple algebras of classical type [5].
We display a fundamental system of roots of type E7 for ; s from

this the simplicity of L follows by [5].

From [8], we take a fundamental system of roots in E6(g)

with respeet to go, calling them Gos ees ,97, and extend these



to H by ai(h7) =0, 2<1<T7 . Weadjoin the root g, =
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Q=

With this cholce, we then have:

Ashy)
Aghy)
a(% 24hy)

Il

Ui

25+ 5 s
SRR
N -2

we

(2 Mhy) = 2y = 255
a5(Z Mhy) = 25 + 2y
605 Agng) = By Ay + &g - 2k
o (2 %hj) =2z = My .

(The root-vectors corresponding to the last six of these will be

found in [8].)

They have the diagram [5]:

© 57

0

2

o o

2

o 0
Oz Gy

% Ze

That is, they form a simple system of roots of type E%. Therefore
L 1is simple of this type, again by [5].

4. The enveloping algebra of L .

E—
o

In this section we show that the enveloping assoclative al-
gebra of L as a Lie algebra of linear transformations of V, is

the full algebra of linear transformations. By familiar results on

associative algebras ([3], pp. 35,39), it suffices to show that L

acts irreducibly in ‘V and that its centralizer consists of scalar

multinlications. To see the latter assertion, we first note that

since + 1, + %- are all distinet in F, any linear transformation

X of V which commutes with all N, of (4) must have the form

4
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Z x 'V “):*3 xS
{.c. WL" N IR ,

y 1 yT U
3 ¥ -
i */A - %l
where M\, are fixed in F, and where S,T map J into J .

If, moreover, X commutes with all P, of (4), we have

9

gl—.}\(a,y) iaS? ) f §(a,yT) ﬁia%
\axx)T 0o/ (ax(xs) o)
for all i,a,x,y ; from this it follows that yT = Ay, a8 = A,,ﬁa
for all y, all a , and that ):(aXx) = aX (ﬁx) = m(axx) for all
a , all x , from which Q= 31 ,end X =AM , a s:alar.
To show that L acts irreducibly in V , let

v = iz }
y L

be a non-zero element of V . ITf 1 £ 0, then a suitable Pan

maps Vv 1into an element of the forujm?

(“‘ % s ¥ :!: 0 3

y 0f

since EG(J-);.aets; irreducibly in J [8], operation with an element
30 Og?E

T, ylelds a non-zero element of | flJ Oj If v has x 3 O, then

operating first with @, (x,b) 3 0, yields an element with il:% o,

0 Oi
and we transform this into a non-zero element of {J O; as above.

If y 3 O in the original v, we choose a & J with axy 3 0
and operate with Q‘a to obtain an element satisfying the condiition
x + 0. Finally, if § % O, we choose a'# O and operate with Q,

to obtain an element with y # O. Thus every non-zero L-invariant

subspace of J contains non-zero elements of ;50 o
e \J Og
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By the irreducibility of EG(J), any 1nvar1ant subspace of

V relative to L contains the subspace {O 0} g. Similarly,

JO[
y10 Ja

VM; is contalned in every invariant subspace . Applying
10 0

mappings Pa’Qb now shows that V 1is irreducible relative to L.

5. Automorphisms of L .

pect

Let K be the algebraic closure of F. Then the Lie algebra
%K obtained from L by extension of the base field acts in the
sggce VK , and is the algebra of all K—linear transformations of
VK which are skew with respect to the unique 4-linear extension of
our form on V By the above, LK is a simple Lie algebra of type
E7 over %ﬂ. We regard L as an F-subalgebra of LK VM as an
L- submodule of VK By [6], the automorphism group of LK consists
of M™invariant" automorphisms. -

Steinberg [9] has shown that the group I of invariant
automorphisms of L (or of LK) is generated by the mappings
exp(ad(éea)) where e, runs thro;gh a set of root-vectors relative
to a give;:standard Ca;%an subalgebra. In particular, one may take
as Cartan subalgebra our H of §3 (or Hg, in the case of LK).
‘From [8] it is known that if T ¢ @6(J) ista root-vector relat{%e

