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a Linear Algebraic
Group?

Skip Garibaldi

From a marketing perspective, algebraic groups
are poorly named. They are not the groups you met
as a student in abstract algebra, which I will call

concrete groups for clarity. Rather, an algebraic
group is the analogue in algebra of a topological
group (from topology) or a Lie group (from analysis

and geometry).
Algebraic groups provide a unifying language

for apparently different results in algebra and

number theory. This unification can not only sim-
plify proofs, it can also suggest generalizations
and bring new tools to bear, such as Galois co-
homology, Steenrod operations in Chow theory,

etc.

Definitions
A linear algebraic group over a field F is a smooth

affine variety over F that is also a group, much
like a topological group is a topological space
that is also a group and a Lie group is a smooth

manifold that is also a group. (For nonexperts:
it is useful to think of an affine variety G as a
natural assignment—i.e., a functor—that takes any
field extension K of F and gives the set G(K) of

common solutions over K of some fixed family of
polynomials with coefficients in F .)

Properly speaking, for each of the three types

of groups in the previous paragraph, one needs to
require that the group operations are morphisms
in the appropriate category, so, e.g., for a topo-

logical group G, the multiplication G×G → G and
inversion G → G are required to be continuous.
In more categorical language, a linear algebraic
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group over F , a Lie group, or a topological group is
a “group object” in the category of affine varieties
over F , smooth manifolds, or topological spaces,
respectively. For algebraic groups, this implies
that the set G(K) is a concrete group for each field
K containing F .

Examples
The basic example is the general linear group
GLn for which GLn(K) is the concrete group of
invertiblen-by-nmatrices with entries inK. It is the
collection of solutions (t,X)—with t ∈ K andX an
n-by-n matrix over K—to the polynomial equation
t ·detX = 1. Similar reasoning shows that familiar
matrix groups such as SLn, orthogonal groups,
and symplectic groups can be viewed as linear
algebraic groups. The main difference here is that
instead of viewing them as collections of matrices
over F , we view them as collections of matrices
over every extension K of F .

Roughly, the theory of linear algebraic groups
generalizes that of linear Lie groups over the real
or complex numbers to give something that makes
sense over an arbitrary field. The category of linear
algebraic groups overR contains a full subcategory
equivalent to the compact Lie groups; see [3,
§5]. And the parameterization of the irreducible
finite-dimensional representations of a complex
reductive Lie group in terms of dominant weights
holds more generally for so-called “split reductive”
groups over any field.

Algebraic groups allow one to deal system-
atically with familiar matrix groups and their
generalizations in a way that works over arbitrary
fields, whether they are the rationals for number
theory, finite fields for finite group theory, or the
real or complex numbers for geometry. This is not
just a language. There is enough theory available
that one can often avoid computing with actual

October 2010 Notices of the AMS 1125



matrices, or at least with matrices larger than

2-by-2!

Local-Global Principles

Quadratic forms and division algebras over a

global field1 F are determined by their proper-

ties at the completions Fv of F ; this is roughly

the content of the Hasse-Minkowski theorem and

the Albert-Brauer-Hasse-Noether theorem, respec-

tively. These theorems can be viewed as saying

that the natural map

(∗) H1(F, G)→
∏

places v of F

H1(Fv , G)

in Galois cohomology is injective, where G is an

orthogonal group or PGLn. This reformulation of

the problem in terms of algebraic groups has two

advantages. First, we see that the two theorems

are two faces of the same phenomenon, and

second, we get a natural general question: For

which linear algebraic groups G is (∗) injective for

every global field F? The Hasse principle (proved

by Kneser, Harder, and Chernousov) says that (∗) is

injective ifG is connected and absolutely simple. (A

linear algebraic group is absolutely simple if, when

viewed as an algebraic group over an algebraic

closure of F , it is not commutative and does

not contain any proper, connected, and normal

algebraic subgroups besides the identity.) This

broadly generalizes the two results mentioned at

the start of the paragraph.

If we weaken our request that (∗) be injective,

we arrive at a substantial result due to Borel and

Serre (early 1960s) that (∗) has finite kernel for

every linear algebraic group G in the case in which

F is a number field. This result has recently been

extended to global fields of prime characteristic

by Brian Conrad. Because these latter fields are

not perfect, this extension relies on the classifica-

tion of “pseudo-reductive” linear algebraic groups

recently completed by Conrad, Ofer Gabber, and

Gopal Prasad.

Another way to generalize the local-global ques-

tion is to weaken the hypotheses on F , for example,

to assume that F has cohomological dimension at

most 2, which holds for totally imaginary number

fields and C(x, y). For such fields and G simply

connected, Serre’s “Conjecture II” (1962) asserts

that H1(F, G) is zero. This is known to hold if F is

the function field of a complex surface (de Jong,

He, and Starr, 2008) orG is a classical group (Bayer

and Parimala, 1995). There are many other results

on this conjecture and generalizations such as the

Hasse principle conjecture II; Google can provide

details.

1A global field is a finite extension of Q or k(t) for k a

finite field.

Group Theory
In the list of finite simple (concrete) groups, most
are of Lie type. That is, take a linear algebraic group
G that is absolutely simple, simply connected, and
defined over a finite field F that is not very small.
Then the concrete group G(F) modulo its center
is finite and simple. This is helpful because one
can use the general framework of algebraic groups
to prove theorems about these finite groups. One
example of this is Deligne-Lusztig theory, which
is the most effective approach to the complex
representations of the finite groups of Lie type.

The construction of simple concrete groups in
the previous paragraph works for many algebraic
groups G and many fields F , not just for finite
fields. But for precisely which G does it work?
The Kneser-Tits problem (1964) asks: Let G be a
linear algebraic group that is simply connected, is
absolutely simple, and contains GL1. Is G(F) mod-
ulo its center simple? Much like the Hasse principle
discussed above, Kneser-Tits is a generalization
in terms of algebraic groups of earlier problems—
such as the Tannaka-Artin problem—regarding
more classical algebraic structures.

The answer to Kneser-Tits seems to depend
on the arithmetic complexity of the field F . The
answer can be “no” for fields of dimension at least
4 (Platonov, 1975).

In contrast, the answer is “yes” for global fields,
which “are 2-dimensional”. This was an open
question for some time, until Philippe Gille settled
the last remaining case in 2007 by discovering
the following interesting criterion that works over
every field F : for a group G as in Kneser-Tits, the
concrete groupG(F)modulo its center is simple (a
purely algebraic criterion) if and only if the variety
G is, roughly speaking, “path connected” (a purely
geometric criterion). See [1] for details.

We still don’t know the answer to Kneser-Tits
for other fields of dimension 2 and don’t even
have strong indications of what the answer should
be for dimension 3.

In closing, I urge you: Please do not be misled
by the short list of topics in this article. There
are many other areas of mathematics in which
algebraic groups play an essential role, such as
the Langlands program, geometric invariant theory
and Schubert varieties in algebraic geometry, Tits’s
theory of buildings. . . Algebraic groups deserve
more attention.
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