” 6 5
=0=T , acting in J. It follows

to Hy, then so is T , and T
at once that (O,O,O,T)2 = 0, acting in V. Next we note that if
c & J is among the ui(j,k) or the Ey;, then cXec =0 ; for in
the former cagse, c+¢c = 0 and Tr(c) = 0, while in the latter,
¢ceec =2c , Tr(ec) =1, (ec,e) = 2 . Hence the root-vectors relative
to ﬁ of tae forms (0,c¢,0,0), (0,0,c,0) as listed in §3, which

send A = into, respectively,

f a%
o



oj-

(b,e) dic %

—

‘0 exb "%%

L cya 0] { ac %—(a,c)i

have squares sending A 1into

gQ(GXa c) O% ?io alexe)
| and 1, I
\ /ilexe) of L0 z(exb,e))

respectively, and thus have squares equal to zero (for (c xa,c) =

(exc,a) =0 ). Thus I is generated Dby mappings exp(ad(,l\ea)),

e, &L, e =0. It followsby 31 of [7] that the mappings

exp(ﬁea) =I+ 2, of V preserve the form q and that, for T& L,

T exp(ad()\e )) = exp(_zxe )-1T eXp(Ae ). Thus the group of invariant
automorphisms of L is contained in the group of automorphisms of
the forn X -+ U-lxy, where a(AU) = q(A) for all A & v .

The above considerations apply equally well in the élgebra-
ically closed case, where the fact that the invariant automorphisms

constitute the full automorphism group ylelds the conclusion that

the automorphism group of LK consists of all mappings X — U°1XU ’

where U preserves the ouartlc form q on VK. As in [7] and [8]
we can now draw the followlng conclusions about the automorphisms

of L :

Theorem. Let L be as above. Then the group of automorphisms of

-1

L 1is the set of mappings X % B "XB , where B 1s a non-singular

linear transformation of V such that for some /5(B) # 0 in F
and for 2all A &V, q(A2) = &(B)a(A). Such transformations of

V constitute a group, the group of q-similitudes, and the group

of automorphisms of L 1s isomorphic to the quotient grpoup of

the g-similitudes modulo scalar transformations.
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6. dq-Isometries and the group of Chevalley.

Let T be the group of transformations of V generated by
the I + J\e , Z‘mé F y o a root with resvect to H Then the
center of T consists of scalars, and 1is the kerne; of the mapping
of T into the automorphism group A(L) of L which sends T e T
onto the automorphism X - T lXT of L. The‘ image is the grouigw
@' of Chevalley [1],[9]. Let § ‘be the group of g-similitudes of
V ; then we have seen that the mapping sending 8 & S onto
imé s~1Xs 1s a homomorphism of S onto A(L) with kernel F .
Let Q be the group of g-preserving linear transformations of yV
PQ its image in 1}(;,) under the above mapbing, PT the image of
T M. Then T & Q‘E-} S, Prs PQ & A(L) , PT = G' as above.

For 1 <1 <7, let h; be the unique element of [L L_, 1
Sl

{smg?ﬁw with g;(hy) = 2. If w;(hy) =2, 1 <1,) <7, defines a basis

L.

2.

' {

s

(ke

14 eu

¢
L2

5

o

boa -u-
{4y Tfor the dual space H dual to the basis Lhié for h, we

have g, = I gk(hi)ii?i = %; Ayl » vhere A, 1s the (rational)

Cartan integer corresponding to the pair of roots GprsQy o Then
Aki =0, -1, or 2, the last only if k = 1., Let P Dbe the free
abelian group on generators w3, iIn 1-1 correspondence with the

-1

Wy - Let R be the subgroup of P generated by the elements

9»'1: = 21 Akfﬁ'i’ 1 <1<7. Since (Aki) is non-singular, the

a'k are free generators for R .

——

Corresponding to any F -valued character X of R, there

o

is (e.g., by the “1somor'ohism theorem" of [5]) a2 unique automornhism

i

5=8%) or L leaving H fixed and with e, 9= X(a,‘i)ea s
- R

uuuuu

l<i<7. If 9_ = L mya, 1s the "canonical representation" [6]

of a root a of L relative to Gqs eee ,57 , then

—

P
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. m
eagz (H;. Xla'y) i)egn

-

R

Moreover, Chevalley [1] and Steinberg [9] have shown that
every automorphism of L (of type E.() is congruent, modulo the in-
variant subgroup G', to such an automorphism §(§ ), and that ?(1}
is in @' if and only if X 1s the restriction to R of an g?-
valued character of P . 0

The choice of indices which we have adopted and the Cartan

matrix for E7 give:

LI R SN
mal_gi)l 2o
U S L,
a'e = 226 - ds5

0:' = 2"-'3’ - »'
<7 2 Dy o

&'i = - ”32:1-1 + 2;§ -3»»'1-!-1 , 1 =2,3,5 .

The corresponding fundamental system of roots Oqs eee ,_&7 is given

by the same combinations of the i‘i"»~>i . Now let

gy = -ty - 120y 4 2kl

oise

- ‘ ‘4;! -.‘,,;:' - 1 1 .
Yoy v -y E el H ey

N B N R N Y, Y | ol = Eal' - Bal - hal! ot .
5 5:9;2 4533 24 +48;§7 5a 634 4&52%64-21%7,

1

L,ai'e - %"39'3 - 4,i§4-:§'6+ 9;2;'7 =-a's-aly - E»'5 - 3'64-11-%'7;

— -

fep
B
i

I

;3'5 = 3923'5 - 2%%3’7

Then 24'; = -3a' -4a', -759*'3 -6a! "'—49"5 -2at, + 212’7 , and

s
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one readily checks that @',, ... ,;‘3‘7 form a basis for P, while
24" 2815y +eios 'y form & basis for R. Thus e = %()5) is in @'
if and only if X(EQ’l) is a square, i.e., if and only if

" : 2
X(a'y) X(a's) Xia'p) e ¥ .

Now let Xl be a character of P defined as follows, relative
to the character X of R

e

..

X (ay) = X(@‘i), 3<1<7;

had

3%

g
.

here A& F is so chosen that A X(a' )T -1 X(a'..{.) & F 2, and o & F
satisfies 32 = 2 X(e'5) X (ar) (AX(a ) e )~4x(a:4)~6x(a'5)~4
.3(3'6)-23;(3'7)20 . Then we have E%(Xl) & G' by the above.
Letting Xz =§ }&1'1, a character of R, We see that %(;{(2) =
ﬁ(})%(;l)"l & G' if and only if iﬁf(}g) & G' . Moreover, we have
X(3'4) =1, 3 <127, Xg(g;s'g) = K 0 X(a')™h = X(at a7,
and Xp(24';) =\§(25§" )57 = X(a'y) =327 , from the definition of

Xp- From Xo(4'7) = 1= Xy(3') we mave X,(a'n) =1= X, (g')),
and from these and )( (4 5) =1, that ¥, (a'5 ) = 1. Next, using

2

these observations, we have 1= % (%,4) - X2(a'3)-1;¥2(g'4)_1

and 1 = ?(;2(53'3) = (‘52(&'32":{2(3’4))"63’2(3‘3) , from which

X (9_'3) =1 =X2(§"4) . We then have

Xa(h'p) = Xplarihp(a'y) = 27 X(a'y)

X241 = Xple' ) Hplar )™ = 72 72,
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from which.ixe(g'z) =1, §a(g‘l) = g;lSX(gjl). Thus

Xolar Wola')s(aty) = £5(aty), and B (X)) (or B(X)) is in o
2

if and only if Xg(g’l) e F* .

Now let S be a g-similitude of V, and consider the auto-
morphism X - s“lxs of L; by the remarks above, there exists
T & T such that the automorphism X ~% (ST)‘lXBT of L leaves

fixed H and all root-vectors e_ , e

oy _ai, 2<1<T7, and multiplies

q by ;a_é,Fﬁl Moreover, the automorphism induced by £ 1is in-
-] “

duced by an element of T (i. €., 18 in the grouv @') if and only

if M €& ng. We further have a(v(ST)) = q((vS)T) = q(vs) =zaq(v)
for 2all v € V where ﬁ’eiF is the factor associated with the g-
similitude S. From our realization of L and the above it follows
at once that the automorphism of L induced by U= 8Te S leaves

fixed the subalgebra ﬁé(q) consisting of all meppings
§ 3 x | o XRE
= ] Q % | » ReEJ)

as well as the mapping N of (4) (since N, € H).

B

As in {4, 1t follows from UN, = N,U that U has the form

) (4w
Y 3 vye Xy

Q

where B and C are non-singular transformations of J and where

B

4,4 are fixed nonzero scalars. The fact that U commutes with

wr e

all elements of §6(J) and the absolute irreducibility of E(J)

*
in J now yield B = 61 Cc = eI, where é,e & F . Thus U sends



- nto | =% ° |,
v NCARIR

fe |
%ﬁ{ .g Choosing x = 0 =y, with ?i 3 0, the condition q(vU) = oq(v)
‘W? e - , 2 7
gives (;;?;g)2(gg,\)2 =§(§s§)2, or T = (éﬁf’)2 Thus _:é‘ F% , Or every
factor of similitude is a square. U

Similarly, choosing 1= 0, y =0, ¢ 5 3 0, (x,x,x) 4 0 gives
53 = ¥ = (5@2 from the above; likewise, f:- éfé = (68)2 Thus

¥ = gv¢e 3 @23:'3, o =f9q§'l, where M is one of the elements of F
with ;&2 = g7, and A = gc‘f‘a:B = ;42%'353 = Ac.'lfj. Therefore |
iox [67e) e )
(15) - U= | T o a3 o
y 4 \ ey meT

e % 0, 5,12 = ™, Conversely, such a mapping U 1s a similitude
with factor 7,

Now tne root-space L in our decomposition is svanned by
e ~1

(0,£,,,0,0), where E; = diag 1,0 ,0{ €7, and where (0,E,;,0,0) sends
5( - % into 5 2EY) [y §
iy N j ‘%'\ Ej X X 0

Thus U"l(o,Ell,0,0)U = ) (0,E,,,0,0), withgthe automorphism induced

by U 1lying in G' if and only if A € F' . Now U (0,E;,0,0)U
sends
(% XE into {é e (Ey ) 4 g iEll%
vy U e (m g K x) 0 ’
1 2 2

so that %-ZL = &" 52
We thus conclude that if S 1is a g-similitude with q(vS8)

2
=Tq(v) forall v &V, then T & F' , and there 1s 2 T & T with

sy

, MEF  if and only if 4 €F .

s
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§ = UT , where U 1is as in (15); the automorphism of L induced
| - 22
by S (or that induced by U) is in G' 1f and only i:f.' l“ & F .
In particular, consider the case 8 € Q, 1l.e., §: = 1. Then

S =UT , where U 1is as in (15), with u® = 1. With 4 =1, the

automorphism induced by 8 1is in G'; with @ = -1, this automorphism
2 - 2
is in @' if and only if -1 & F# . Thus the mapping ISG'w% ﬁiF% ,

sending the coset by G' of the automorphlism IS induced by S

2
onto the coset ;AE? , yields an isomorphism of PQ/PT onto the quo-

%2 #2, , %2
tient (F - (-1)F )/F" . Applied to P§/P$ , the corresponding

2
#*
mapping is an isomorphism of this group onto F*/F , an observation

which may be viewed as another interpretation of the lsomorphism

. % ,_ 32 %2 gh
%(L)/G =F /F of Steinberg. It is clear that P§/PQ =F /F

under the mapping sending the coset corresponding to S & 8 into

4
# \
«F , where q(v8) =‘§n(v) for 211 v & V. We thus have the com-

mutative dlagram with exact rows:

1 ey PQ./PT e T -2 /PT B PS /PQ. S |

> 2 .2 W2 ol L4
1o (@ L (SDF )/E s B e B

(16)

where the columns are the isomorphisms above, the mapping of PS/E?
onto PS/PQ is the canonical homomorphism, and that of E%/F*2
onto F /F wt sends éy*g onto A?F*A.

As to the structure of S itself rather than that of PS
we cannot be so precise. From the above 1t is clear that every

8 & S can be written in the form S = AUT, where A € E , T & T,

and where U is as in (15) with ﬁg = @“ the factor of similitude
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of S. Now T is an invariant subgroup of S, since whenever 8 & S

et

and e, & L is a root-vector relative to a standard Cartan subalgebra,

so is S le S. Because T‘ can be described as the group generated

by the exp(e ) =1 4 e, for all such e, é I, we have the assertion,
Furhtermore, S/T is commutative; for it Sy = MUJTy, 8, = MULT,
are a8 above, we have S S T = hlth U T. It is clear from the

form of Ul,U .that these commute, so that S S Enz 82S T. Hence

T contains the commutator subgroup of S We show that T 1s its

st

own commutator subgroup, hence coincides with those of S and of

Q. To this end, it suffices to show that each I + e is in the

......

commutator subgroup of T ;j “(by [9] we may assume that the e  are

root-vectors in our special decomposition, so that ea2 = 0).

e

Let e, & I., e_ @ I, as above, and let M be the three-

—a? [e e_,- By a

s m-ﬂl

result of Jacobson [4], the representation of M in V is com-

dimensional subalgebra of L spanned by ea, e

pletely reducible and V is the direct sum of trivial one-dimensional
M—suomodules and of irreducible two-dimensional submodules, in each

-q? {eae_a]

— m—" ",

of which 1t may be assumed that the matrices of e e

a!
are, respectively,

fo 1y fo o) /a o

e 5’ ! e

%
\O 0/ \-1 0/ 0 1y

Now for all 3 0 in F, T contains the transformation

-1

(I + Yo )(I + 17"e_ )(T + Je I - e )(I -e )(I-e ) This

-a
mapning has 1n the Q-dimen81ona1 M—submodules of V the matrix

diag ég g 1$, while it is of course the identity on the trivial
submodules. Choosing » such that .g 1 and A such that

A1 - y’e) = 1, we see that the commutator subgroup of T contains
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the transformation which is the identity on the trivial M-submodules

of V and on the 2-dimensional submodules has matrix

[v~2 0?51 -l (w2 o% f1oa) (1 o2

| L T 1 - = P

L0 Yf\o 1,40 g/ o 1, (0o 1
that is, I + ey is a commutator in T, as assgserted,

A more conclsely described set of generators for T may be

given; namely, for each c & J the maps

(a7) @ | }. x %% + (y,c) + %(x,c,c) + % i(e,e,e)  x + &P‘E
e ?’f\Y Y Ly + (xxc) + %‘i‘i(c Xc) 1 )
and . \ oo .
(18) v 3é:,, x! 5 5 ® x + (yXe) + 5(c><c) %
—° ly 1} §\y +§;° i"’ %(X c) + z;(y,c c) + IE (c c C)!

are in T and the set of these mappings, formed for all ¢ & J,
generates T. To see this, it will be noted from the multilinearity

and symmetry of the forms involved that CWJ?{?C and cvkgsé are

.

homomorovhisms of the additive group of J into the full linear group
of V. When ¢ & J satisfies cXc = 0, we have J}_ =TI + (0,c,0,0),

£

X?c I+ (0,0,c O), in the notation of % 1. By §§}3 5, J has a

am—

basis consisting of elements ¢ with ¢ Xc¢ = 0 and such that
(0,e¢,0,0),(0,0,c,0) are root-vectors relative to a standard Cartan
subalgebra of L. For each such ¢ and each A & F, iikc I +
é!O,c,0,0) and 4’ =1+ A(0,0,c,O) have the form I + hea, hence

are in T. That ;gc,fgc are in T for 211 ¢ %-J now follows from

.

the homomorphism property of the mappinws c @ c? CA%‘f
To show that the a@c and %2 generate ?, it now suffices to

show that the group they generate contains all I + hea, where e,

is one of the root-vectors of % 3. When e  has the form (O,c,0,0)

e
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or (0,0,c¢,0), this has already been established. From § 3, our
group contains all I + éfa’ where the coefficlent of 24 in ¢ is
different from zero. Thusmlhe group of automorphisms of E; induced
by the group generated by the §§c,§’ contains an automorﬁﬁism of L
which maps H into H and maps root-spaces according to the Weyl W

reflection 8  of the roots, for each o as above (ef, [6]). In

particular, La and L are conjugate by an element of our group
=2 i *2o
which induces Sg , from which it follows that all I + Aea are in
w1 " a2

our group. A similar argument shows that the group in question con-

tains all I + 2e ., a =+ 0y, 1 <1 < 7. Bince these S, generate

e
e J”lti

the entire Weyl group W, and since W acts transitively on the
roots, another application of the argument vields the assertion,

In summary, we have the following theorem:
Theorem. Let L V Dbe as in.‘§1. Then the group S of g-similitudes
of V is the set bf non-singular linear transformations B of V
such that for some §§(B) in E #2 and for all v & v, a(vs) ~4%(B)Q(V).
The commutator subgroup g‘ ;; §A is its own commutator subgroup,
and T is properly contained in Q, the group of g-preserving
transformations, if -1 1is not a square in F. The group T is
generated by the mappings 53 ,*y of (17), (183, where ¢ runs over
J , and induces the simple Chevalley group G' of automorphisms of L
’The groups of automorphisms of L induced by S Q, T, respectively,
are the quotlients PS, PQ, PT of these by thelr centers, and these
are related to the afithﬁetic of F as in the diagram (16).
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